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1. Introduction. In an earlier paper [6], we considered a variety of special

0-1 valued measures and studied some associated outer measures and their

measurable sets. A portion of this paper was then extended in [7, 8] to the

more general case where the measures involved need not be just 0-1 valued.

However, there were still sections of [6] that were not generalized, especially

those related to separation; namely, where the lattice of subsets involved was

slightly normal or almost normal. The extension of these results involves a

number of different concepts that did not arise in the 0-1 valued case, and the

arguments involved are considerably different from the 0-1 valued case.

We pursue these matters in Sections 3 and 4. In Section 5, we give some

further related type theorems. Again, the major concern is how certain lattice

separation properties affect various measures defined on the algebra generated

by the lattice. In many cases regularity is implied, in other cases equality of

certain associated outer measures is assured on various sets.

We begin in Section 2 with a brief review of some terminology and notation

used throughout the paper. Also, a number of basic results are stated which

are used throughout the paper. More specific facts are given in the sections to

which they are most closely related.

2. Background and basic notation. We briefly review here some standard

notation and terminology which are consistent with our previous usage in [6, 8].

The set X denotes a nonempty arbitrary set, and � a lattice of subsets of

X. All lattices considered throughout the paper will contain ∅ and X. The

algebra �(�) denotes the algebra generated by �, and M(�) denotes those

nontrivial, finite, nonnegative, and finitely additive measures on �(�). The

set MR(�) denotes those elements of µ ∈ M(�) that are �-regular. The set

Mσ(�) denotes those µ ∈ M(�) which are σ -smooth on �; that is, if Ln is

monotonically decreasing to empty set, (Ln ↓ ∅), Ln ∈�, then limµ(Ln) = 0.
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The set Mσ(�) stands for those elements of M(�) which are σ -smooth on

�(�), and, consequently countably additive. The set Mσ
R (�) stands for those

elements µ ∈M(�) that are common to both sets MR(�) and Mσ(�), that is,

Mσ
R (�)=MR(�)∩Mσ(�), and it is not difficult to see that if µ ∈Mσ

R (�), then

µ ∈Mσ(�).
To a µ ∈ M(�), we associate a number of outer measures. Let E ⊂ X and

define

µ′(E)= inf
{
µ
(
L′
)

: E ⊂ L′, L∈�
}
, (2.1)

where L′ =X−L;

µ′′(E)= inf




∞∑

i=1

µ
(
L′i
)

: E ⊂
∞⋃
1

L′i, Li ∈�


. (2.2)

Similarly, we defined µ̃(E) and ˜̃µ(E) where in the above definitions we re-

place the L′ and L′i by L and Li, respectively, where the L,Li ∈�; µ′, µ̃ are finitely

subadditive outer measures while µ′′, ˜̃µ are countably subadditive outer mea-

sures.

In general, if ν1, ν2 are two set functions defined on a lattice �, we write

ν1 ≤ ν2(�) if ν1(L)≤ ν2(L), for all L∈�.

We recall some simple relations involving these outer measures.

Theorem 2.1. (a) µ′′ ≤ µ′, ˜̃µ ≤ µ̃.

(b) If µ ∈Mσ(�), then µ′′(X)= µ(X) and µ ≤ µ′′(�).
(c) If µ ∈Mσ(�′), then ˜̃µ(X)= µ(X) and µ ≤ ˜̃µ(�′). (See [2] for details).

Next, we recall that if ν is a regular countably subadditive outer measure,

and if En is monotonically increasing to E, (En↑ E), En ⊂X, then

ν
(

lim
n→∞En

)
= lim
n→∞ν

(
En
) (

see [5]
)
. (2.3)

In this connection, we note that if µ ∈M(�) and if µ′′ is a regular outer mea-

sure such that µ′′(X) = µ(X), then µ ∈Mσ(�) (see [12]). A similar statement

holds when ˜̃µ is a regular outer measure.

We next recall that a lattice � is normal if whenever A,B ∈� and A∩B =∅,

there exist C,D ∈� such that A⊂ C′, B ⊂D′, and C′∩D′ =∅. If �1 and �2 are

two lattices of subsets of X, then �1 is said to semiseparate �2 if whenever

A∈�1, B ∈�2, and A∩B =∅, there exists a C ∈�1 with B ⊂ C and A∩C =∅.

The lattice �1, is said to separate �2 if for A,B ∈ �2, A∩B = ∅, there exist

C,D ∈ �1, such that A ⊂ C , B ⊂ D, and C∩D =∅. Finally, �1 coseparates �2

if, for A,B ∈�2, A∩B =∅, there exist C,D ∈�1 such that A⊂ C′, B ⊂D′, and

C′ ∩D′ =∅.

Detailed measure characterizations of these concepts can be found in [1, 6].

Finally, if � is a lattice of subsets of X, we denote by δ(�) the delta lattice

generated by �; that is, the smallest lattice containing � and closed under
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countable intersections. We also denote by �′ the set {L′ : L ∈ �}, and if ν is

an outer measure either finitely or countably subadditive, �ν designates the

ν-measurable sets.

3. The general case (a). In this section, we generalize a number of theo-

rems established in [6] for the special case of 0-1 valued measures to the more

general case. We denote for µ ∈M(�), and

E ⊂X, µi(E)= sup
{
µ(L) : L⊂ E, L∈�

}
, (3.1)

where µi is an inner measure, and

µi(E)= µ(X)−µ′
(
E′
)

(3.2)

(for details on µ′, µi, and related matters of measurability, see [2]).

Also, for µ ∈Mσ(�′) and E ⊂X,

µk(E)= ˜̃µ(X)− ˜̃µ
(
E′
)= µ(X)− ˜̃µ

(
E′
)

(3.3)

by Theorem 2.1(c). µk is not, in general, an inner measure; it is, if ˜̃µ is submod-

ular (see [4]).

Theorem 3.1. Let � be a lattice of subsets of X, and let µ ≤ ν(�), µ(X) =
ν(X), where µ ∈Mσ(�′) and ν ∈MR(�). If ˜̃µ is a regular outer measure and if

δ(�′) separates �, then

ν(L′)= sup


µk




∞⋃

j=1

Bj


 :
⋃
Bj ⊂ L′, Bj ∈�


, L∈�. (3.4)

Proof. Since µ ≤ ν(�) and µ(X) = ν(X), ν ≤ µ(�′), so ν ∈ Mσ(�′), and,

therefore, µ ≤ ˜̃µ(�′) and ν ≤ ˜̃ν(�′). Also, since ν ∈ MR(�), there exists an

A ⊂ L′, A ∈ � such that ν(L′)− ν(A) < ε, where ε is an arbitrary positive

number. Since δ(�′) separates �, there exist Ai,Bj ∈� such that

A⊂
⋂
A′i ⊂

⋃
Bj ⊂ L′ (3.5)

and where we may assume that theA′i is monotonically decreasing toA, (A′i↓A)

and the Bj is monotonically increasing to L′, (Bj↑ L′).
Clearly, ν(A)≤ νi(∩A′i). Now,

˜̃µ
(⋃

Ai
)
= lim ˜̃µ

(
Ai
)
(since ˜̃µ is regular)

≤ limν′
(
Ai
)≤ ν′

(⋃
Ai
)
.

(3.6)

Hence,

µk
(⋂

A′i
)
= µ(X)− ˜̃µ

(⋃
Ai
)
≥ ν(X)−ν′

(⋃
Ai
)
= νi

(⋂
A′i
)
. (3.7)
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Therefore,

ν(A)≤ νi
(⋂

A′i
)
≤ µk

(⋂
A′i
)
≤ µk

(⋃
Bj
)

≤ ˜̃µ
(⋃

Bj
)
= lim ˜̃µ

(
Bj
)≤ limµ

(
Bj
)

≤ limν
(
Bj
)≤ ν′

(⋃
Bj
)
≤ ν(L′).

(3.8)

From which the result follows immediately.

Corollary 3.2. Let � be a lattice of subsets of X, and let µ ∈Mσ(�′) such

that ˜̃µ is a regular outer measure. If ν ∈MR(�) is such that µ ≤ ν(�), µ(X) =
ν(X), and if δ(�′) separates �, then ν is unique.

Proof. The proof that such a ν ∈MR(�) exists is well known (see [3, 10]).

The uniqueness follows immediately from the theorem, since if ν1,ν2 ∈MR(�)
both satisfy the conditions, then ν1 = ν2(�′), and, therefore, ν1 = ν2. We de-

note by I(�) the 0-1 valued measures of M(�), and similarly, for the other

subsets of M(�); for example, Iσ (�) denotes those elements of I(�) that are

σ -smooth on �. We note that any 0-1 valued outer measure is trivially regular.

Also recall the following definition.

Definition 3.3. The lattice � is slightly normal if for µ ∈ Iσ (�′) and µ ≤
ν1(�), µ ≤ ν2(�), where ν1,ν2 ∈ IR(�) implies ν1 = ν2.

Hence, as a special case of Corollary 3.2, we get the following result of [6].

Corollary 3.4. If δ(�′) separates �, then the lattice � is slightly normal.

We note that if �′ itself separates �, that is, if � is normal, then the set

inclusions in the proof of Theorem 3.1 become simply A⊂A′1 ⊂ B ⊂ L′, and in

this case, it is easy to see that

ν(A)≤ ν(A′1
)≤ µ(A′1

)≤ µ(B)≤ ν(B)≤ ν(L′) (3.9)

without any need for µ to belong to Mσ(�′), or for ˜̃µ to be regular, (3.9) of

course implies that ν = µi(�′), or, equivalently, ν = µ′(�). Thus, we have the

following corollary.

Corollary 3.5. Let � be a lattice of subsets of X, and let µ ≤ ν(�), µ(X)=
ν(X) where µ ∈M(�) and ν ∈MR(�). If � is normal, then

(a) ν = µ′(�), ν = µi(�′);
(b) ν is unique.

We can use the result to obtain a simple proof of the following corollary.

Corollary 3.6. Let � be a lattice of subsets of X, and let µ ≤ ν(�), µ(X)=
ν(X), where µ ∈Mσ(�), ν ∈MR(�). If � is normal, then ν ∈Mσ(�′).



LATTICE SEPARATION AND MEASURES 2259

Proof. Let A′n ↓ ∅, An ∈ �, then by Corollary 3.5(a), there exists Bn ⊂ A′n,

Bn ∈�, which we may assume ↓ such that

ν
(
A′n
)
< µ

(
Bn
)+ε, (3.10)

where ε > 0 is arbitrary.

Since ∩Bn =∅, µ(Bn)→ 0; whence ν ∈Mσ(�′).
The last two corollaries are known, but shown in a different manner (see [2]).

4. The general case (b). In this section, we extend the results of [6] pertain-

ing to almost normal lattices.

Recall the following definition.

Definition 4.1. The lattice � is almost normal if, for A,B ∈� and A∩B =
∅, there exist A′i ↑, Ai ∈ � such that A ⊂ ∪∞1 A′i, and there exist Bi ∈ � with

A′i ⊂ Bi, for all i and Bi∩B =∅, for all i.

It is not difficult to show that if � is a delta lattice, and if � is almost normal,

then � is normal.

We now have the following theorem.

Theorem 4.2. Let � be a lattice of subsets of X which is almost normal.

Suppose µ ≤ ν(�), µ(X) = ν(X), where µ ∈M(�) and ν ∈Mσ
R (�) and where

µ′′ is a regular outer measure. Then µ′′ = ν′′(�).
Proof. We note that since ν ∈ Mσ

R (�), µ ∈ Mσ(�). Also since µ ≤ ν(�)
and µ(X) = ν(X), ν′′ ≤ µ′′ and in particular ν′′ ≤ µ′′(�). Suppose that there

exists an A ∈ � such that ν′′(A) < µ′′(A). We note that ν = ν′′ = ν′(�) since

ν ∈Mσ
R (�).

Hence,

ν(A)≤ ν′′(A) < µ′′(A). (4.1)

Then there exists a B ∈� such that B′ ⊃A, and

ν(A)≤ ν(B′)< µ′′(A). (4.2)

Since A∩B =∅, there exist A′i ↑, Ai ∈�, such that A⊂∪A′i, and there exist

Bi ∈� with A′i ⊂ Bi, Bi∩B =∅, for all i.
Hence,

µ′′(A)≤ µ′′
(⋃

A′i
)
= limµ′′

(
A′i
)≤ limµ

(
A′i
)

≤ limµ
(
Bi
)≤ limν

(
Bi
)≤ ν′

(⋃
Bi
)

≤ ν(B′)< µ′′(A),
(4.3)

a contradiction. Hence ν′′ = µ′′(�).



2260 JAMES PONNLEY

We note that Theorem 4.2 can be generalized. For this purpose, recall the

following definition (see [9]).

Definition 4.3. Let µ ∈ Mσ(�), µ is called vaguely regular if µ(A′) =
sup{µ′′(B) : B ⊂A′, B ∈�} for A∈�.

The set of vaguely regular measures is denoted by Mv(�). For µ ∈Mσ(�),
E ⊂X, let

µj(E)= µ′′(X)−µ′′(E′)= µ(X)−µ′′(E′). (4.4)

Then we have µ ∈Mv(�) if and only if

µ(A)= inf
{
µj
(
B′
)

:A⊂ B′, B ∈�
}
, for A∈�. (4.5)

It is, of course, clear that Mσ
R (�) ⊂Mv(�), and we can now establish the fol-

lowing generalization of Theorem 4.2.

Theorem 4.4. Let � be a lattice of subsets of X which is almost normal.

Suppose that µ ≤ ν(�), µ(X) = ν(X) where µ ∈ M(�) and ν ∈ Mv(�) and

where µ′′ is a regular outer measure. Then µ′′ = ν′′(�).
Proof. As in the proof of Theorem 4.2, we suppose that there exists an

A∈� such that ν′′(A) < µ′′(A) and will arrive at a contradiction. There exists

a B ∈�, such that B′ ⊃A and

ν(A)≤ νj
(
B′
)
< µ′′(A). (4.6)

Then, there exists A′i ↑, Ai ∈�, such that A⊂∪A′i, and there exists Bi ∈� with

A′i ⊂ Bi, Bi∩B =∅, for all i. Finally, we note that since ν ∈Mv(�), ν′′ = ν′ =
ν(�′). Thus, we have

µ′′(A)≤ µ′′
(⋃

A′i
)
= limµ′′

(
A′i
)≤ limµ

(
A′i
)

≤ limµ
(
Bi
)≤ limν

(
Bi
)= limνj

(
Bi
)

≤ νj
(⋃

Bi
)
≤ νj

(
B′
)
< µ′′(A),

(4.7)

a contradiction, and we are done.

Again, recalling that any 0-1 valued outer measure is regular, we get as spe-

cial cases of the preceding theorems, the following result of [6].

Corollary 4.5. Let � be a lattice of subsets of X which is almost normal. If

µ ≤ ν(�) where µ ∈ I(�), and where µ ∈ IσR (�) or, more generally, µ ∈ Iv(�),
then ν′′ = µ′′(�).

Finally, we note the following corollary to Theorem 4.2.
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Corollary 4.6. Let � be a lattice of subsets of X which is almost normal. If

µ ≤ ν1(�), µ ≤ ν2(�) where µ(X) = ν1(X) = ν2(X), µ ∈M(�), ν1,ν2 ∈Mσ
R (�)

and if µ′′ is a regular outer measure, then ν1 = ν2.

Proof. By Theorem 4.2,

ν1 = ν′′1 = µ′′ = ν′′2 = ν2(�). (4.8)

Hence, ν1 = ν2.

5. Further extensions. We begin by recalling the following definition.

Definition 5.1. Let µ ∈M(�). Then µ ∈Mw(�) (the weakly regular mea-

sures) if, for L∈�,

µ
(
L′
)= sup

{
µ′
(
L̃
)

: L̃⊂ L′, L̃∈�
}
. (5.1)

Clearly, MR(�)⊂Mw(�), and Mv(�)⊂Mw(�).

The following result in [6] has been generalized in [12].

Theorem 5.2. If � is a lattice of subsets of X such that δ(�′) separates �,

then µ ∈ Iσ (�′)∩Iw(�) implies that µ ∈ IR(�).
For completeness we state and prove the generalization, correcting a refer-

ence which appears in [11].

Theorem 5.3. If � is a lattice of subsets of X such that δ(�′) separates �,

then µ ∈Mσ(�′)∩Mw(�) implies that µ ∈MR(�).

Proof. We recall (see [2]) that

�µ′ ∩�= {L∈� : µ′(L)= µ(L)}. (5.2)

Hence, if we can show that � ⊂ �µ′ , then µ′ = µ(�), and µ ∈ MR(�). To this

end, let ε > 0 and A ∈ �. Since µ ∈ Mw(�), there exists a B ∈ � such that

B ⊂A′, and µ(A′)−ε/2< µ′(B)≤ µ(A′).
Now, there exists ∩∞1 A′n, ∩∞1 B′n ∈ δ(�) with A′n ↓, B′n ↓, and A ⊂ ∩∞1 A′n, B ⊂

∩∞1 B′n, and ∩∞1 (A′n∩B′n)=∅.

Now µ ∈Mσ(�′); hence µ(A′n∩B′n)→ 0, so µ(A′n∩B′n) < ε/2 for n≥N. But

µ
(
A′n∪B′n

)
= µ(A′n

)+µ(B′n
)−µ(A′n∩B′n

)≥ µ(A′n
)+µ(B′n

)− ε
2
. (5.3)

Hence,

µ
(
A′n∪B′n

)
≥ µ′(A)+µ′(B)− ε

2
. (5.4)

Then

µ
(
A′n∪B′n

)
≥ µ′(A)+µ(A′)−ε (5.5)
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or

µ
(
A′n∪B′n

)
≥ µ′(A)+µ′(A′)−ε (5.6)

and therefore,

µ(X)= µ′(X)≥ µ′(A)+µ′(A′). (5.7)

This implies (see [2]) that A ∈ �µ′ , and, since A ∈ � is arbitrary, this com-

pletes the proof.

A related result is the following.

Theorem 5.4. Let � be a lattice of subsets of X and let µ ∈Mw(�)∩Mσ(�).
If µi(L′) = sup{µ′′(L̃) : L̃ ⊂ L′, L̃ ∈ �}, for L ∈�, and if � semiseparates δ(�),
then µ ∈Mσ

R (�).

Proof. For L∈�, we have

µi
(
L′
)= µj

(
L′
)= sup

{
µ′′
(
L̃
)

: L̃⊂ L′, L̃∈�
}

(5.8)

(see [7] for details). Hence, µi = µj(�′) and, therefore,

µ′ = µ′′(�). (5.9)

Thus,

µi
(
L′
)= sup

{
µ′
(
L̃
)

: L̃⊂ L′, L̃∈�
}= µ(L′) since µ ∈Mw(�). (5.10)

Hence, µi = µ(�′), and this implies that µ ∈MR(�), so µ ∈MR(�)∩Mσ(�) =
Mσ
R (�).

In a slightly different direction, we give one more result which has significant

applications.

Theorem 5.5. Let � be a lattice of subsets of X, and let µ ≤ ν(�) where µ ∈
M(�), ν ∈Mσ(�), and µ(X)= ν(X). If � is normal and if µ′′(L′)= sup{µ′′(A) :

A⊂ L′, A∈�}, for L∈�; then µ′′ = ν′′(�′).

Proof. Clearly, µ ∈ Mσ(�) and ν′′ ≤ µ′′. Suppose that there exists an

L′,L∈�, such that ν′′(L′) < µ′′(L′). By hypothesis, there then exists an A⊂ L′,
A∈� such that ν′′(L′) < µ′′(A). Now, there exists B,C ∈� such that A⊂ B′ ⊂
C ⊂ L′. Then,

ν′′
(
L′
)
< µ′′(A)≤ µ′′(B′)≤ µ(B′)≤ µ(C)
≤ ν(C)≤ ν′′(C)≤ ν′′(L′), (5.11)

a contradiction, so ν′′ = µ′′(�′).



LATTICE SEPARATION AND MEASURES 2263

The result as mentioned has many applications; in particular, we note that

in the case of a delta lattice and a measure ν ∈Mσ(�), ν′′ will be submodular

if it is submodular on �′. Theorem 5.5 assures us, under the stated hypothesis,

that µ′′ will be submodular if and only if ν′′ is submodular. These facts are

useful since submodularity of a ν ∈ Mσ(�) assures us that the set {E ⊂ X :

ν′′(E)= νj(E)} is a σ -algebra, and that ν′′ restricted to this set is a countably

additive measure (see [4]). We will not pursue these matters here.
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