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UNILATERAL BOUNDARY VALUE PROBLEMS
WITH JUMP DISCONTINUITIES
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Using the critical point theory of Szulkin (1986), we study elliptic problems with
unilateral boundary conditions and discontinuous nonlinearities. We do not use
the method of upper and lower solutions. We prove two existence theorems: one
when the right-hand side is nondecreasing and the other when it is nonincreasing.
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1. Introduction. In this paper, using the critical-point theory of Szulkin [10]

for lower semicontinuous functionals, we study nonlinear elliptic problems

with unilateral boundary conditions and jump discontinuities. Let Z ⊆ RN be

a bounded domain with a C1-boundary Γ . The problem under consideration is

−div
(∥∥Dx(z)∥∥p−2Dx(z)

)
= f (z,x(z)) a.e. on Z,

∂x
∂np

(z)≥ 0 a.e. on Γ , 2≤ p <∞,
〈
∂x
∂np

,x
〉
Γ
= 0,

x ≥ 0 a.e. on Γ .

(1.1)

Here, D = grad, (∂x/∂np)(z) = ‖Dx(z)‖p−2(Dx(z),n(z))RN , where n(z) de-

notes the exterior normal vector to Γ at z. By 〈·,·〉Γ , we denote the natural pair-

ing between ((W 1/q,p(Γ))∗,W 1/q,p(Γ)). By 〈∂x/∂np,x〉Γ = 0, we mean formally

that ‖Dx(z)‖p−2(Dx(z),η(z))RNx(z) = 0 on Γ (see Kenmochi [8, Remark 1,

pages 137–138]). One can also see Barbu [3, Chapter IV].

Our approach is variational and we minimize nonsmooth energy function-

als. Dirichlet problems with discontinuities were studied by Ambrosetti and

Badiale [1], Arcoya and Calahorrano [2], and Stuart and Toland [9]. All of these

works need the right-hand side to be nondecreasing. Moreover, we study an

elliptic problem with unilateral boundary conditions. Our energy functional is

convex and lower semicontinuous and is not defined everywhere. Thus, we can-

not apply the critical-point theory of Chang [4], which is for locally Lipschitz

functionals defined everywhere.
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On the other hand, Heikkilä and Lakshmikantham [6] used the method of up-

per and lower solutions and obtained existence theorems with a pseudomono-

tone differential operator and a nondecreasing right-hand side. They proved

existence results for Dirichlet, Neumann, and other types of problems. Our

goal here is to have an existence result without assuming the existence of up-

per and lower solutions. It seems that this is the first such result for unilateral

problems. For another type of boundary conditions, one can see also [5].

2. Preliminaries. As we already mentioned, our approach is variational and

is based on the critical-point theory of Szulkin [10], which applies to a cer-

tain broad class of nonsmooth energy functionals. For the convenience of the

reader, in this section, we recall some basic definitions and facts from this

theory, which we will need in the sequel.

So, letX be a Banach space and R :X → R = R∪{+∞} be a function satisfying

the following hypothesis:

(H) R = Φ+ψ, where Φ ∈ C1(X,R) andψ :X → (−∞,+∞] is convex, proper

(i.e., ψ �≡ +∞), and lower semicontinuous.

Following Szulkin [10], a point x ∈ X is said to be a critical point of R if

x ∈ domψ= {x ∈X :ψ(x) <+∞} and satisfies the inequality

〈
Φ′(x),y−x〉+ψ(y)−ψ(x)≥ 0 ∀y ∈X. (2.1)

Here, by 〈·,·〉 we denote the duality brackets for the pair (X,X∗). If x ∈ X
is a critical point, then c = R(x) is called “critical value.” It is clear from the

above definition that x ∈ X is a critical point if and only if −Φ′(x) ∈ ∂ψ(x),
where ∂ψ(·) denotes the subdifferential in the sense of convex analysis of ψ.

Exploiting the convexity of ψ, we can easily prove the following proposition

(see Szulkin [10]).

Proposition 2.1. If R satisfies (H), then each local minimum is necessarily

a critical point of R.

It is well known that variational methods require some kind of compactness

condition, known as “Palais-Smale condition” ((PS)-condition). In the present

nonsmooth setting, this condition was formulated by Szulkin [10] as follows.

(PS) If {xn}n≥1 is a sequence such that R(xn)→ c ∈ R and

〈
Φ′
(
xn
)
,y−xn

〉+ψ(y)−ψ(xn)≥−εn∥∥y−xn∥∥ ∀y ∈X, (2.2)

where εn→ 0, then {xn}n≥1 possesses a convergent subsequence.

An alternative formulation of the compactness condition is the following.

(PS′) If {xn}n≥1 is a sequence such that R(xn)→ c ∈ R and

〈
Φ′
(
xn
)
,y−xn

〉+ψ(y)−ψ(xn)≥ 〈zn,y−xn〉 ∀y ∈X, (2.3)

where zn→ 0, then {xn}n≥1 possesses a convergent subsequence.
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Szulkin (see [10, Proposition 1.2]) proved that the above two formulations

are in fact equivalent.

The following theorem of Szulkin (see [10, Theorem 1.7]) will be used in our

main existence theorem.

Theorem 2.2. If R is bounded from below and satisfies (H) and (PS), then

c = infx∈X R(x) is a critical value.

In what follows, we will use the well-known inequality

N∑
j=1

(
aj(η)−aj(η′)

)(
ηj−η′j

)≥ C|η−η′|p (2.4)

for η,η′ ∈ RN , with aj(η)= |η|p−2ηj .

3. Existence theory. We state our hypotheses for the functions f of prob-

lem (1.1).

(H(f)1) We suppose that f : Z×R→ R is a function such that

(i) it is N-measurable (i.e., for every x : Z → R measurable, z →
f1,2(z,x(z)) is measurable too) with

f1(z,x)= liminf
x′→x

f(z,x′), f2(z,x)= limsup
x′→x

f(z,x′), (3.1)

(ii) there exists h : Z×R→ R with |h(z,x)| ≤ c1+c2|x|p∗ for all x ∈
R almost all z ∈ Z and for some c1,c2 > 0, such that h(z,x)→∞
as x→+∞ and there existsM > 0 such that for almost all z ∈ Z ,

−F(z,x)≥ h(z,|x|) for |x| ≥M with F(z,x)= ∫ x0 f(z,r)dr ,

(iii) for almost all z ∈ Z and for all x ∈ R, |f(z,x)| ≤ c1+c2|x|µ−1,

µ < p, c1,c2 > 0, (1/µ+1/µ′ = 1), and there exists g : Z×R →
R Carathéodory such that |g(z,x)| ≤ c3 + c4|x|p∗ with p∗ =
Np/(N−p) and x → g(z,x)−f(z,x) is nondecreasing for all

x ∈ R and for almost all z ∈ Z .

Let x ∈W 1,p(Z) satisfy the boundary conditions.

Definition 3.1. We say that x is a solution of type I for problem (1.1) if

there exists some w(z)∈ Lµ′(Z) with w(z)∈ [f1(z,x(z)),f2(z,x(z))] a.e. on

Z such that

−div
(∥∥Dx(z)∥∥p−2Dx(z)

)
=w(z) a.e. on Z. (3.2)

Definition 3.2. We say that x is a solution of type II for problem (1.1) if

−div
(∥∥Dx(z)∥∥p−2Dx(z)

)
= f (z,x(z)) a.e. on Z. (3.3)

Theorem 3.3. If hypotheses (H(f)1) hold, then problem (1.1) has a solution

of type I.
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Proof. Let Φ1,Φ2,ψ :W 1,p(Z)→ R be defined as follows:

Φ1(x)=−
∫
Z
F
(
z,x(z)

)
dz+

∫
Z
G
(
z,x(z)

)
dz (3.4)

with

G(z,x)=
∫ x

0
g(z,r)dr ,

ψ(x)= 1
p
‖Dx‖pp+IK(x),

Φ2(x)=−
∫
Z

∫ x(z)
0

g(z,r)dr dz.

(3.5)

Here, K = {x ∈W 1,p(Z) : x ≥ 0 on Γ in the sense of W 1/p′,p} (see Kenmochi [8])

and IK is the indicator function of the closed, convex set K. Then the energy

functional is R(x)= Φ1(x)+Φ2(x)+ψ(x).
It is clear that Φ2 ∈ C1(W 1,p(Z),R). It is easy to prove that ψ is lower semi-

continuous, convex, and proper. It remains to show that Φ1 is convex and

lower semicontinuous. Let xn → x in W 1,p(Z). Then xn → x in Lp∗(Z) and

xn(z)→ x(z) a.e. on Z .

From Chang (see [4, (2.3), page 107]), we know thatx→ F(z,x) is locally Lips-

chitz. It is easy to see that x→G(z,x) is locally Lipschitz too. So,G(z,xn(z))−
F(z,xn(z)) → G(z,x(z))−F(z,x(z)) a.e. on Z . Now using (H(f)1)(iii) and the

dominated convergence theorem, we have that Φ1(xn)→ Φ1(x) as n→∞.

Moreover, by virtue of monotonicity of x → g(z,x)−f(z,x), we have that

x→G(z,x)−F(z,x) is convex.

Claim 3.4. We claim that R(·) satisfies the (PS)-condition of Szulkin [10].

Indeed, let {xn}n≥1 ⊆W 1,p such that R(xn)→ c as n→∞. Note that if xn ∉
K, then ψ(xn) = +∞, thus, R(xn) = +∞. Since, R(xn) → c, we obtain that

xn ∈K for large enough n.

We will prove that this sequence is bounded in W 1,p(Z). Suppose not. Then

‖xn‖ → ∞. Let yn(z) = xn(z)/‖xn‖. Then clearly, at least for a subsequence,

we have yn
w
������������������→y in W 1,p(Z). From the choice of the sequence, we have

Φ1
(
xn
)+Φ2

(
xn
)+ 1
p
∥∥Dxn∥∥pp ≤M. (3.6)

Dividing the last inequality by ‖xn‖, we have

−
∫
Z

F
(
z,xn(z)

)
∥∥xn∥∥p dz+ 1

p
∥∥Dyn∥∥pp ≤ M∥∥xn∥∥p . (3.7)
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By virtue of hypothesis (H(f)1)(iii), we have that
∫
Z(F(z,xn(z))/‖xn‖p)dz→

0. Indeed, from (H(f)1)(iii), we have that |F(z,x)| ≤ c1|x|+c2|x|µ . So,

∫
Z

∣∣F(z,xn(z))∣∣∥∥xn∥∥p dz ≤
∫
Z
c1

∣∣xn(z)∣∣∥∥xn∥∥p dz+c2

∫
Z

∣∣xn(z)∣∣µ∥∥xn∥∥p dz

≤ c3

∥∥xn∥∥∥∥xn∥∥p +c4

∥∥xn∥∥µ∥∥xn∥∥p ;

(3.8)

here we have used the fact that W 1,p(Z) embeds continuously in L1(Z) and in

Lp(Z).
So, liminf‖Dyn‖p ≤ limsup‖Dyn‖pp → 0. From the weak lower semicon-

tinuity of the norm functional, we have that ‖Dy‖p ≤ liminf‖Dyn‖p . Thus,

‖Dy‖p = 0. So, we infer that y = c ∈ R. Since ‖yn‖ = 1, c ≠ 0. So, we have that

|xn(z)| →∞.

From (H(f)1)(ii), we have that there exists some M > 0 such that for all x ∈ R
with |x| > M , we have that −F(z,x) ≥ h(z,|x|). Using the continuity of x →
F(z,x) and that for |x| ≤M we have that |h(z,x)| ≤ L, we can say that for all

x ∈ R, there exists some C > 0 such that −F(z,x)+C ≥ h(z,|x|). Therefore,

going back to (3.6) and using the fact that |xn(z)| →∞, we have a contradiction.

So, ‖xn‖ is bounded, that is, xn
w
������������������→ x in W 1,p(Z) at least for a subsequence. It

remains to show that xn→ x inW 1,p(Z) for a subsequence. Recall that xn→ x
in Lp(Z) and xn(z)→ x(z) a.e. on Z . Because K, closed and convex, is weakly

closed, so x ∈K.

Recall that from the choice of the sequence, we have that

〈
Φ′2
(
xn
)
,y−xn

〉+Φ1(y)−Φ1
(
xn
)+ψ(y)−ψ(xn)≥−εn∥∥y−xn∥∥ (3.9)

for all y ∈W 1,p(Z).
Choose y = x. Then we have

〈
Φ′2
(
xn
)
,x−xn

〉+Φ1(x)−Φ1
(
xn
)+ψ(x)−ψ(xn)

≥−εn
∥∥x−xn∥∥ �⇒ 〈Φ′2(xn),x−xn〉+Φ1(x)−Φ1

(
xn
)

+ 1
p

(
‖Dx‖pp−

∥∥Dxn∥∥pp
)

≥−εn
∥∥x−xn∥∥.

(3.10)

Note that IK(x)= IK(xn)= 0. Thus

lim
〈
Φ′2
(
xn
)
,xn−x

〉+ lim
(
Φ1(x)−Φ1

(
xn
))

+ lim
(
‖Dx‖pp−

∥∥Dxn∥∥pp
)
≥ 0.

(3.11)
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By virtue of hypothesis (H(f)1)(iii) and the definition of Φ2, we have that

lim
〈
Φ′2
(
xn
)
,xn−x

〉= 0. (3.12)

As before, we can see that

Φ1
(
xn
)
�→ Φ1(x). (3.13)

Thus, finally we obtain

limsup
∥∥Dxn∥∥pp ≤ ‖Dx‖pp. (3.14)

On the other hand, since Dxn
w
������������������→ Dx in Lp(Z,RN), from the weak lower

semicontinuity of the norm, we have

liminf
∥∥Dxn∥∥p ≥ ‖Dx‖p �⇒ ∥∥Dxn∥∥p �→‖Dx‖p. (3.15)

The space Lp(Z,RN) being uniformly convex has the Kadec-Klee property

(see Hu and Papageorgiou [7, Definition I.1.72(d)]) and so xn→ x in W 1,p(Z).

Claim 3.5. We claim that R(·) is bounded from below.

Suppose not. Then there exists some sequence {xn}n≥1 such that R(xn) ≤
−n. Then we have

Φ1
(
xn
)+Φ2

(
xn
)+ 1
p
∥∥Dxn∥∥pp ≤−n. (3.16)

By virtue of the continuity of Φ1, Φ2, and ‖Dx‖p , we have that ‖xn‖ →∞ (be-

cause if ‖xn‖ is bounded, then R(xn) is bounded). Dividing by ‖xn‖p and

letting n → ∞, we have as before a contradiction (by virtue of hypothesis

(H(f)1)(ii)). Therefore, R(·) is bounded from below.

From the above arguments, we know that there exists x ∈ W 1,p(Z) such

that 0 ∈ ∂R(x) and x ∈ K. That means that 0 ∈ ∂(Φ1(x)+ IK)+Ax−g. Here,

A :W 1,p(Z)→ (W 1,p(Z))∗ is such that

〈Ax,y〉 =
∫
Z

∥∥Dx(z)∥∥p−2(Dx(z),Dy(z))RN dz, (3.17)

for every y ∈W 1,p(Z). It is well known that this operator is bounded and pseu-

domonotone. Also, it is well known that the operator ψ1(x)= (1/p)‖Dx‖pp is

differentiable, and then the subdifferential of this operator has only one ele-

ment.
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Recall that Φ1 is continuous. Therefore, from convex analysis, we know that

∂(Φ1(x)+ IK(x))= ∂Φ1(x)+∂IK(x). For a more-detailed study of ∂IK(x), one

can see [3, page 54].

From Chang [4], we know that ∂Φ1(x) ⊆ g(z,x(z)) − [f1(z,x(z)),f2(z,
x(z))] (note that Φ1 is locally Lipschitz, so the subdifferential of convex anal-

ysis coincides with this for locally Lipschitz functionals). So, we can say that

there exists some w(z) ∈ Lµ′ with w(z) ∈ [f1(z,x(z)),f2(z,x(z))] a.e. on Z
such that

〈Ax,y〉−〈w,y〉 ≤ IK(y)−IK(x) ∀y ∈W 1,p(Z). (3.18)

We can show that problem (1.1) is equivalent with the above inequality (see

Kenmochi [8, Proposition 4.1]).

We can have a second existence theorem of type II. We state the following

hypotheses.

(H(f)2) We suppose that f : R→ R is a function such that

(i) it is N-measurable (i.e., for every x : Z → R measurable, z →
f1,2(x(z)) is measurable too),

(ii) there exists h : R → R with |h(x)| ≤ c1+c2|x|p∗ for all x ∈ R,

almost all z ∈ Z and for some c1,c2 > 0, such that h(x)→∞ as

x → +∞ and there exists M > 0 such that −F(x) ≥ h(|x|) for

|x| ≥M with F(x)= ∫ x0 f(r)dr ,

(iii) for all x ∈ R, |f(x)| ≤ c1 + c2|x|µ−1, µ < p, c1,c2 > 0, (1/µ+
1/µ′ = 1) and there exists g : R → R Carathéodory such that

|g(x)| ≤ c3 + c4|x|p∗ with p∗ = Np/(N −p) and x → g(x)−
f(x) is nonincreasing.

Theorem 3.6. If (H(f)2) hold, then problem (1.1) has a solution of type II.

Proof. Take the same functional R as before. We can easily see that R :

W 1,p(Z) is weakly lower semicontinuous and coercive. The weakly lower semi-

continuity is easy, noticing that if xn→ x weakly in W 1,p(Z), then, at least for

a subsequence again denoted by xn, we have that xn → x strongly in Lp(Z).
Indeed, ψ(x) is convex and lower semicontinuous, so is weakly lower semi-

continuous. Recall that, Φ1(x)+Φ2(x)=−
∫
Z F(z,x(z))dz. So, using (H(f)2)(iii)

and the dominated convergence theorem, we have that Φ1(xn)+ Φ2(xn) →
−∫Z F(z,x(z))dz = Φ1(x)+Φ2(x).

For coercivity, we can use the same arguments as in Theorem 3.3.

Take now the ballM = {‖x‖ ≤ C}, then from the coercivity of R follows that

the infimum is on M for large enough C . So, there exists some x ∈ W 1,p(Z)
such that 0 ≤ R(y)−R(x) for all y ∈ W 1,p(Z) (see Zeidler [11, Proposition

38.12(d), page 154]).

Thus,

(−Φ1
)
(y)−(−Φ1

)
(x)≤ Φ2(y)+ψ(y)−Φ2(x)−ψ(x). (3.19)
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Since (−Φ1) is convex, from the above inequality follows that for all v1 ∈
∂Φ1(x), we have

v1 ∈ ∂
(
Φ2(x)+ψ(x)

)
. (3.20)

So, for all w ∈ Lµ′(Z) with w(z)∈ [f1(x(z)),f2(x(z))], we have that

〈w,y−x〉 ≤ 〈Ax,y−x〉+IK(y)−IK(x). (3.21)

Choosing now y = x ± φ with φ ∈ C∞o (Z), we have that for all w(z) ∈
[f1(x(z)),f2(x(z))],

〈w,φ〉 = 〈Ax,φ〉. (3.22)

We show that λ{z ∈ Z : x(z) ∈ D(f)} = 0 with D(f) = {x ∈ R : f(x+) >
f(x−)}, that is, the set of upward-jumps.

So, let w(z)∈ [f1(x(z)),f2(x(z))] and for any t ∈D(f), set

ρ±(z)= [1−χt(x(z))]w(z)+χt(x(z))[f (x(z)±)], (3.23)

where

χt(s)=

1, if s = t,

0, otherwise.
(3.24)

Then ρ± ∈ Lq(Z) and ρ± ∈ [f1(x),f2(x)]. So

∫
Z
ρ±(z)y(z)dz =

∫
Z

∥∥Dx(z)∥∥p−2(Dx(z),Dy(z))RN dz (3.25)

for all y ∈ C∞o (Z).
Thus, ρ+ = ρ− for almost all z ∈ Z . From this, it follows that χt(x(z)) = 0

for almost all z ∈ Z . Since D(f) is countable and

χ
(
x(z)

)= ∑
t∈D(f)

χt
(
x(z)

)
, (3.26)

it follows that χ(x(z)) = 0 a.e. (with χ(t) = 1 if t ∈ D(f) and χ(t) = 0 other-

wise).

So, as before, we can show that x is a solution of type II.
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