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DERIVATIONS ON BANACH ALGEBRAS
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Let D be a derivation on a Banach algebra; by using the operator D2, we give
necessary and sufficient conditions for the separating ideal ofD to be nilpotent. We
also introduce an ideal M(D) and apply it to find out more equivalent conditions
for the continuity of D and for nilpotency of its separating ideal.
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1. Introduction. Let A be a Banach algebra. By a derivation on A, we mean

a linear mapping D : A→ A, which satisfies D(ab) = aD(b)+D(a)b for all a
and b in A. The separating space of D is the set

S(D)= {a∈A : ∃{an
}⊂A; an �→ 0, D

(
an
)
�→ a}. (1.1)

The set S(D) is a closed ideal of A which, by the closed-graph theorem, is zero

if and only if D is continuous.

Definition 1.1. A closed ideal J of A is said to be a separating ideal if, for

each sequence {an} in A, there is a natural N such that

(
Jan ···a1

)= (JaN ···a1
)
(n≥N). (1.2)

The separating space of a derivation onA is a separating ideal [2, Chapter 5];

it also satisfies the same property for the left products.

The following assertions are of the most famous conjectures about deriva-

tions on Banach algebras:

(C1) every derivation on a Banach algebra has a nilpotent separating ideal;

(C2) every derivation on a semiprime Banach algebra is continuous;

(C3) every derivation on a prime Banach algebra is continuous;

(C4) every derivation on a Banach algebra leaves each primitive ideal invari-

ant.

Clearly, if (C1) is true, then the same for (C2) and (C3). Mathieu and Runde in

[5] proved that (C1), (C2), and (C3) are equivalent. The conjecture (C4) is known

as the noncommutative Singer-Wermer conjecture, and it has been proved in

[1] that if each of the conjectures (C1), (C2), or (C3) hold, then (C4) is also

true. The conjectures (C1), (C2), and (C3) are still open even if A is assumed
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to be commutative, but (C4) is true in the commutative case, see [7]. These

conjectures are also related to some other famous open problems; the reader

is referred to [1, 3, 4, 5, 9] for more details.

In the next section, we deal with (C1), and although, for a derivation D on a

Banach algebra, the operators Dn, n = 2,3, . . . , are more complicated, by con-

sideringD2, we easily give some equivalent conditions for S(D) to be nilpotent.

As a consequence, we reprove some of the results in [8]. At the end of the next

section, we introduce an ideal related to a derivation and apply it to obtain

some equivalent conditions for continuity of D and for nilpotency of S(D).
We recall that S(D) is nilpotent if and only if S(D)∩R is nilpotent, see [1,

Lemma 4.2].

2. The results. From now on, A is a Banach algebra, and R and L denote

the Jacobson radical and the nil radical of A, respectively, (see [6, Chapter 4]

for definitions). Note that D is a derivation on A, and S(D) is the separating

ideal of D. If Bi’s, i= 1,2, . . . ,n, are subsets of A, then B1B2 ···Bn denotes the

linear span of the set {b1b2 ···bn : bi ∈ Bi, for i= 1,2, . . . ,n}, and if all of Bi’s
coincide with each other, we denote this set by Bn.

Theorem 2.1. Let J be a closed left ideal of A. Then, S(D)∩J is nilpotent if

and only if D2 |⋂∞
n=1(S(D)∩J)n is continuous.

Proof. Suppose that D2 is continuous on
⋂∞
n=1(S(D)∩J)n. Consider a in

S(D)∩J, then for each n∈N, an ∈ (S(D)∩J)n, and since S(D) is a separating

ideal, there exists N ∈N such that

S(D)an = S(D)aN (n≥N). (2.1)

Hence, by the Mittag-Leffler theorem [2, Theorem A.1.25] and the fact that

S(D)an ⊆ (S(D)∩J)n, we have

S(D)aN =
∞⋂

n=1

S(D)an =
∞⋂

n=1

S(D)an ⊆
∞⋂

n=1

(
S(D)∩J)n. (2.2)

Now, let {xn} ⊆ A, xn → 0, and D(xn) → aN+1. Take yn = xnaN+1, then

yn ∈ S(D)aN ⊆
⋂∞
n=1(S(D)∩J)n, yn → 0, and D(yn) → a2(N+1), and by the

hypothesis, D2(yn)→ 0 and D2(yn2)→ 0. On the other hand,

D2(yn2)=ynD2(yn
)+2

(
Dyn

)2+D2(yn
)
yn �→ 2a4(N+1). (2.3)

Therefore, a4N+4 = 0, that is, S(D)∩J is a nil and hence a nilpotent ideal by

closedness [6, Theorem 4.4.11]. The converse is trivial.
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Remark 2.2. (i) Note that in Theorem 2.1, we can replace J by a right ideal,

see [2, Theorem 5.2.24].

(ii) The argument of Theorem 2.1 shows that if J is not assumed to be closed

and if D2 is continuous on
⋂∞
n=1(S(D)∩J)n, then S(D)∩J will be a nil ideal.

Corollary 2.3. The set S(D) is nilpotent if and only if D2 |⋂∞
n=1(S(D)∩R)n is

continuous.

Proof. If S(D) is nilpotent, then the result is obvious. Conversely, by

Theorem 2.1, S(D)∩R is nilpotent, and by [1, Lemma 4.2], S(D) is nilpotent.

Corollary 2.4. If dim(
⋂∞
n=1(S(D)∩R)n) <∞, then S(D) is nilpotent.

The assertions of the following theorem were proved by Villena in [8], see

also [9, Theorem 4.4]. Using Theorem 2.1, we can reprove them in a different

way.

Theorem 2.5. The derivation D is continuous if one of the following asser-

tions hold:

(a) A is semiprime and dim(R∩(⋂∞n=1An)) <∞;

(b) A is prime and dim(
⋂∞
n=1(aA∩R)n) <∞ for some a∈A with a2 ≠ 0;

(c) A is an integral domain and dim(
⋂∞
n=1(aA∩R)n) <∞ for some nonzero

a∈A.

Proof. (a) By Corollary 2.4, S(D) is nilpotent, and since A is semiprime, D
is continuous.

(b) Without loss of generality, we may assume that A has an identity. By

assumption,
⋂∞
n=1(aA∩R∩S(D))n is finite dimensional; thus,D2 is continuous

on this space, and by Remark 2.2(ii), aA∩R∩S(D) is a nil right ideal; therefore,

a(S(D)∩R) is a nil right ideal, and by [6, Theorem 4.4.11], a(S(D)∩R)⊆ L=
{0}. Thus, AaA(S(D)∩R)= {0}, where AaA is the ideal generated by a. Since

a2 ≠ 0 and A is prime, it follows that S(D)∩R = {0} and hence S(D)⊆ L= {0}.
(c) The same argument as in (b) shows that a(S(D)∩R) = {0}, and since A

is an integral domain, S(D)∩R = {0} and D is continuous.

In the sequel, we give other equivalent conditions for S(D) to be nilpotent,

but first we introduce the set

M(D)= {x ∈ S(D)∩R :D(x)∈ R}. (2.4)

Obviously, M(D) is an ideal of A and (S(D)∩R)2 ⊆M(D). The following the-

orems show that this ideal can help us to study the continuity of a derivation

or nilpotency of its separating ideal.

Theorem 2.6. The derivation D is continuous if and only if M(D)= {0}.
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Proof. Clearly, ifD is continuous, thenM(D)= {0}. Conversely, letM(D)=
{0}; then, (S(D)∩R)2 = {0}. Therefore, (S(D)∩R) and hence S(D) is a nilpo-

tent ideal. Therefore, S(D)⊆ L; we also have D(L)⊆ L by [1, Lemma 4.1]; thus,

D(S(D))⊆ R, that is, S(D)⊆M(D)= {0} and D is continuous.

Theorem 2.7. The following assertions are equivalent:

(a) S(D) is nilpotent;

(b) M(D) is a nil ideal;

(c)
⋂∞
n=1M(D)n = {0}.

Proof. Clearly, (a) implies (b). Suppose that (b) holds, then (S(D)∩R)2 is a

nil ideal; therefore, S(D) is a nilpotent ideal and (a) holds. Now, if S(D) is nilpo-

tent, then
⋂∞
n=1(S(D)n)= {0} and this implies (c). Finally, if

⋂∞
n=1M(D)n = {0},

then by Theorem 2.1 and Remark 2.2 M(D) = M(D)∩S(D) is a nil ideal and

(c) implies (b).
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