INVARIANT SUBSPACES FOR POLYNOMIALLY COMPACT ALMOST SUPERDIAGONAL OPERATORS ON $l(p_i)$

ARTHUR D. GRAINGER

Received 6 August 2002

It is shown that almost superdiagonal, polynomially compact operators on the sequence space $l(p_i)$ have nontrivial, closed invariant subspaces if the *nonlocally convex* linear topology $\tau(p_i)$ is locally bounded.

2000 Mathematics Subject Classification: 46S20, 03H05.

1. Introduction. The purpose of this paper is to show that almost superdiagonal, polynomially compact operators on the sequence space $l(p_i)$ have nontrivial, closed invariant subspaces if the *nonlocally convex* linear topology $\tau(p_i)$ is locally bounded. The proofs and arguments of this paper are stated within the framework of nonstandard analysis (see [4, Theorem 6.3 and Proposition 5.5]).

1.1. Preliminaries. Let $\{p_i\}_{i=1}^{\infty}$ be a sequence of real numbers such that $0 < p_i \le 1$ for each $i \in \mathbb{N}_+$, the set of positive integers. Let

$$l(p_i) = \left\{ (\xi_i) \mid \sum_{i=1}^{\infty} \mid \xi_i \mid^{p_i} < \infty \right\},$$
(1.1)

where $\xi_i \in \mathbb{C}$, the complex numbers. Since $|\lambda + \beta|^p \le |\lambda|^p + |\beta|^p$ and $|\lambda\beta|^p \le \max(1, |\lambda|)|\beta|^p$ are valid for all $\lambda, \beta \in \mathbb{C}$ and $0 , it follows that <math>l(p_i)$ is a vector space over \mathbb{C} . Also,

$$\rho(p_i)(x,y) = \sum_{i=1}^{\infty} |\xi_i - \zeta_i|^{p_i}, \qquad (1.2)$$

where $x = (\xi_i)$ and $y = (\zeta_i)$, defines a translation invariant metric on $l(p_i)$. Let $\tau(p_i)$ denote the topology generated on $l(p_i)$ by $\rho(p_i)$. If $p_i = p \in (0,1]$ for all $i \in \mathbb{N}_+$, then we denote $l(p_i)$ by l^p and $\tau(p_i)$ by τ_p .

For $(l(p_i), \tau(p_i))$, the following facts are known:

- (1) $(l(p_i), \tau(p_i))$ is a complete topological vector space;
- (2) $(l(p_i), \tau(p_i))$ is a locally convex space if and only if $l(p_i) = l^1$;
- (3) the following three conditions on $\{p_i\}_{i=1}^{\infty} \subset (0,1]$ are equivalent:

- (a) $\liminf p_i > 0$,
- (b) a subset B of l(p_i) is bounded in τ(p_i) if and only if it is bounded in the metric ρ(p_i),
- (c) $(l(p_i), \tau(p_i))$ is locally bounded, that is, there exists a $\tau(p_i)$ -bounded neighborhood of 0.

(See [5, Lemmas 1 and 2, Theorems 5 and 6].)

Unless stated otherwise, it will be assumed that $0 < p_i \le 1$, for $i \in \mathbb{N}_+$, and 0 .

The sequence $\{e_i\}$ (where $e_i = (\varepsilon_{ij})$, $\varepsilon_{ii} = 1$, and $\varepsilon_{ij} = 0$ for $i \neq j$) will denote the natural Schauder basis for $(l(p_i), \tau(p_i))$ and $\{\pi_i \mid i \in \mathbb{N}_+\}$, $\{P_j \mid j \in \mathbb{N}_+\}$, and $\{E_j \mid j \in \mathbb{N}_+\}$ will denote the sequences of coordinate functionals, projections, and coordinate spaces, respectively, generated in $l(p_i)$ by $\{e_i\}$. Also, a τ or ρ , when used, will symbolize $\tau(p_i)$ and $\rho(p_i)$, respectively.

Let $\mathcal{F}[l(p_i)]$ symbolize the collection of all functions mapping $l(p_i)$ into $l(p_i)$ and let $[l(p_i)]$ and $\mathcal{L}(l(p_i))$ designate the vector spaces of $\tau(p_i)$ -continuous linear transformation and linear transformations on $l(p_i)$, respectively. If $T, U \in \mathcal{L}(l(p_i))$, then TU denotes the composite map of T and U. For $n \in \mathbb{N}$, the set of natural numbers, and $T \in \mathcal{L}(l(p_i))$, define T^n in the usual manner, that is, $T^0 = I$, the identity map, $T^1 = T$, and $T^n = TT^{n-1}$ for $1 \le n$. If $q(\lambda) = \sum_{k=0}^n c_k \lambda^k$ is a polynomial over \mathbb{C} , then we define $q(T) = \sum_{k=0}^n c_k T^k$ for $T \in \mathcal{L}(l(p_i))$.

Let $x \in l(p_i)$, which implies $x = \sum_{j=1}^{\infty} \pi_j(x)e_j$. If $T \in [l(p_i)]$, then $Tx = \sum_{j=1}^{\infty} \pi_j(x)Te_j$. Note that $\pi_i(Tx) = \pi_i(\sum_{j=1}^{\infty} \pi_j(x)Te_j) = \sum_{j=1}^{\infty} \pi_i(Te_j)\pi_j(x)$, for $i \in \mathbb{N}_+$, by the continuity of π_i . Consequently, if $a_{ij} = \pi_i(Te_j)$, then $Tx = \sum_{i=1}^{\infty} \pi_i(Tx)e_i = \sum_{i=1}^{\infty} [\sum_{j=1}^{\infty} a_{ij}\pi_j(x)]e_i$. Therefore, for $T \in [l(p_i)]$, a double sequence $[a_{ij}] \subset \mathbb{C}$ will be called the *matrix of* T *with respect to* $\{e_i\}$ (or simply the matrix of T) if and only if $a_{ij} = \pi_i(Te_j)$.

Define $\mathscr{CF}[l(p_i)] \subset [l(p_i)]$ as follows: $T \in \mathscr{CF}[l(p_i)]$ if and only if $T \in [l(p_i)]$ and for $j \in \mathbb{N}_+$, there exists $n \in \mathbb{N}_+$, depending on j, such that $Te_j \in E_n$. If $T \in \mathscr{CF}[l(p_i)]$ and $[a_{ij}]$ is the matrix of T, then there exists $n \in \mathbb{N}_+$ such that $a_{ij} = 0$ for n < i. Also, $T, U \in \mathscr{CF}[l(p_i)]$ implies $TU \in \mathscr{CF}[l(p_i)]$. For $T \in \mathscr{CF}[l(p_i)]$, T is said to be *almost superdiagonal (a.sd.)* if and only if $Te_j \in E_{j+1}$ for each $j \in \mathbb{N}_+$.

For $T \in [l(p_i)]$, $n \in \mathbb{N}$, and $[a_{ij}]$, the matrix of T, let the matrix of T^n be denoted by $[a_{ij}^{(n)}]$. It can be shown that if T is almost superdiagonal, then

$$a_{j+n,j}^{(m)} = 0 \quad \text{for } m < n,$$

$$a_{j+n,j}^{(n)} = \prod_{i=0}^{n-1} a_{j+i+1,j+i} \quad \text{for } j, m, n \in \mathbb{N}_+$$
(1.3)

(see [1, Section 3, Theorem 3.6]).

An asterisk appended to the upper-left corner of a symbol indicates the *nonstandard extension* of the object represented by the symbol. The notation

1962

 $\mu(0)$ will denote the set of *infinitesimals* of $*\mathbb{C}$. An element λ of $*\mathbb{C}$ is said to be *finite* if and only if $|\lambda| \leq *\delta$ for some positive $\delta \in \mathbb{R}$; otherwise, λ is said to be *infinite*. It is customary to consider $\mathbb{C} \subset *\mathbb{C}$, that is, the elements of \mathbb{C} are identified with their nonstandard extensions; therefore, the asterisk notation is mostly not used for these elements. However, to bring clarity to some arguments, the asterisk notation for nonstandard extensions of elements of \mathbb{C} will be used occasionally.

The notation $\mathcal{N}_{\tau}(0)$ denotes the $\tau(p_i)$ -neighborhood filter of zero in $l(p_i)$ and $\mu_{\tau}(0)$ denotes the *monad* of the $\tau(p_i)$ -neighborhoods of zero in $l(p_i)$. An element $z \in *l(p_i)$ is called *near standard* if and only if there exists a (unique) element in $l(p_i)$, denoted by °*z*, such that $z - °z \in \mu_{\tau}(0)$. Also, for $A \subset *l(p_i)$, the set ° $A \subset l(p_i)$, called the *standard part* of *A*, is defined as follows: $x \in °A$ if and only if there is a $z \in A$ such that $z - *x \in \mu_{\tau}(0)$. It can be shown that if *F* is an *internal* vector subspace of $*l(p_i)$, then °*F* is a $\tau(p_i)$ -closed linear subspace of $l(p_i)$ (see [3, Proposition 1.7]). If $T \in [l(p_i)]$, then $*T[\mu_{\tau}(0)] \subseteq \mu_{\tau}(0), *T(z)$ is *near standard* if $z \in *l(p_i)$ is *near standard*, and °[**T*(*z*)] = *T*(°*z*). We will denote the (*external*) set of all *near standard* points of $*l(p_i)$ by the notation $ns_{\tau}(*l(p_i))$. The (*external*) set { $z \in *l(p_i) \mid \lambda z \in \mu_{\tau}(0)$ for each $\lambda \in \mu(0)$ } is called the set of *finite points* of $*l(p_i)$ and is denoted by fin_{τ}(**l*(*p_i*)). Clearly,

$$\operatorname{ns}_{\tau}({}^{*}l(p_{i})) \subset \operatorname{fin}_{\tau}({}^{*}l(p_{i})). \tag{1.4}$$

Finally, if *Y* is any set belonging to the *superstructure* generated by $\mathbb{C} \cup l(p_i)$, then $\triangle(Y)$ denotes the collection of all finite subsets of the set *Y*. Also, the elements of $*\triangle(Y)$ are called *-*finite* subsets of *Y.

2. Nonstandard properties of $l(p_i)$ **.** The purpose of this section is to state some of the (nonstandard) properties of $(l(p_i), \tau(p_i))$ that will be used in later arguments. These facts were developed in [2, 3]. The reader is referred to these references for the proofs.

Recall that for $x \in l(p_i)$,

$$P_i(x) = \sum_{j=1}^{i} \pi_j(x) e_j \in E_i,$$
(2.1)

where $\{e_i\}$ is the natural Schauder basis for $l(p_i)$, $E_i = \operatorname{sp}(e_1, \dots, e_i)$, and $\{\pi_i\}$ is the sequence of scalar projections generated by $\{e_i\}$. Let $\mathcal{FG}(l(p_i))$ be the collection of all finite-dimensional linear subspaces of $l(p_i)$. We will let $d : \mathcal{FG}(l(p_i)) \to \mathbb{N}$ denote the dimension function. In other words, d(F) = n, for $F \in \mathcal{FG}(l(p_i))$, if and only if $F = \operatorname{sp}(x_1, \dots, x_n)$ for some linearly independent $\{x_i\}_{i=1}^n \subset l(p_i)$. In particular,

$$d(E_i) = i \quad \text{for each } i \in \mathbb{N}_+. \tag{2.2}$$

PROPOSITION 2.1 (see [2, Propositions III.1 and III.3]). *If* $\alpha \in \mathbb{N}_+ - \mathbb{N}_+$, *then the (internal) projection* $P_{\alpha} : *l(p_i) \to E_{\alpha}$ *satisfies the following two conditions:*

(1) for $W \in \mathcal{N}_{\tau}(0)$, there exists $V \in \mathcal{N}_{\tau}(0)$ such that $P_{\alpha}[*V] \subset *W$;

(2) *if* $x \in l(p_i)$, then $P_{\alpha}(*x) - *x \in \mu_{\tau}(0)$ (*i.e.*, ${}^{\circ}[P_{\alpha}(*x)] = x$).

Note that Proposition 2.1 implies that for $x \in l(p_i)$ and $\alpha \in \mathbb{N}_+ - \mathbb{N}_+$, we have $l(p_i) = \mathbb{E}_{\alpha}$ and $P_{\alpha}[\mu_{\tau}(0)] \subseteq \mu_{\tau}(0)$. It can be shown that

$$z \in \operatorname{ns}_{\tau}({}^{*}l(p_{i})) \text{ implies } z - P_{\alpha}(z) \in \mu_{\tau}(0)$$
 (2.3)

(see [2, Proposition II.2]). Also, for $T \in [l(p_i)]$ and $\alpha \in *\mathbb{N}_+ - \mathbb{N}_+$, if we define $T_{\alpha} = P_{\alpha}(*T)P_{\alpha}$, then $T_{\alpha} \in *\mathscr{L}(l(p_i))$ (i.e., T_{α} is an *internal* linear transformation on $*l(p_i)$), $T_{\alpha} : *l(p_i) \to E_{\alpha}$, and $T_{\alpha}[\mu_{\tau}(0)] \subseteq \mu_{\tau}(0)$. In addition, $\circ[T_{\alpha}(*x)] = T(x)$ for $x \in l(p_i)$ and $\circ[T_{\alpha}(z)] = T(\circ z)$ for any *near standard* $z \in *l(p_i)$ (see [2, Propositions II.4 and II.5]). Finally, if $F \in *\mathscr{FF}(l(p_i))$ such that $F \subseteq E_{\alpha}$ and $T_{\alpha}[F] \subseteq F$, then $T[^{\circ}F] \subseteq \circ^{\circ}F$ (see [2, Proposition II.6]).

PROPOSITION 2.2 (see [2, Theorem II.1]). *There exists a function* ∇ : $\mathscr{F}\mathcal{G}(l(p_i)) \rightarrow \mathscr{F}[l(p_i)]$ *that satisfies the following conditions:*

- (1) if $F \in \mathcal{FF}(l(p_i))$, then $\nabla(F) : l(p_i) \to F$;
- (2) for each $V \in N_{\tau}(0)$ and any nonzero $x \in l(p_i)$, there exists a positive $\lambda \in \mathbb{R}$ such that $\nabla(F)(\lambda x) \in V$ for all $F \in \mathcal{FF}(l(p_i))$;
- (3) if $x \in l(p_i)$ such that $x \in {}^\circ F$ for $F \in {}^*\mathcal{F}\mathcal{G}(l(p_i))$, then ${}^*\nabla(F)({}^*x) {}^*x \in \mu_{\tau}(0)$ (i.e., ${}^\circ[{}^*\nabla(F)({}^*x)] = x$).

Let $[\mathscr{F}\mathscr{G}(l(p_i))]$ be the collection of all linear transformations Q with $\mathfrak{D}(Q)$, $\mathfrak{R}(Q) \in \mathscr{F}\mathscr{G}(l(p_i))$, where $\mathfrak{D}(Q)$ and $\mathfrak{R}(Q)$ are the domain and range of Q, respectively, (i.e., the domain and range of linear transformation Q are *finite* dimensional for $Q \in [\mathscr{F}\mathscr{G}(l(p_i))]$). Since the scalar field of $l(p_i)$ is complex, the following sentence is true.

If $E \in \mathscr{FS}(l(p_i))$ and $Q \in [\mathscr{FS}(l(p_i))]$ such that $Q : E \to E$, then for n = d(E), there exists $\{F_j\}_{i=0}^n \in \triangle(\mathscr{FS}(l(p_i)))$ such that

- (a) $F_0 = \{0\}$ and $F_n = E$,
- (b) $F_{j-1} \subset F_j$ for j = 1, ..., n,
- (c) $d(F_i) = d(F_{i-1}) + 1$ for j = 1, ..., n,
- (d) $Q[F_j] \subset F_j$ for j = 0, ..., n.

Note that the (logical) constants of the previous statement are $\mathcal{FS}(l(p_i))$, $[\mathcal{FS}(l(p_i))]$, $\triangle(\mathcal{FS}(l(p_i)))$, and *d*, the dimension function. Therefore, by the *transfer principle*, the following sentence is true.

If $E \in \mathscr{FF}(l(p_i))$ and $Q \in \mathscr{FF}(l(p_i))$ such that $Q : E \to E$, then for $\alpha = \mathscr{F}(E)$, there exists $\{F_t\}_{t=0}^{\alpha} \in \mathscr{FF}(l(p_i))$ such that

- (a) $F_0 = \{0\}$ and $F_{\alpha} = E$,
- (b) $F_{\iota-1} \subset F_{\iota}$ for $\iota = 1, \ldots, \alpha$,
- (c) $*d(F_{\iota}) = *d(F_{\iota-1}) + 1$ for $\iota = 1, ..., \alpha$,
- (d) $Q[F_{\iota}] \subset F_{\iota}$ for $\iota = 0, ..., \alpha$.

In [2], this fact was used to obtain the following proposition.

PROPOSITION 2.3 (see [2, Definition II.2 and Lemma II.8]). Let ∇ : $\mathscr{FF}(l(p_i)) \rightarrow \mathscr{F}[l(p_i)]$ be the function established by Proposition 2.2 and let $\alpha \in \mathbb{N}_+ - \mathbb{N}_+$. If $T \in \mathscr{L}(l(p_i))$, then there exists an internal family $\{F_t\}_{t=0}^{\alpha} \in \mathbb{A}(\mathscr{FF}(l(p_i)))$ such that the following conditions are fulfilled:

- (1) $F_0 = \{0\}, F_{\alpha} = E_{\alpha}, and F_{\iota-1} \subset F_{\iota} \text{ for } \iota = 1, ..., \alpha,$
- (2) $*d(F_{\iota}) = *d(F_{\iota-1}) + 1$ for $\iota = 1, ..., \alpha$,
- (3) $T_{\alpha}[F_{\iota}] \subset F_{\iota}$ for $\iota = 0, ..., \alpha$, where $T_{\alpha} = P_{\alpha}(*T)P_{\alpha}$,
- (4) $\{F_{\iota}\}_{\iota=0}^{\alpha}$ and $\{*\nabla(F_{\iota})\}_{\iota=0}^{\alpha}$ are *-finite,
- (5) $^{*}\nabla(F_{\iota}): ^{*}l(p_{i}) \rightarrow F_{\iota}$ such that $x \in ^{\circ}F_{\iota}$ implies $^{*}\nabla(F_{\iota})(^{*}x) ^{*}x \in \mu_{\tau}(0)$ (*i.e.*, $^{\circ}[^{*}\nabla(F_{\iota})(^{*}x)] = x$) for each $\iota \in \{0, ..., \alpha\}$.

Note that ${}^{\circ}F_{\alpha} = {}^{\circ}E_{\alpha} = l(p_i)$ and from continuity and Proposition 2.3(3), we infer that $T[{}^{\circ}F_t] \subset {}^{\circ}F_t$ for $T \in [l(p_i)]$ and $\iota \in \{0, ..., \alpha\}$. Also, given $F_{\iota-1}$ and F_t , $\iota = 1, ..., \alpha$, it can be shown that Proposition 2.3(2) implies that for $x_1, x_2 \in {}^{\circ}F_t$, either $x_1 = \zeta_1 x_2 + y_1$ or $x_2 = \zeta_2 x_1 + y_2$ for some $\zeta_1, \zeta_2 \in \mathbb{C}$ and $y_1, y_2 \in {}^{\circ}F_{\iota-1}$. In other words, any two points of ${}^{\circ}F_t$ are linearly dependent modulo ${}^{\circ}F_{\iota-1}$ (see [2, Proposition I.21]).

Observe that for $T \in [l(p_i)]$, Proposition 2.3 produces a chain of closed invariant linear subspaces for T, namely $\{{}^{\circ}F_t\}_{t=0}^{\alpha}$. The problem is that we could have ${}^{\circ}F_t = \{0\}$ for $t \in \{0,...,\alpha\} \cap \mathbb{N}$ (i.e., the *finite* elements of $\{0,...,\alpha\}$) and ${}^{\circ}F_t = l(p_i)$ for $t \in \{0,...,\alpha\} \cap (\mathbb{N} - \mathbb{N})$ (i.e., the *infinite* elements of $\{0,...,\alpha\}$). However, if we could find $v \in \{1,...,\alpha\}$ such that ${}^{\circ}F_{v-1} \neq l(p_i)$ and ${}^{\circ}F_v \neq \{0\}$, then either ${}^{\circ}F_{v-1}$ or ${}^{\circ}F_v$ is a closed nontrivial linear subspace of T since $l(p_i)$ is infinite dimensional and any two points of ${}^{\circ}F_v$ are linearly dependent modulo ${}^{\circ}F_{v-1}$. The next proposition gives sufficient conditions for the existence of such a v.

PROPOSITION 2.4 (see [2, Definition II.2 and Lemma II.9]). Let $T \in \mathcal{L}(l(p_i))$, $\nabla : \mathcal{F}\mathcal{G}(l(p_i)) \to \mathcal{F}[l(p_i)]$ be the function established by Proposition 2.2, and let $\alpha \in {}^*\mathbb{N}_+ - \mathbb{N}_+$. Let the collection $[\{F_i\}_{i=0}^{\alpha} : \{{}^*\nabla(F_i)\}_{i=0}^{\alpha}]$ satisfy the conditions of Proposition 2.3 with respect to T, ∇ , and α . Let $U \in {}^*\mathcal{L}(l(p_i))$ such that $U[\mu_{\tau}(0)] \subset \mu_{\tau}(0)$. If there exists $x \in l(p_i)$ such that $U({}^*x) \notin \mu_{\tau}(0)$ and $U({}^*\nabla(F_i)({}^*x)) \in F_i \cap ns_{\tau}({}^*l(p_i))$ for each $\iota \in \{0,...,\alpha\}$, then there exists $v \in$ $\{1,...,\alpha\}$ such that ${}^\circ F_{v-1} \neq l(p_i)$ and ${}^\circ F_v \neq \{0\}$.

We close this section with a useful characterization of $fin_{\tau}(*l(p_i))$, the *finite points* of $*l(p_i)$.

PROPOSITION 2.5. If $z \in \text{fin}_{\tau}(*l(p_i))$, then $\pi_{\iota}(z)$ is finite for $\pi_{\iota} \in *\{\pi_i \mid i \in \mathbb{N}_+\}$.

PROOF. Since $0 implies that <math>\tau(p_i)$ is locally bounded (see [5, Theorem 6]), there exists a positive $\delta_0 \in \mathbb{R}$ such that

$$V_0 = S(\rho(p_i); \delta_0) = \{ x \in l(p_i) \mid \rho(p_i)(x, 0) \le \delta_0 \}$$
(2.4)

is $\tau(p_i)$ -bounded. Let $z \in \operatorname{fin}_{\tau}(*l(p_i))$. Hence, $*g_{V_0}(z) \leq *\delta$ for some positive $\delta \in \mathbb{R}$, where g_{V_0} is the gauge of V_0 (see [2, Proposition I.14]). So, $z \in *(\delta V_0) \subset *S(\rho(p_i);\lambda)$ for $\lambda = \max(\delta \delta_0, \delta_0, 1)$ since V_0 is closed, balanced and $\delta S(\rho(p_i);\delta_0) \subset S(\rho(p_i);\lambda)$. Therefore, $*\rho(p_i)(z,0) \leq *\lambda$, which implies $|\pi_l(z)|^{p_l} \leq *\lambda$ for $\pi_l \in *\{\pi_i \mid i \in \mathbb{N}_+\}$. It suffices to consider the case when $1 \leq |\pi_l(z)|$ for $\iota \in *\mathbb{N}_+$. Since $p \in \mathbb{R}$ and $0 < p_l^{-1} \leq *(p^{-1})$ for $p_l \in *\{p_i\}$, we have $|\pi_l(z)| \leq (*\lambda)^{p_l^{-1}} \leq *(\lambda^{p^{-1}})$ for $\pi_l \in *\{\pi_i \mid i \in \mathbb{N}_+\}$. We infer that $\pi_l(z)$ is finite for $\pi_l \in *\{\pi_i \mid i \in \mathbb{N}_+\}$.

3. Polynomially compact almost superdiagonal operators. We want to show that if $T \in \mathscr{CF}[l(p_i)]$ is almost superdiagonal and q(T) is compact for some polynomial $q(\lambda)$ over \mathbb{C} , then T has a nontrivial closed invariant linear subspace. Note that for $\alpha \in *\mathbb{N}_+ - \mathbb{N}_+$ and $\nabla : \mathscr{FF}(l(p_i)) \to \mathscr{F}[l(p_i)]$, the function defined by Proposition 2.2, we can use Proposition 2.3 to produce a collection $[\{F_t\}_{t=0}^{\alpha} : \{*\nabla(F_t)\}_{t=0}^{\alpha}]$, for some $\alpha \in *\mathbb{N}$, such that $\{\circ F_t\}_{t=0}^{\alpha}$ is a collection of closed invariant linear subspaces of T. The strategy is to find some $\alpha \in *\mathbb{N}_+ - \mathbb{N}_+$ such that $*q(T_\alpha) \in *\mathscr{L}(l(p_i))$ satisfies the hypotheses of Proposition 2.4, where $T_{\alpha} = P_{\alpha}(*T)P_{\alpha}$.

First, however, consider a compact operator U on $l(p_i)$.

As stated in the proof of Proposition 2.5, there exists a positive $\delta_0 \in \mathbb{R}$ such that

$$V_0 = S(\rho(p_i); \delta_0) = \{ x \in l(p_i) \mid \rho(p_i)(x, 0) \le \delta_0 \}$$
(3.1)

is $\tau(p_i)$ -bounded since $0 implies that <math>\tau(p_i)$ is locally bounded (see the known facts about $(l(p_i), \tau(p_i))$ in the first section). Therefore,

$$^{*}V_{0} \subset \operatorname{fin}_{\tau}\left(^{*}l(p_{i})\right) \tag{3.2}$$

(see [2, Corollary I.18]). If $U \in [l(p_i)]$ such that $\overline{U[W]}$ is $\tau(p_i)$ -compact for some $W \in \mathcal{N}_{\tau}(0)$, then $\overline{U[V_0]}$ is $\tau(p_i)$ -compact since $\lambda V_0 \subset W$ for some positive scalar λ . Unless stated otherwise, $V_0 = S(\rho(p_i); \delta_0)$ will be a fixed, $\tau(p_i)$ bounded neighborhood of 0, with $0 < \delta_0 \le 1$. Thus, we have that $U \in [l(p_i)]$ is compact if and only if $\overline{U[V_0]}$ is $\tau(p_i)$ -compact. Also, if $\overline{U[V_0]}$ is $\tau(p_i)$ -compact, then $*U[*V_0] \subset ns_{\tau}(*l(p_i))$ (see [2, Proposition I.1]).

PROPOSITION 3.1. If $U \in [l(p_i)]$ is compact and $[b_{ij}]$ is the matrix of U, then $b_{\iota\kappa} \in \mu(0)$ for $b_{\iota\kappa} \in *[b_{ij}]$ such that $\iota, \kappa \in *\mathbb{N}_+ - \mathbb{N}_+$.

PROOF. Let $\lambda_{\kappa} = (*\delta_0)^{p_{\kappa}^{-1}}$ for $\kappa \in *\mathbb{N}_+$ and $p_{\kappa} \in *\{p_i\}$ and define $z_{\kappa} = \lambda_{\kappa}e_{\kappa}$ for $\kappa \in *\mathbb{N}_+$ and $e_{\kappa} \in *\{e_i\}$. We infer that $*\rho(p_i)(z_{\kappa}, 0) = |\lambda_{\kappa}|^{p_{\kappa}} = *\delta_0$ for $\kappa \in *\mathbb{N}_+$, which implies $z_{\kappa} \in *V_0$ for $\kappa \in *\mathbb{N}_+$. Therefore, $*Uz_{\kappa} \in \operatorname{ns}_{\tau}(*l(p_i))$ for $\kappa \in *\mathbb{N}_+$ since $*U[*V_0] \subset \operatorname{ns}_{\tau}(*l(p_i))$. So, if $\iota \in *\mathbb{N}_+ - \mathbb{N}_+$, then $*Uz_{\kappa} - P_{l-1}(*Uz_{\kappa}) \in \mu_{\tau}(0)$ for $\kappa \in *\mathbb{N}_+$ by expression (2.3) since $\iota \in *\mathbb{N}_+ - \mathbb{N}_+$ implies $\iota - 1 \in *\mathbb{N}_+ - \mathbb{N}_+$.

Let $\iota, \kappa \in \mathbb{N}_+ - \mathbb{N}_+$ and let $[b_{ij}]$ be the matrix of U with respect to $\{e_i\}$. Note that $\pi_\iota(\mathbb{V} Z_\kappa) = \lambda_\kappa \pi_\iota(\mathbb{V} U e_\kappa) = \lambda_\kappa b_{\iota\kappa}$ for $\pi_\iota \in \mathbb{V} \{\pi_i \mid i \in \mathbb{N}_+\}$, $e_\iota \in \mathbb{V} \{e_i\}$, and $b_{\iota\kappa} \in \mathbb{V} [b_{ij}]$. Since

$$|\lambda_{\kappa}b_{\iota\kappa}|^{p_{\iota}} = *\rho(p_{i})(\lambda_{\kappa}b_{\iota\kappa}e_{\iota},0) \le *\rho(p_{i})(*Uz_{\kappa}-P_{\iota-1}(*Uz_{\kappa}),0),$$
(3.3)

we have $|\lambda_{\kappa}b_{\iota\kappa}|^{p_{\iota}} \in \mu(0)$. Consequently, $1 \leq p_{\iota}^{-1} \leq *(p^{-1})$ implies $\lambda_{\kappa}|b_{\iota\kappa}| \in \mu(0)$. Also, $1 \leq p_{\kappa}^{-1} \leq *(p^{-1})$ implies $*(\delta_0^{p^{-1}}) \leq \lambda_{\kappa} \leq *\delta_0$, which implies $|b_{\iota\kappa}| \in \mu(0)$.

PROPOSITION 3.2. If $U \in [l(p_i)]$ is almost superdiagonal and q(U) is compact for some complex polynomial $q(\lambda)$, then there exists $\alpha \in *\mathbb{N}_+ - \mathbb{N}_+$ such that $a_{\alpha+1,\alpha} \in \mu(0)$ for $a_{\alpha+1,\alpha} \in *[a_{ij}]$, where $[a_{ij}]$ is the matrix of U.

PROOF. Let *n* be the degree of $q(\lambda) = \sum_{k=0}^{n} c_k \lambda^k$, which implies $c_n \neq 0$. If $[b_{ij}]$ is the matrix of q(U), with respect to $\{e_i\}$, then q(U) being compact implies $b_{\iota\kappa} \in \mu(0)$ for $b_{\iota\kappa} \in *[b_{ij}]$ such that $\iota, \kappa \in *\mathbb{N}_+ -\mathbb{N}_+$ by Proposition 3.1. Let $\kappa \in *\mathbb{N}_+ -\mathbb{N}_+$. Since *U* being almost superdiagonal implies $a_{\kappa+n,\kappa}^{(m)} = 0$ for m < n and $a_{\kappa+n,\kappa}^{(n)} = \prod_{i=0}^{n-1} a_{\kappa+i+1,\kappa+i}$. (by expression (1.3) and the *transfer principle*), we have $b_{\kappa+n,\kappa} \in *c_n \prod_{i=0}^{n-1} a_{\kappa+i+1,\kappa+i}$. Therefore, if $\kappa \in *\mathbb{N}_+ -\mathbb{N}_+$, then $*c_n \notin \mu(0)$ and $b_{\kappa+n,\kappa} \in \mu(0)$ imply $a_{\kappa+i_0+1,\kappa+i_0} \in \mu(0)$ for some $i_0 \in \{0,...,n-1\}$. Let $\alpha = \kappa + i_0$.

PROPOSITION 3.3. If $U \in \mathscr{L}(l(p_i))$ such that $U[\mu_{\tau}(0)] \subset \mu_{\tau}(0)$, then

$$U[\operatorname{fin}_{\tau}({}^{*}l(p_{i}))] \subset \operatorname{fin}_{\tau}({}^{*}l(p_{i})).$$
(3.4)

PROOF. Let $z \in \text{fin}_{\tau}({}^*l(p_i))$. If $\lambda \in \mu(0)$, then $\lambda z \in \mu_{\tau}(0)$, which implies $\lambda Uz = U(\lambda z) \in \mu_{\tau}(0)$. Therefore, $Uz \in \text{fin}_{\tau}({}^*l(p_i))$.

Let $T \in \mathscr{CF}[l(p_i)]$ be an almost superdiagonal operator such that q(T) is compact for $q(\lambda) = \sum_{k=0}^{n} c_k \lambda^k$, a polynomial over \mathbb{C} with $c_n \neq 0$. Let $\nabla : \mathscr{FC}(l(p_i)) \to \mathscr{F}[l(p_i)]$ satisfy the conditions of Proposition 2.2 and let $\alpha \in \mathbb{N}_+ - \mathbb{N}_+$ satisfy the conclusion of Proposition 3.2. Note that the (internal) projection $P_{\alpha} : *l(p_i) \to E_{\alpha}$ satisfies the conditions of Proposition 2.1. Define $T_{\alpha} = P_{\alpha}(*T)P_{\alpha}$. Observe that

$${}^{*}q(T_{\alpha}) \in {}^{*}\mathscr{L}(l(p_{i})), \qquad T_{\alpha}[\mu_{\tau}(0)] \subset \mu_{\tau}(0), \\ {}^{*}(q(T))[\mu_{\tau}(0)] \subset \mu_{\tau}(0),$$
(3.5)

since *T* and q(T) are continuous.

PROPOSITION 3.4. If $z \in \mu_{\tau}(0)$, then $*q(T_{\alpha})z \in \mu_{\tau}(0)$.

PROOF. It suffices to show that $(T_{\alpha})^m[\mu_{\tau}(0)] \subset \mu_{\tau}(0)$ for $m \in \mathbb{N}_+$ (see [2, Proposition I.6]). Note that from (3.5), $T_{\alpha}[\mu_{\tau}(0)] \subset \mu_{\tau}(0)$. Assume that

 $(T_{\alpha})^{m}[\mu_{\tau}(0)] \subset \mu_{\tau}(0)$ for $m \in \mathbb{N}_{+}$. Consequently,

$$(T_{\alpha})^{m+1}[\mu_{\tau}(0)] = T_{\alpha}[(T_{\alpha})^{m}[\mu_{\tau}(0)]] \subset T_{\alpha}[\mu_{\tau}(0)] \subset \mu_{\tau}(0).$$
(3.6)

Therefore, $(T_{\alpha})^{m}[\mu_{\tau}(0)] \subset \mu_{\tau}(0)$ for each $m \in \mathbb{N}_{+}$ by induction.

So, one of the conditions of Proposition 2.4 for $*q(T_{\alpha})$ has been satisfied, that is, $*q(T_{\alpha})[\mu_{\tau}(0)] \subset \mu_{\tau}(0)$.

PROPOSITION 3.5. Let $F \in {}^*\mathcal{F}\mathcal{G}(l(p_i))$ such that $F \subset E_{\alpha}$. If $T_{\alpha}[F] \subset F$, then $(T_{\alpha})^m[F] \subset F$ for $m \in \mathbb{N}$.

PROOF. If $(T_{\alpha})^{m}[F] \subset F$ for $m \in \mathbb{N}$, then $(T_{\alpha})^{m+1}[F] = T_{\alpha}[(T_{\alpha})^{m}[F]] \subset T_{\alpha}[F] \subset F$. Therefore, $(T_{\alpha})^{m}[F] \subset F$ for any $m \in \mathbb{N}$ by induction.

Consequently, if $F \in *\mathcal{F}(l(p_i))$ such that $F \subset E_{\alpha}$ and $T_{\alpha}[F] \subset F$, then

$$^{*}q(T_{\alpha})[F] \subset F. \tag{3.7}$$

PROPOSITION 3.6. If $z \in E_{\alpha} \cap fin_{\tau}({}^{*}l(p_{i}))$, then $[{}^{*}q(T_{\alpha})z - {}^{*}(q(T))z] \in \mu_{\tau}(0)$.

PROOF. It is sufficient to show that $(T^m)z - (T_\alpha)^m z \in \mu_\tau(0)$ for $z \in E_\alpha \cap fin_\tau(*l(p_i))$ and $m \in \mathbb{N}$ (see [2, Proposition I.6]). Let $z \in E_\alpha \cap fin_\tau(*l(p_i))$, which implies $z = \sum_{\kappa=1}^{\alpha} \pi_\kappa(z)e_\kappa$ for $\pi_\kappa \in *\{\pi_i \mid i \in \mathbb{N}_+\}$ and $e_\kappa \in *\{e_i\}$. Consequently,

$$^{*}Tz = \sum_{\kappa=1}^{\alpha} \pi_{\kappa}(z)^{*}Te_{\kappa} = \sum_{\kappa=1}^{\alpha} \pi_{\kappa}(z) \left[\sum_{\iota=1}^{\alpha+1} a_{\iota\kappa}e_{\iota} \right] = \sum_{\iota=1}^{\alpha+1} \left[\sum_{\kappa=1}^{\alpha} a_{\iota\kappa}\pi_{\kappa}(z) \right] e_{\iota} \quad (3.8)$$

since *T* is almost superdiagonal. Also, $a_{\alpha+1,\kappa} = 0$ for $\kappa < \alpha$, which implies $\sum_{\kappa=1}^{\alpha} a_{\alpha+1,\kappa} \pi_{\kappa}(z) = a_{\alpha+1,\alpha} \pi_{\alpha}(z)$. Therefore, ${}^*Tz = \sum_{\iota=1}^{\alpha} [\sum_{\kappa=1}^{\alpha} a_{\iota\kappa} \pi_{\kappa}(z)]e_{\iota} + a_{\alpha+1,\alpha} \pi_{\alpha}(z)e_{\alpha+1}$, which implies ${}^*Tz - P_{\alpha}({}^*Tz) = a_{\alpha+1,\alpha} \pi_{\alpha}(z)e_{\alpha+1}$. So,

$$*\rho(p_i)(*Tz - P_{\alpha}(*Tz), 0) = |a_{\alpha+1,\alpha}|^{p_{\alpha+1}} |\pi_{\alpha}(z)|^{p_{\alpha+1}}.$$
(3.9)

Since $\pi_{\alpha}(z)$ is finite (by Proposition 2.5), $a_{\alpha+1,\alpha} \in \mu(0)$ (Proposition 3.2), and $0 < *p \le p_{\alpha+1} \le 1$, we infer that $|a_{\alpha+1,\alpha}|^{p_{\alpha+1}} |\pi_{\alpha}(z)|^{p_{\alpha+1}} \in \mu(0)$, which implies $*Tz - P_{\alpha}(*Tz) \in \mu_{\tau}(0)$. Therefore, $*Tz - T_{\alpha}z \in \mu_{\tau}(0)$ since $z \in E_{\alpha}$ implies $z = P_{\alpha}(z)$.

Now, let $m \in \mathbb{N}$ such that $2 \le m$ and assume that $*(T^{m-1})z - (T_{\alpha})^{m-1}z \in \mu_{\tau}(0)$ for $z \in E_{\alpha} \cap \operatorname{fin}_{\tau}(*l(p_i))$. If $z \in E_{\alpha} \cap \operatorname{fin}_{\tau}(*l(p_i))$, then

$$*(T^{m})z - *T((T_{\alpha})^{m-1}z) = *T(*(T^{m-1})z - (T_{\alpha})^{m-1}z) \in \mu_{\tau}(0)$$
(3.10)

1968

since $T \in [l(p_i)]$ implies that T is linear and ${}^*T[\mu_{\tau}(0)] \subseteq \mu_{\tau}(0)$. If we set $\mathcal{Y} = (T_{\alpha})^{m-1}z$, then $\mathcal{Y} \in E_{\alpha} \cap \operatorname{fin}_{\tau}({}^*l(p_i))$ by Propositions 3.3 and 3.5 since $T_{\alpha}[E_{\alpha}] \subset E_{\alpha}$ and $(T_{\alpha})^{m-1}[\mu_{\tau}(0)] \subseteq \mu_{\tau}(0)$ (see the proof of Proposition 3.4). Thus,

$$*T((T_{\alpha})^{m-1}z) - (T_{\alpha})^{m}z = *T(\gamma) - T_{\alpha}\gamma \in \mu_{\tau}(0)$$
(3.11)

(see the first part of the present proof), which implies

$${}^{*}(T^{m})z - (T_{\alpha})^{m}z = \left[{}^{*}(T^{m})z - {}^{*}T((T_{\alpha})^{m-1}z)\right] + \left[{}^{*}T((T_{\alpha})^{m-1}z) - (T_{\alpha})^{m}z\right] \in \mu_{\tau}(0).$$
(3.12)

Therefore, by induction, it follows that $(T^m)z - (T_\alpha)^m z \in \mu_\tau(0)$ for $z \in E_\alpha \cap fin_\tau(*l(p_i))$ and $m \in \mathbb{N}$.

PROPOSITION 3.7. If $z \in E_{\alpha} \cap \text{fin}_{\tau}(*l(p_i))$, then $*q(T_{\alpha})z \in \text{ns}_{\tau}(*l(p_i))$ (i.e., $*q(T_{\alpha})z$ is $\tau(p_i)$ -near standard).

PROOF. Let $z \in E_{\alpha} \cap \operatorname{fin}_{\tau}(*l(p_i))$. There exists $n \in \mathbb{N}$ such that $z \in *(nV_0)$ (see [2, Corollary I.15]). Since q(T) is compact, it follows that

$$^{*}(q(T))[^{*}(nV_{0})] = n^{*}(q(T))[^{*}V_{0}] \subset n[\operatorname{ns}_{\tau}(^{*}l(p_{i}))] \subset \operatorname{ns}_{\tau}(^{*}l(p_{i})) \quad (3.13)$$

(see [2, Proposition I.1 and Corollary I.10]). Therefore,

$${}^{*}q(T_{\alpha})z - {}^{\circ}[{}^{*}(q(T))z] = [{}^{*}q(T_{\alpha})z - {}^{*}(q(T))z] + [{}^{*}(q(T))z - {}^{\circ}[{}^{*}(q(T))z]] \in \mu_{\tau}(0)$$
(3.14)

since $[*q(T_{\alpha})z - *(q(T))z] \in \mu_{\tau}(0)$ by Proposition 3.6. Therefore, $*q(T_{\alpha})z \in ns_{\tau}(*l(p_i))$.

We now state and prove the main result.

THEOREM 3.8. Let $0 and let <math>T \in [l(p_i)]$ be almost superdiagonal. If $q(\lambda)$ is a polynomial over \mathbb{C} such that q(T) is compact, then T has at least one nontrivial $\tau(p_i)$ -closed invariant linear subspace of $l(p_i)$.

PROOF. Let $[a_{ij}]$ be the matrix of T with respect to $\{e_i\}$. Therefore, there exists $\alpha \in *\mathbb{N}_+ - \mathbb{N}_+$ such that $a_{\alpha+1,\alpha} \in \mu(0)$ for $a_{\alpha+1,\alpha} \in *[a_{ij}]$ by Proposition 3.2. Let $\nabla : \mathscr{F}\mathcal{G}(l(p_i)) \to \mathscr{F}[l(p_i)]$ satisfy the conditions of Proposition 2.2 and let the collection $[\{F_t\}_{t=0}^{\alpha} : \{*\nabla(F_t)\}_{t=0}^{\alpha}]$ satisfy the conclusion of Proposition 2.3 with respect to T, ∇ , and α . From Proposition 2.2(2) (and the *transfer principle*), we infer the existence of a nonzero $x_0 \in l(p_i)$ such that $*\nabla(F)(*x_0) \in *V_0$ for each $F \in *\mathscr{F}\mathcal{G}(l(p_i))$, which implies $*\nabla(F)(*x_0) \in F \cap \operatorname{fin}_{\tau}(*l(p_i))$ for each $F \in {}^*\mathcal{F}\mathcal{G}(l(p_i))$ (see expression (3.2)). Consequently,

$$*q(T_{\alpha})(*\nabla(F_{\iota})(*x_{0})) \in F_{\iota} \cap \operatorname{ns}_{\tau}(*l(p_{i})) \quad \text{for } \iota \in \{0, \dots, \alpha\}$$
(3.15)

by Proposition 3.7 since, for each $\iota \in \{0, ..., \alpha\}$, $*\nabla(F_\iota)(*x_0) \in F_\iota \subset E_\alpha$, by definitions of ∇ , $\{F_\iota\}_{\iota=0}^{\alpha}$ (and the *transfer principle*), and $*q(T_\alpha)[F_\iota] \subset F_\iota$ (see expression (3.7)).

If $\{x_0, Tx_0, ..., T^mx_0\}$ is linearly *dependent* for some $m \in \mathbb{N}_+$, then the linear space generated by $\{x_0, Tx_0, ..., T^{m-1}x_0\}$ is nontrivial, closed, and invariant under *T*.

For the remainder of the proof, we will assume that $\{x_0, Tx_0, ..., T^mx_0\}$ is linearly *independent* for each $m \in \mathbb{N}_+$. Consequently,

$$q(T)(x_0) \neq 0.$$
 (3.16)

Since the (internal) projection P_{α} satisfies Proposition 2.1, we have $*x_0 - P_{\alpha}(*x_0) \in \mu_{\tau}(0)$, which implies $[*q(T_{\alpha})(*x_0) - *q(T_{\alpha})(P_{\alpha}(*x_0))] \in \mu_{\tau}(0)$ by Proposition 3.4 and $[*(q(T))(P_{\alpha}(*x_0)) - *(q(T)(x_0))] \in \mu_{\tau}(0)$ because $q(T) \in [l(p_i)]$. Also, $P_{\alpha}(*x_0) \in E_{\alpha} \cap \operatorname{fin}_{\tau}(*l(p_i))$ (see expression (1.4)) implies

$$[*q(T_{\alpha})(P_{\alpha}(*x_{0})) - *(q(T))(P_{\alpha}(*x_{0}))] \in \mu_{\tau}(0)$$
(3.17)

by Proposition 3.6. Therefore,

which implies $[*q(T_{\alpha})(*x_0) - *(q(T)(x_0))] \in \mu_{\tau}(0)$. So, $q(T)(x_0) \neq 0$ implies

$${}^{*}q(T_{\alpha})({}^{*}x_{0}) \notin \mu_{\tau}(0) \tag{3.19}$$

since $\tau = \tau(p_i)$ is Hausdorff. Therefore, by Propositions 2.4 and 3.4, expressions (3.15) and (3.19), there exists $\nu \in \{1, ..., \alpha\}$ such that ${}^{\circ}F_{\nu-1} \neq l(p_i)$ and ${}^{\circ}F_{\nu} \neq \{0\}$. Since any two points of ${}^{\circ}F_{\nu}$ are linearly dependent modulo ${}^{\circ}F_{\nu-1}$, we have that either ${}^{\circ}F_{\nu-1}$ or ${}^{\circ}F_{\nu}$ is a closed nontrivial linear subspace of *T*.

References

- A. R. Bernstein, Invariant subspaces of polynomially compact operators on Banach space, Pacific J. Math. 21 (1967), 445-464.
- [2] A. D. Grainger, On nonstandard topological vector spaces and invariant subspaces of compact operators, Ph.D. thesis, University of Maryland, Maryland, 1973.
- [3] _____, Invariant subspaces of compact operators on topological vector spaces, Pacific J. Math. 56 (1975), no. 2, 477-493.

1970

- [4] _____, *Flat sets*, J. Symbolic Logic **59** (1994), no. 3, 1012–1021.
- [5] S. Simons, The sequence spaces $l(p_{\nu})$ and $m(p_{\nu})$, Proc. London Math. Soc. (3) 15 (1965), 422-436.

Arthur D. Grainger: Department of Mathematics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21239, USA

E-mail address: agrainge@morgan.edu