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1. Introduction. In a series of papers [14, 15, 16, 17, 18, 19] the author has

developed an approach to study the spectrum of the simplest kind of nontriv-

ial almost periodic operators, which is heavily based on C∗-algebraic methods.

This approach originated in the belief that the involvement of irrational rota-

tion C∗-algebras in the investigation of almost Mathieu operators would yield

an interdependence between the occurrence of localized eigenfunctions and

the topological nature of the spectrum of these operators. In the sequel, we

are going to establish such a connection. For almost Mathieu operators which

are defined by

(
H(α,β,θ)ξ

)
n = ξn+1+ξn−1+2βcos(2παn+θ)ξn, ξ ∈ �2(Z), (1.1)

where α, β, and θ are real parameters, the following version of localization has

been established by Fröhlich et al. (see [7, page 6 and Section 3]).

Consider an irrational number α which satisfies the following Diophantine

condition: there exists a constant c > 0 such that |nα−m| ≥ c/n2 for all

m,n ∈ Z and n ≠ 0. Then there exists a constant β0 > 0 such that for any

β≥ β0, the following condition holds:

(L′) there exists a subset N1 ⊂ R which has Lebesgue measure zero, and a

constant 0 < r < 1, such that the following condition holds true: if for

ξ = {ξn}n∈Z there are numbers a > 0, χ ∈ R, and θ ∈ R\N1 such that

|ξn| ≤ an2 and

ξn+1+ξn−1+2βcos(2παn+θ)ξn = χξn, for n∈ Z, (1.2)

then ξ decays exponentially of order r as |n| →∞, that is, there exists

a constant b > 0, such that |ξn| ≤ br |n| for n∈ Z.
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The property (L′) entails that there exists a subset N2 ⊂ R containing N1,

which also has Lebesgue measure zero, such that for every θ ∈ R\N2, the op-

erator H(α,β,θ) has pure point spectrum with eigenfunctions decaying expo-

nentially of order r .

The work of Fröhlich et al. is paralleled to some extent by the work of Sinăı

[21] (see also [4, Section 5.5]). It is well known that for irrationalα, the spectrum

ofH(α,β,θ) does not depend on θ. We will denote this spectrum by Sp(α,β). In

this paper, we are concerned with the following condition for the localization

of eigenfunctions:

(L) for every χ ∈ Sp(α,β), there exists a θ such that the difference equation

ξn+1+ξn−1+2βcos(2παn+θ)ξn = χξn (1.3)

has a nontrivial solution which decays exponentially as |n| →∞.

While condition (L′) has been established for the parameters stipulated

above, no set of parameters has been found yet for which condition (L) holds

true. The objective of this paper is to prove the following theorem.

Theorem 1.1. The validity of condition (L) and the occurrence of Cantor

spectrum are inconsistent for almost Mathieu operators.

In [1, 3, 9, 10, 11], the occurrence of Cantor spectrum has been established

under various conditions where property (L′) does not hold. In a number of

papers (cf. [12, 20]), it has been conjectured that Sp(α,β) should always be a

Cantor set.

We are going to list several properties that condition (L) implies. These prop-

erties will be crucial in the proof of the theorem. The first important observa-

tion is that if (L) holds and if µ denotes the integrated density of states for

H(α,β,θ), then the logarithmic potential associated with µ takes the constant

value log |β| on Sp(α,β). This means that Sp(α,β) is a regular compactum, µ
is its equilibrium distribution, and |β| is the logarithmic capacity of Sp(α,β).
(The basic material from classical potential theory which will be used in this

paper has been assembled in Appendix A.) This shows among other things

that the integrated density of states as well as the (averaged) Lyapunov index

(as defined in [5]) are uniquely determined by Sp(α,β). However, considerably

more can be shown. The following assertion gives a characterization of the

level curves of the conductor potential associated with Sp(α,β) in terms of

the spectra of perturbed operators, which are bounded but not selfadjoint.

Assertion 1.2. If (L) holds, then a complex number z is contained in the

spectrum of the operator

(
Hδ(α,β)ξ

)
n = ξn+1+ξn−1+β

(
δe2παni+δ−1e−2παni)ξn, ξ ∈ �2(Z), (1.4)

if and only if
∫

log |z−s|dµ(s)= log |β|+| log |δ||.
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In order to prove this assertion, we will consider the C∗-algebra generated

by the family of operators {Hδ(α,β)/δ ∈ R\{0}}, which is an irrational rota-

tion C∗-algebra with rotation number α. This will put us in a position to study

the resolvent of these operators in terms of certain series expansions which

arise naturally with the irrational rotation C∗-algebra. These series expansions

can be looked upon as noncommutative versions of Fourier series in two vari-

ables. The exponential behavior of these series expansions at infinity is then

expressed in terms of subharmonic functions. Finally, potential theoretic ar-

guments can be invoked to accomplish the proof of Assertion 1.2.

Our second assertion, whose proof relies heavily on the first one, establishes

the claimed connection between condition (L) and the topological nature of the

spectrum of almost Mathieu operators.

Assertion 1.3. If (L) holds, then any open and closed subset of Sp(α,β) is

not a Cantor set.

In order to render this paper accessible to a wider audience, we will include

the exposition material which has been published by the author in [14, 15, 16,

17, 18, 19]. The organization of this paper is as follows. In Section 2, we briefly

discuss the irrational rotation C∗-algebra in the context of our approach. In

Section 3, we present a notion of multiplicity for elements in Sp(α,β) which

was developed in [15]. In Section 4, we study the resolvent of the operators

Hδ(α,β) (according to [17]). In Section 5, we give the proofs of Assertions 1.2

and 1.3. In Appendix A, we present some material from classical potential the-

ory. In Appendix B, we state and prove a result about conductor potentials

of regular compact subsets of the real line, which is vital for the proof of

Assertion 1.3.

2. The irrational rotation C∗-algebra. Throughout the paper, α denotes an

irrational number. An irrational rotation C∗-algebra � = �α is a C∗-algebra

which is generated by two unitaries u and v satisfying the relation uv =
e2παivu. Such an algebra is uniquely determined, up to isomorphisms, by the

number α. We let h(α,β) = u+u∗+β(v+v∗). The operator H(α,β,θ) is the

image of h(α,β) under a specific representation of � on the Hilbert space

�2(Z). If πθ is the representation of � which is determined on the generators

u and v by

(
πθ(u)ξ

)
n = ξn+1,(

πθ(v)ξ
)
n = e−(2παn+θ)iξn,

(2.1)

then πθ(h(α,β)) = H(α,β,θ). The symmetries of the operator h(α,β) can

be expressed in terms of certain symmetries on �. These are (uniquely de-

termined) involutive conjugate linear automorphisms σu and σv of � and
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anti-automorphisms σ̃u and σ̃ (v) of � such that

σu(u)= σ̃u(u)=u∗, σu(v)= σ̃u(v)= v,
σv(u)= σ̃v(u)=u, σv(v)= σ̃v(v)= v∗.

(2.2)

Furthermore, there is a (uniquely determined) automorphism ρ with period

four such that

ρ(u)= v∗, ρ(v)=u. (2.3)

The operator h(α,β) is always a fixed point for σu, σv , σ̃u, and σ̃v , and h(α,β)
is a fixed point for ρ if and only if β = 1. Since σu and σv commute, likewise

σ̃u and σ̃v , σ = σu ◦σv = σ̃u ◦ σ̃v is an involutive automorphism of �. Notice

that ρ2 = σ .

There is a unique tracial state τ on �, that is, τ is a state which has the

trace property τ(ab) = τ(ba) for all a,b ∈ �. Furthermore, if µ denotes the

integrated density of states for H(α,β,θ), then we have for any continuous

function f on Sp(α,β) the identity

τ
(
f
(
h(α,β)

))= ∫ f(t)dµ(t). (2.4)

Let wpq = e−pqπαiupvq. Notice that w∗
pq = w−p,−q, σu(wpq) = σ̃u(wpq) =

w−p,q, σv(wpq) = σ̃v(wpq) = wp,−q, and ρ(wpq) = wq,−p . For any element

a ∈ �, let âpq = τ(w−p,−qa). We call this number the Fourier coefficient of

a at the position (p,q). The series
∑
p,q∈Z âpqwpq converges to the element a

in the Hilbert space norm associated with τ . We will call this series the Fourier

series of a.

Proposition 2.1. Suppose that a ∈ � has a finite Fourier series. Then the

Fourier series
∑
p,q∈Z cpq(z)wpq of the resolvent (a− z)−1 has the following

property: for every compact subset K of the resolvent set of a, the double se-

quence {sup|cpq(z)| : z ∈K}p,q∈Z decays exponentially as |p| and |q| approach

infinity.

Proof. Suppose that the Fourier coefficients of a vanish for |p|,|q| ≥ n.

Then for complex numbers x and y with modules close to one, the spectrum

of the operator

a(x,y)=
∑

|p|,|q|≤n
âpqxpyqwpq (2.5)

is contained in C\K, and we have

(
a(x,y)−z)−1 =

∑
p,q∈Z

cpq(z)xpyqwpq. (2.6)
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The series on the right-hand side of this identity is absolutely convergent. Thus,

∣∣cpq(z)∣∣|x|p|y|q = ∣∣τ((a(x,y)−z)−1w−p,−q
)∣∣≤ ∥∥(a(x,y)−z)−1∥∥ (2.7)

for z ∈K. Suitable choices for |x| and |y| conclude the argument.

3. Point spectrum and a certain multiplicity for points in the spectrum.

In the sequel, we assume throughout that β ≠ 0. We call a state ϕ on the C∗-

algebra � an eigenstate of h(α,β) for χ ∈ Sp(α,β) if the identity

ϕ
(
h(α,β)a

)= χϕ(a), ∀a∈�, (3.1)

holds. The general theory of C∗-algebras yields that for every χ ∈ Sp(α,β),
there exists at least one eigenstate ofh(α,β) for χ. Sinceh(α,β) is a selfadjoint

operator and a state is a selfadjoint functional, any eigenstate ϕ also satisfies

the following identity:

ϕ
(
h(α,β)a

)=ϕ(ah(α,β)) ∀a∈�. (3.2)

Suppose that ϕ is a state on �, and for any p,q ∈ Z, let xpq =ϕ(wpq). Then

ϕ satisfies condition (3.1) if and only if

cos(παq)
(
xp−1,q+xp+1,q

)
+βcos(παp)

(
xp,q−1+xp,q+1

)= χxpq for any p,q ∈ Z. (3.3)

Also, ϕ satisfies condition (3.2) if and only if

sin(παq)
(
xp−1,q−xp+1,q

)−βsin(παp)
(
xp,q−1−xp,q+1

)= 0 for any p,q ∈ Z.
(3.4)

So, ifϕ is an eigenstate of h(α,β) for χ, then the double sequence {xpq} solves

the difference equations (3.3) and (3.4). Notice that the combined system (3.3)

and (3.4) is redundant.

We are now going to explain how the solutions of the combined system (3.3)

and (3.4) can be generated by certain recursions (see [15, 18]). To this end, we

consider a modified system where certain phase angles have been introduced

in the coefficients

cos
(
παq+θ2

)(
xp−1,q+xp+1,q

)+βcos
(
παp+θ1

)(
xp,q−1+xp,q+1

)= χxpq,
sin
(
παq+θ2

)(
xp−1,q−xp+1,q

)−βsin
(
παp+θ1

)(
xp,q−1−xp,q+1

)= 0,
(3.5)

where θ1 and θ2 satisfy the condition

θ1+θ2

π
,
θ1−θ2

π
�∈ Z+aZ. (3.6)
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For any p,q ∈ Z, we define 4×4 matrices Apq and Bpq having the property that

a double sequence {xpq} solves system (3.5) if and only if


xp+1,q+1

xp+1,q

xp,q+1

xpq

=Apq

xp,q+1

xp,q
xp−1,q+1

xp−1,q

 ,

xp+1,q+1

xp,q+1

xp+1,q

xpq

= Bpq

xp+1,q

xpq
xp+1,q−1

xp,q−1

 . (3.7)

Let Apq =Apq(χ,β)= (ak�)1≤k,�≤4, where

a11 = χsin
(
παp+θ1

)
sin
[
πα(p+q+1)+θ1+θ2

] ,
a12 =− βsin

(
2παp+2θ1

)
sin
[
πα(p+q+1)+θ1+θ2

] ,
a13 =−sin

[
πα(p−q−1)+θ1−θ2

]
sin
[
πα(p+q+1)+θ1+θ2

] ,
a21 =− βsin

(
2παp+2θ1

)
sin
[
πα(p−q)+θ1+θ2

] ,
a22 = χsin

(
παp+θ1

)
sin
[
πα(p−q)+θ1−θ2

] ,
a24 =−sin

[
πα(p+q)+θ1+θ2

]
sin
[
πα(p−q)+θ1−θ2

] ,
ak� = 1 for (k,�)∈ {(3,1),(4,2)},

(3.8)

and ak� = 0 for the remaining entries of the matrix. Furthermore, let

Bqp = Bqp(χ,β)=Apq
(
χ
β
,β−1
)
. (3.9)

Condition (3.6) ensures that the denominators in these formulae do not vanish.

Apart from being invertible, the matrices Apq and Bpq satisfy the following

identity:

PBp,q+1PApq =Ap,q+1PBp−1,q+1P, P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (3.10)

There are exactly four linearly independent solutions of (3.5), which can be

generated in the following manner: given any numbers x00, x10, x01, and x11,

one can use the formulae in (3.7), as recursions on the two-dimensional lattice,
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to compute the values xpq:

◦◦
◦◦

Apq
���������������������������������������������������������������������������������������→ ◦◦∗◦◦∗

◦◦
◦◦

A−1
pq
���������������������������������������������������������������������������������������→∗◦◦∗◦◦

◦◦
◦◦

Bpq
���������������������������������������������������������������������������������→

∗∗
◦◦
◦◦

◦◦
◦◦

B−1
pq
�����������������������������������������������������������������������������������→

◦◦
◦◦
∗∗
.

(3.11)

(The four circles to the left represent the four input parameters, while the stars

to the right represent the last two output parameters.) Since there are infinitely

many ways to reach a position (p,q) by a finite succession of those four basic

recursions, departing at the positions (0,0), (1,0), (0,1), and (1,1), we face the

question whether this procedure produces consistent results. Identity (3.10)

ensures that the outcome is independent indeed from the specific path we

chose to reach the position (p,q).
We now consider {(θ(n)1 ,θ(n)2 )}n∈N as a sequence of pairs of nonvanishing

phase angles which converges to (0,0). Moreover, we assume that θ(n)1 and

θ(n)2 satisfy condition (3.6), and θ(n)1 /θ(n)2 approaches a number c as n → ∞.

Given arbitrary values x00, x10, x01, and x11, the solutions of system (3.5) with

phase angles θ(n)1 and θ(n)2 and those initial values converge for each point

(p,q) in the lattice Z2 to a solution of the combined system (3.3) and (3.4).

Now, consider the case where x00 = x01 = x11 = 0 but x10 ≠ 0. The limit of the

solutions associated with the sequence {(θ(n)1 ,θ(n)2 )}n∈N vanishes at (−1,0)
depending on whether the constant c equals one or not. This shows that the

combined system (3.3) and (3.4) has at least five linearly independent solutions.

Suppose that {xpq} is any solution of (3.3) and (3.4). Exploiting (3.4) for

(p,q) ∈ {(1,0),(−1,0),(0,1),(0,−1)} shows that x11 = x1,−1 = x−1,1 = x−1,−1.

Moreover, exploiting (3.3) for p = q = 0 shows that x0,−1 is uniquely deter-

mined by x00, x10, x01, x11, and x−1,0. Observe that the matrices Apq and

Bpq are well defined even for θ1 = θ2 = 0 whenever p ≠ q and p ≠ −q−1.

So, anything that has been said earlier regarding the recursions on the two-

dimensional lattice remains intact for θ1 = θ2 = 0 as long as we do not appeal

to any formulae involving Apq and Bpq, when p = q or p = −q−1, or to any

formulae involving A−1
pq and B−1

pq , when p = −q or p = q+1. (Observe that for

θ1 = θ2 = 0, the matrices Ap,−p and Ap+1,p are singular.) This entails that any

point in the sector {(p,q)∈ Z2/p ≥ |q|} can be reached by a finite succession

of recursions of the four types described above, departing at the positions

(0,0), (1,0), (0,1), and (1,1), where the first step involves the matrix A10. Any

point in the sector {(p,q)∈ Z2/q ≥ |p|} can be reached by a finite succession

of recursions departing at (0,0), (1,0), (0,1), and (1,1), where the first step

involves the matrix B10. For the remaining two sectors {(p,q) ∈ Z2/p ≤−|q|}
and {(p,q)∈ Z2/q ≤−|p|}, one can use recursions departing at (0,0), (−1,0),
(0,−1), and (−1,−1), where the first step involves the matrices A−1

−1,−1 and

B−1
−1,−1, respectively. We thus conclude that the combined system (3.3) and (3.4)
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has exactly five linearly independent solutions, which are determined at the

positions (0,0), (1,0), (0,1), (1,1), and (−1,0). Moreover, the values at any

position (p,q) for |p|> 1 or |q|> 1 can be determined by iterative recursions.

Our next objective is to give a more detailed description of the solutions

{xpq} of the combined system (3.3) and (3.4) for whichx00 = x11 = 0 (according

to [15, 16]). The following characterizations can be established with the aid of

the recursions described above:

(1) if x00 = x11 = x10 = x−1,0 = 0, but x01 ≠ 0, then xpq = 0 for |q| ≤ |p|,
xp,−q =−xpq, x−p,q = xpq, for p,q ∈ Z, xp,p+1 = (−β)−px01 for p ≥ 0,

(2) if x00 = x11 = x01 = 0, but x10 = −x−1,0 ≠ 0, then xpq = 0 for |q| ≥ |p|,
x−p,q =−xp,q, xp,−q = xpq, for p,q ∈ Z, xp+1,p = (−β)px10 for p ≥ 0,

(3) if x00 = x11 = 0, but x10 = x−1,0 ≠ 0, then xpp = 0 for p ∈ Z , xpq =
x−p,q = xp,−q = x−p,−q for p,q ∈ Z, xp,p+1 = (−β)−px01, xp+1,p =
(−β)px10, for p ≥ 0.

A more specific characterization of the solutions described above can be given

if we express them in terms of the parameter χ:

(4) for every (p,q)∈ Z2, |p|≠ |q|, there exists a (unique) polynomialωpq(χ)
of degree ||p|−|q||−1 such that if {xpq} is a solution of the combined

system (3.3) and (3.4) satisfying x00 = x11 = 0, then

xpq =ωpq(χ)x01 for q > |p|,
xpq =ωpq(χ)x0,−1 for q <−|p|,
xpq =ωpq(χ)x10 for p > |q|,
xpq =ωpq(χ)x−1,0 for p <−|q|.

(3.12)

In order to establish this last property, one can use two-dimensional recur-

sions. For instance, to cover the case where |p|> |q|, one considers the recur-

sion

(
xp,q+1

xp−1,q

)
= 1
βsinπα(q−p)

( −sin2παq −βsinπα(p+q)
βsinπα(p+q) β2 sin2παp

)(
xp+1,q

xp,q−1

)

+ χxpq
sinπα(q−p)

(
β−1 sinπαq
−sinπαp

)
,

(3.13)

which is, of course, also redundant. The initial values in this case are

xpp = 0, xp,p+1 = (−β)−px01, for p ≥ 0. (3.14)

Remark 3.1. Without entering the details, we would like to mention that

there is an alternative approach to obtaining the polynomials ωpq(χ) by con-

sidering the Fourier expansions (i.e., the expansions in enθi) of the polynomials



THE SPECTRUM OF A CLASS OF ALMOST PERIODIC OPERATORS 2285

of the second kind for the difference equations

ξn+1+ξn−1+2βcos(2παn+θ)ξn = χξn,
ξn+1+ξn−1+2β−1 cos(2παn+θ)ξn = χξn,

(3.15)

for n≥ 0 as well as n≤ 0.

At this point, we interrupt the discussion of the combined system (3.3) and

(3.4) to give an application of what has already been established (see [14]).

Theorem 3.2. The operatorH(α,1,θ) has no eigenvector in �2(Z) for any θ.

Proof. Suppose that the opposite were true. So, there exist θ ∈ R, χ ∈
Sp(α,1), and ξ ∈ �2(Z), ‖ξ‖ = 1, such that H(α,1,θ)ξ = χξ. Then

ϕ(a)= 〈πθ(a)ξ,ξ〉, a∈�, (3.16)

is an eigenstate of h(α,1) for χ. We have the following properties which are

true because ϕ is a vector state:

(i) lim|p|→∞ϕ(wp0)= 0,

(ii) lim|p|→∞max{|ϕ(wpq)|/||p|−|q|| = 1} = 0,

(iii) {ϕ(w0q)} does not converge to zero as q→∞ or q→−∞.

Since h(α,1) is a fixed point of the automorphism ρ, the state ψ = ϕ ◦ρ is

also an eigenstate of h(α,1) for χ. Let xpq = ϕ(wpq)−ψ(wpq). Then {xpq}
is a solution of the combined system (3.3) and (3.4). Since ϕ(w11)=ϕ(w1,−1)
and ρ(w11)=w1,−1, we also have x00 = x11 = 0. Furthermore, {xpq} is not the

trivial solution for if it were, ϕ would be ρ-invariant, which is impossible in

the light of (i) and (iii). We conclude that {xpq}must be a linear combination of

the solutions described in (1), (2), or (3). This means, however, that xpq takes

a constant nonvanishing value for infinitely many (p,q) with ||p|− |q|| = 1;

thus, contradicting (ii).

We resume our general discussion. In [15, pages 297–298], we have defined

a three-dimensional recursion along the positive diagonal p = q in order to

establish the following properties. Notice that if ϕ is an eigenstate of h(α,β)
for χ ∈ Sp(α,β), then the double sequence {ϕ(wpq)} is uniformly bounded.

Scholium 3.3. Suppose that |β| ≠ 1. Then there exist at most two lin-

early independent solutions of the combined system (3.3) and (3.4) which are

uniformly bounded. If χ ∈ Sp(α,β), then there exists exactly one uniformly

bounded solution {xpq} with the property xpq = x−p,−q for all p,q ∈ Z.

Also in [15], the following sufficient condition for the occurrence of two pure

eigenstates was given.

Scholium 3.4. LetΩ(α,β)= {χ ∈ Sp(α,β) | χ is an eigenvalue ofH(α,β,θ)
for some θ ∈ παZ∪π(α+1)Z}. If χ ∈ Sp(α,β)\Ω(α,β) is an eigenvalue for

H(α,β,θ), then h(α,β) has two distinct pure eigenstates for χ.
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For future references, we point out that the set Ω(α,β) is at most countable.

The set παZ∪π(α+ 1)Z is trivially countable, and for every θ in this set,

there can be no more than countably many eigenvalues of H(α,β,θ) because

�2(Z) is a separable Hilbert space. As in [15], we call the total number of pure

eigenstates of h(α,β) for an element χ ∈ Sp(α,β) the multiplicity of χ.

Scholium 3.5. Suppose that |β| ≠ 1. If χ ∈ Sp(α,β) has multiplicity two

and ϕ and ψ are the pure eigenstates of h(α,β) for χ, then ψ = ϕ ◦σ and

{ϕ(wpq)−ψ(wpq)} is a uniformly bounded (nontrivial) solution of the com-

bined system (3.3) and (3.4) of type (1) or (2).

To see this, we observe that by Scholium 3.3, there is only one σ -invariant

eigenstate for χ. Since h(α,β) is a fixed point of σ , ϕ◦σ is also an eigenstate

for χ. If ϕ ◦σ = ϕ, then ψ ◦σ = ψ, otherwise there would be at least three

pure eigenstates for χ. Therefore, ϕ ◦σ = ψ. Let xpq = ϕ(wpq)−ψ(wpq).
Since {xpq} is a solution of (3.3) and (3.4), we have, on the one hand,

x11 = x−1,1 = x1,−1 = x−1,−1. (3.17)

On the other hand, we have

x11 =ϕ
(
w11
)−ψ(w11

)=ϕ(w11
)−ϕ(σ(w11

))
=ϕ(w11

)−ϕ(σ(w+1,+1
))=ϕ(σ(w−1,−1

))−ϕ(w−1,−1
)

=ψ(w−1,−1
)−ϕ(w−1,−1

)=−x−1,−1.

(3.18)

Whence x11 = 0. The same manipulations yield x10 = −x−1,0, x01 = −x0,−1.

Thus, {xpq} is either of type (1) or (2).

We now give another application. It was shown in [6] that the operator

H(α,β,θ) has no eigenvalues for |β| < 1. The proof of this fact was based

on Oseledec’s theorem. Independently, by the methods developed so far, the

following weaker statement was shown to be true in [16, Theorem 3.1].

Theorem 3.6. If |β| < 1 and χ ∈ Sp(α,β)\Ω(α,β), then χ is not an eigen-

value of H(α,β,θ).

Proof. We proceed as in the proof of Theorem 3.2. Suppose that the claim

were not true. Then there exists χ ∈ Sp(α,β)\Ω(α,β) and ξ ∈ �2(Z), ‖ξ‖ = 1,

such that H(α,β,θ)ξ = χξ. The vector state

ϕ(α)= 〈πθ(a)ξ,ξ〉, a∈�, (3.19)

is an eigenstate of h(α,β) for χ, and by Scholium 3.5, the double sequence

{xpq}, where xpq =ϕ(wpq)−ϕ(w−p,−q), solves (3.3) and (3.4), and it is a lin-

ear combination of solutions of types (1) and (2). Since |β| < 1 and {xpq} is
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uniformly bounded, a solution of type (1) is not involved in the linear combina-

tion. Thus, {xpq} is of type (2). In particular, x0q = 0 for all q ∈ Z, contradicting

the property (iii) in the proof of Theorem 3.2, which is valid for all vector states.

It may seem that the exclusion of the exceptional set Ω(α,β) from con-

sideration in the last theorem is a deficiency that could be overcome by a

more powerful argument. However, as the reasoning leading up to the proof

of Assertion 1.3 will show, this is not likely to be the case. Putting it informally,

the set Ω(α,β) is the “blind spot” of the theory. In a sense, the very existence

of such an exceptional set is necessary in order for this approach to work.

4. The resolvent of perturbed operators. Suppose that α and β are fixed.

For γ,δ∈ C\{0}, let

h(γ,δ) = γ−1u+γu∗+β(δ−1v+δv∗). (4.1)

Our next objective is to study the Fourier expansion of the resolvent of these

operators (according to [17]). Recall from Proposition 2.1 that the Fourier se-

ries of (h(γ,δ)−z)−1 decays exponentially as the lattice parameters p and q
approach infinity, at any point in the resolvent set of h(γ,δ). We will see that

there are two types of series expansions for the resolvent of h(γ,δ); namely,

those which represent the resolvent on the unbounded component of the re-

solvent set (we will refer to those series as being of type I) and those which

represent the resolvent on the bounded components of the resolvent set (we

will refer to those series as being of type II).

We are going to recast the resolvent problem for the operators h(γ,δ) slightly,

so that it parallels the induction of eigenstates in Section 3. An element a∈�

is an inverse of h(γ,δ)−χ if and only if the following two conditions hold:

h(γ,δ)a+ah(γ,δ) = 2χa+2I, (4.2)

where I denotes the unit in �;

h(γ,δ)a−ah(γ,δ) = 0. (4.3)

Considering the Fourier series
∑
p,q∈Zxpqwpq of a, condition (4.2) is equivalent

with

cos(παq)
(
γ−1xp−1,q+γxp+1,q

)+βcos(παp)
(
δ−1xp,q−1+δxp,q+1

)
= χxpq+εpq for p,q ∈ Z, (4.4)

where

εpq =
1, if p = q = 0,

0, elsewhere.
(4.5)
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Condition (4.3) is equivalent with

sin(παq)
(
γ−1xp−1,q−γxp+1,q

)−βsin(παp)
(
δ−1xp,q−1−δxp,q+1

)= 0.
(4.6)

A double sequence {xpq} solves the combined system (4.4) and (4.6) for pa-

rameters γ0 and δ0 if and only if {γp0 δq0xpq} is a solution of (4.4) and (4.6)

for γ = δ = 1. So, any two systems of type (4.4) and (4.6) for distinct pairs of

parameters γ and δ are equivalent. The following system covers the eigenstate

problem as well as the resolvent problem.

Scholium 4.1. The combined system (4.4) and (4.6) for γ = δ = 1, but not

the equation in (4.4) for p = q = 0.

Notice that (4.6) is trivial for p = q = 0. The system of Scholium 4.1 has ex-

actly six linearly independent solutions. Every solution is uniquely determined

by its values at the positions (0,0), (1,1), (1,0), (−1,0), (0,1), and (0,−1), and

it can be generated by the recursions discussed in Section 3. We also record

the following elementary property.

Scholium 4.2. If {xpq} is a solution of Scholium 4.1 and ypq = x|p|,|q|, then

{ypq} is also a solution of Scholium 4.1.

We now describe four solutions of (4.4) and (4.6) for γ = δ = 1 which are

related to (1), (2), and (3):

d(+)pq = 0 for q ≤ |p|, d(+)−p,q = d(+)pq for p,q ∈ Z,
d(+)p,p+1 = (−1)pβ−p−1 for p ≥ 0,

(4.7)

d(−)pq = 0 for q ≥−|p|, d(−)−p,q = d(−)pq for p,q ∈ Z,
d(−)p,−p−1 = (−1)pβ−p−1 for p ≥ 0,

e(+)pq = 0 for p ≤ |q|, e(+)p,−q = e(+)pq for p,q ∈ Z,
e(+)p+1,p = (−β)p for p ≥ 0,

(4.8)

e(−)pq = 0 for p ≥−|q|, e(−)p,−q = e(−)pq for p,q ∈ Z,
e(−)−p−1,p = (−β)p for p ≥ 0.

(4.9)

The connection between these solutions and those in Section 3 is as follows:{
d(+)pq −d(−)pq

}
is of type (1),{

e(+)pq −e(−)pq
}

is of type (2),{
d(+)pq +d(−)pq −e(+)pq −e(−)pq

}
is of type (3).

(4.10)

The following test which indicates the presence of solutions of Scholium 4.1 of

type (4.7) through (4.9) can be derived with the aid of the recursions discussed

in Section 3.
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Scholium 4.3. If {xpq} is a solution of Scholium 4.1 with the property that

there exist p,q ∈ Z such that xpq = xp+1,q = xp,q+1 = xp+1,q+1 = 0, then {xpq}
is a linear combination of the solutions (4.7) through (4.9).

We denote by R(γ,δ) the resolvent set of h(γ,δ). For some χ ∈ R(γ,δ), con-

sider the Fourier expansion

(
h(γ,δ)−χ

)−1 =
∑
p,q∈Z

xpqwpq. (4.11)

Let ypq = γpδqxpq. We say that χ is of type I if χ ∉ Sp(α,β) and

(
h(α,β)−χ)−1 =

∑
p,q∈Z

ypqwpq. (4.12)

We say that χ is of type II if {ypq} equals {d(+)pq }, {d(−)pq }, {e(+)pq }, or {e(−)pq }.
Scholium 4.4. If {ypq} is a linear combination of {d(+)pq }, {d(−)pq }, {e(+)pq }, and

{e(−)pq }, then χ is of type II.

To see this, suppose that the claim were not true. By assumption, in each of

the four sectors of the two-dimensional lattice Z2, which are separated by the

lines p = q and p = −q, {ypq} is a scalar multiple of exactly one of the four

double sequences in (4.7) through (4.9). It follows that in any of those four

sectors S, where {xpq} does not vanish identically, we can define a solution

{spq} of (4.4) and (4.6) by carrying out the following two steps. First, let s̃pq =
xpq in S and s̃pq = 0 elsewhere. Then scale {s̃pq} with a suitable number c to

obtain {spq}, that is, spq = cs̃pq. Since {xpq} decays exponentially as |p|,|q| →
∞, the same is true for {spq}. So, if χ were not of type II, then we could construct

such exponentially decaying solutions of (3.3) and (3.4) for at least two distinct

sectors. This would yield at least two distinct inverses of h(γ,δ)−χ in the C∗-

algebra �, thus contradicting the uniqueness of such an inverse.

With a little more effort, one can show the following refined statement. If χ
is of type II and (h(γ,δ)−χ)−1 =∑p,q∈Zxpqwpq, then

{
xpq
}= {d(+)pq } only if

∣∣δ−1
∣∣,∣∣β−1γδ−1

∣∣,∣∣β−1γ−1δ−1
∣∣< 1,{

xpq
}= {d(−)pq } only if |δ|,∣∣β−1γδ

∣∣,∣∣β−1γ−1δ
∣∣< 1,{

xpq
}= {e(+)pq } only if

∣∣γ−1
∣∣,∣∣βγ−1δ

∣∣,∣∣βγ−1δ−1
∣∣< 1,{

xpq
}= {e(−)pq } only if |γ|,|βγδ|,∣∣βγδ−1

∣∣< 1.

(4.13)

Since for no values of β, γ, and δ any two distinct conditions among those

four stated in (4.13) are valid, it follows that for any operator h(γ,δ) which has

points of type II in its resolvent set, the resolvent at any two of those points

always has the same form.

Scholium 4.5. If ypq =y|p|,|q| for p,q ∈ Z, then χ is of type I.
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Suppose first that |γ|,|δ| ≤ 1. Since by Proposition 2.1 the double sequence

{xpq} decays exponentially as |p| → ∞ and |q| → ∞, {ypq}p,q≥0 decays ex-

ponentially as p → ∞ and q → ∞. Since ypq = y|p|,|q|, this entails that {ypq}
decays exponentially as |p| →∞ and |q| →∞. Moreover, {ypq} solves the com-

bined system (4.4) and (4.6) for γ = δ= 1. In conclusion,
∑
p,q∈Zypqwpq is the

inverse of h(α,β)−χ. Whence, χ is of type I. A similar reasoning applies to the

cases where |γ| ≥ 1, |δ| ≤ 1; |γ| ≤ 1, |δ| ≥ 1; |γ| ≥ 1, |δ| ≥ 1.

Scholium 4.6. Every χ ∈ R(γ,δ) is either of type I or type II.

Again, we assume first that |γ|,|δ| ≤ 1. Let zpq =y|p|,|q| for p,q ∈ Z. Suppose

first that zpq = 0 for all p,q ∈ Z. Since {ypq} is a solution of Scholium 4.1, it

follows from Scholium 4.3 that {ypq} is a linear combination of {d(+)pq }, {d(−)pq },
{e(+)pq }, and {e(−)pq }. By Scholium 4.4, this entails that χ must be of type II.

Now, suppose that {zpq} does not vanish identically. Then, it follows from

Scholium 4.2 that {zpq} is a nontrivial solution of Scholium 4.1. Moreover,

since |γ|,|δ| ≤ 1, {ypq}p,q≥0 decays exponentially asp,q→∞. Therefore, {zpq}
decays exponentially as |p|,|q| → ∞. Since all we know is that {zpq} solves

Scholium 4.1, {zpq}may or may not solve (3.3) for p = q = 0. If it does, then the

absolutely convergent Fourier series
∑
p,q∈Zzpqwpq defines an element a in the

C∗-algebra � with the property (h(α,β)−χ)a= a(h(α,β)−χ)= 0. In particu-

lar, ifϕ is any state on � and we define a functionalϕa byϕa(x)=ϕ(a∗xa),
x ∈�, thenϕa = cψ for some eigenstateψ of h(α,β) for χ and some constant

c ≥ 0. This gives rise to an infinite-dimensional space of uniformly bounded

solutions of (3.3) and (3.4), which clearly contradicts Scholium 3.3. So, {zpq}
does not solve (3.3) for p = q = 0. Thus, we can scale {zpq} by a suitable con-

stant c such that {czpq} solves (4.4) and (4.6) for γ = δ = 1. It follows that

χ ∉ Sp(α,β) and the absolutely convergent Fourier series
∑
p,q∈Z czpqwpq is

the inverse of h(α,β)−χ. Since |γ|,|δ| ≤ 1, we have for all p,q ∈ Z,

∣∣γ−pδ−qzpq∣∣≤ ∣∣γ−|p|δ−|q|z|p|,|q|∣∣= ∣∣γ−|p|δ−|q|y|p|,|q|∣∣= ∣∣x|p|,|q|∣∣. (4.14)

It follows that {czpqγ−pδ−q} decays exponentially as |p|,|q| → ∞, and hence

the limit of the absolutely convergent Fourier series
∑
p,q∈Z czpqγ−pδ−qwpq is

an inverse of h(γ,δ)−χ. The uniqueness of the inverse entails that

czpqγ−pδ−q = xpq ∀p,q ∈ Z. (4.15)

We conclude that χ is of type I. The cases where |γ| ≥ 1, |δ| ≤ 1 or |γ| ≤ 1,

|δ| ≥ 1 or |γ| ≥ 1, |δ| ≥ 1 are treated in a similar fashion.

Scholium 4.7. All points in the same component of R(γ,δ) are of the same

type.
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Suppose that Ω is a component of R(γ,δ). Let ΩI be the set of those points

in Ω which are of type I, and let ΩII be the set of those points in Ω which

are of type II. By Scholium 4.6, we have Ω = ΩI ∪ΩII. In order to prove that

either ΩI =φ or ΩII =φ, it suffices to show that both sets are relatively closed.

Suppose that χ1,χ2, . . . is a sequence in ΩI converging to χ ∈Ω. Then

lim
n→∞τ

((
h(γ,δ)−χn

)−1w−p,−q
)= τ((h(γ,δ)−χ)−1w−p,−q

)
, (4.16)

that is, the Fourier coefficient of (h(γ,δ)−χn)−1 at the position (p,q) converges

to the Fourier coefficient of (h(γ,δ)−χ)−1 at the position (p,q). Since χn is of

type I, we have

τ
((
h(γ,δ)−χn

)−1w−p,−q
)
γpδq = τ((h(γ,δ)−χn)−1w−|p|,−|q|

)
γ|p|δ|q|, (4.17)

whence,

τ
((
h(γ,δ)−χ

)−1w−p,−q
)
γpδq = τ((h(γ,δ)−χ)−1w−|p|,−|q|

)
γ|p|δ|q|, (4.18)

for all p,q ∈ Z. It now follows from Scholium 4.5 that χ is in ΩI. Next, suppose

that χ1,χ2, . . .∈ΩII converge to χ ∈Ω. Then at the positions in all but one of the

four sectors separated by the linesp = q andp =−q, the Fourier coefficients of

(h(γ,δ)−χn)−1 vanish. Since this property is preserved under limits, it follows

from Scholia 4.3 and 4.4 that χ is of type II.

A component containing points of type I only will be called of type I, too.

Otherwise, it will be called of type II.

Scholium 4.8. The unbounded component of R(γ,δ) is of type I.

The Fourier coefficients of (h(γ,δ)−χ)−1 approach zero as |χ| →∞. However,

on components of type II, the Fourier coefficients of (h(γ,δ)−χ)−1 are polyno-

mials (see (4.10) and (4)), and thus they do not approach zero as |χ| →∞ unless

they vanish identically.

Scholium 4.9. Any χ ∈ R(γ,δ)∩Sp(α,β) is of type II.

If χ is in R(γ,δ)∩Sp(α,β) and

(
h(γ,δ)−χ

)−1 =
∑
p,q∈Z

xpqwpq, (4.19)

then {xpqγpδq} cannot be the Fourier coefficients of an inverse of h(α,β)−χ.

Hence, χ must be of type II.

Scholium 4.10. Given γ and a compact subset K ⊂ C, there exists a δ0 such

that for all δ with |δ| ≥ |δ0| or |δ| ≤ |δ−1
0 |, K is contained in a component of

R(γ,δ) of type II.
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A similar statement holds where the roles of γ and δ are interchanged. Since

lim
|δ|→∞

δ−1h(γ,δ) = βv∗ (4.20)

for sufficiently large |δ|, the spectrum of δ−1h(γ,δ) is close to the spectrum of

βv∗. So, for large |δ|, the set K∪Sp(α,β) is contained in a single component

of R(γ,δ). The claim now follows from Scholium 4.9.

5. Proof of Assertions 1.2 and 1.3

Lemma 5.1. If (L) holds, then the integrated density of states µ of H(α,β,θ)
is nothing but the equilibrium distribution of Sp(α,β) (see Appendix A.1). More-

over, ∫
log |z−s|dµ(s)= log |β| iff z ∈ Sp(α,β). (5.1)

In particular, Sp(α,β) is a regular compactum (see Appendix A.6).

Proof. Let γ(β,z) be the (averaged) Lyapunov index at z. Then the Thou-

less formula says that (see [5] and [2, Section VI.4.3])

γ(β,z)=
∫

log |z−s|dµ(s). (5.2)

Moreover, (see [2, Section V.4.6])

γ(β,z)≥ log |β|. (5.3)

By virtue of [6] (see also [2, Section V.5.4(2)]), condition (L) implies that γ(β−1,
χ/β)= 0 for all χ ∈ Sp(α,β). Since γ(β,χ)= γ(β−1,χ/β)+log |β|, we conclude

that γ(β,χ)= log |β| for all χ ∈ Sp(α,β). Since∫∫
log |s−t|dµ(s)dµ(t)≥ log |β|>−∞, (5.4)

the set Sp(α,β) has positive capacity (see Appendix A.1). Furthermore, the

logarithmic potential

z � �→
∫

log |z−s|dµ(s) (5.5)

satisfies the four conditions listed in Appendix A.5. Thus, the claim follows

from Appendices A.1 and A.5.

For z ∈ C\Sp(α,β), we let

(
h(α,β)−z)−1 =

∑
p,q∈Z

cpq(z)wpq (5.6)
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be the Fourier expansion of the resolvent of h(α,β) at the point z. The func-

tions cpq are holomorphic in C\Sp(α,β) and, by Proposition 2.1, they decay

exponentially uniformly on compact subsets of C\Sp(α,β) as |p|,|q| →∞. For

z ∈ C\Sp(α,β) and q ∈ Z, we define

ρq(z)= log

 ∑
p∈Z

∣∣cpq(z)∣∣
. (5.7)

The function ρq is subharmonic in C\Sp(α,β). We now define

ρI(z)= lim
|q|→∞

1
|q|ρq(z), z ∈ C\Sp(α,β). (5.8)

We are going to define a second function which involves the double sequence

defined in (4.7). So, for each χ ∈ C, we consider the double sequence {d(+)pq (χ)}
with the properties stated in (4.7), which solves the combined system (4.4) and

(4.6). By (4.10) and (4), d(+)pq (χ) is a polynomial in χ of degree ||p|−|q||−1 for

|p|≠ |q|. For any z ∈ C, we set

ρII(z)= lim
q→∞

1
q

log

 ∑
−q≤p≤q

∣∣d(+)pq (z)∣∣
. (5.9)

Similar functions can be defined of course involving the double sequences

{d(−)pq }, {e(+)pq }, and {e(−)pq }.
Lemma 5.2. The functions ρI and ρII defined above have the following prop-

erties:

(i) ρI is subharmonic in C\Sp(α,β) and ρII is subharmonic in C;

(ii) ρI(z) < 0 and ρI(z)+ρII(z)≥ 0 for z ∈ C\Sp(α,β); ρII(z)≥ 0 in C;

(iii) ρI(z)=− log |z/β|+o(1) and ρII(z)= log |z/β|+o(1).
Proof. (i) An application of Fatou’s lemma shows that ρI is submean, that

is, for any z ∈ C\Sp(α,β), we have

ρI(z)≤ 1
2π

∫ 2π

0
ρI
(
z+reit)dt, (5.10)

whenever r is sufficiently small. Since {cpq(z)} decays exponentially as |p|,
|q| → ∞, we have ρ(z) < 0 in C\Sp(α,β). The set {z ∈ C\Sp(α,β)/ρI(z) <
− logδ} consists of all points which are of type I for h(1,δ), for δ≥ 1. By Scholia

4.6 and 4.7, this set is open. In conclusion, ρI is subharmonic.

The function ρII is submean for the same reason ρI is. Also, since all points

in C\Sp(α,β) are clearly of type I for h(1,1), we have ρII(z)≥ 0 in C. It follows

from Scholium 4.10 that ρII(z) <∞ inC. The set {z ∈ C/ρII(z) < logδ} consists

of all points which are of type II for h(1,δ), for δ≥ 1. Again by Scholia 4.6 and

4.7, this set is open. We conclude that ρII is subharmonic.
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(ii) For z ∈ C\Sp(α,β), we have

ρI(z)= inf
{
− logδ

δ
≥ 1, z is of type I for h(1,δ)

}
, (5.11)

and for z ∈ C,

ρII(z)= inf
{

logδ
δ

≥ 1, z is of type II for h(1,δ)
}
. (5.12)

Whence, −ρI(z) ≤ ρII(z) for z ∈ C\Sp(α,β). The remaining statements in (ii)

were already shown in the proof of (i).

(iii) If |z|> |βδ|+‖u+u∗+βδ−1v∗‖, then |z|−1‖h(1,δ)‖< 1, and thus h(1,δ)−
z is invertible. This entails the first part of (iii). If

|z|< |βδ|−∥∥u+u∗+βδ−1v∗
∥∥, (5.13)

then ‖(βδ)−1(h(1,δ)−z)−v∗‖< 1, and thus h(1,δ)−z is invertible. This entails

the second part of (iii).

Proof of Assertion 1.2. Suppose that (L) holds. By Theorems 3.2 and

3.6, we know that |β| > 1. Let χ ∈ Sp(α,β)\Ω(α,β). Then χ has multiplicity

two. So, there exist two distinct pure eigenstates ϕ and ψ of h(α,β) for χ. By

Scholium 3.5, the double sequence {xpq} = {ϕ(wpq)−ψ(wpq)} is a nontrivial

uniformly bounded solution of the combined system (3.3) and (3.4), which is

of type (1) or (2). Since |β|> 1, {xpq} cannot be of type (2) (otherwise it would

not be uniformly bounded). Thus, (4.10) shows that {d(+)pq (χ)} is uniformly

bounded. If |d(+)pq (χ)| ≤ c for all p,q ∈ Z and some constant c > 0, then

ρII(z)≤ lim
q→∞

1
q

log
[
(2q+1)c

]= 0. (5.14)

Whence, ρII(χ)= 0. It now follows from Lemma 5.2(ii) that

lim
z→χ
(
ρI(z)+ρII(z)

)= 0 for χ ∈ Sp(α,β)\Ω(α,β) (5.15)

and from (iii) that

lim
|z|→∞

(
ρI(z)+ρII(z)

)= 0. (5.16)

By Appendix A.2, the set Ω(α,β), which is at most countable, is polar. Hence,

Appendix A.4 yields

ρI(z)+ρII(z)= 0 in C\Sp(α,β); (5.17)

in particular, ρII is harmonic in C\Sp(α,β). It now follows from Lemma 5.2(iii)

and Appendix A.5 that ρII + log |β| is the conductor potential of Sp(α,β).



THE SPECTRUM OF A CLASS OF ALMOST PERIODIC OPERATORS 2295

Whence, by Lemma 5.1,

ρII(z)+ log |β| =
∫

log |z−s|dµ(s) in C. (5.18)

In particular, ρII vanishes everywhere on Sp(α,β). By the definition of the func-

tions ρI and ρII, it is clear that z is in the spectrum of h(1,δ) if and only if

ρII(z)= log |δ|, which settles the proof.

Before we move on to the proof of Assertion 1.3, we would like to point out

some consequence of Assertion 1.2 for the spectra of the operators h(1,δ). If

(L) holds, then [24, Section 4.1, Theorem 1] says that the spectrum of h(1,δ) for

|δ|≠ 1 either consists of a finite number of mutually exterior analytic Jordan

curves or consists of a finite number of Jordan curves composed of a finite

number of analytic Jordan arcs, which are mutually exterior except that each

of a finite number of points may belong to several Jordan curves.

Notation 5.3. For χ ∈ Sp(α,β), we define

∆χ(z)=

∣∣∣∣∣∣∣∣
log |β|−

∫
log |z−s|dµ(s)
χ−z

∣∣∣∣∣∣∣∣ , z ≠ χ,

mχ = sup
{
∆χ(z) : z ≠ χ

}
.

(5.19)

Lemma 5.4. Suppose that (L) holds. Then for every χ ∈ Sp(α,β)\Ω(α,β),
mχ <∞.

Proof. Let χ ∈ Sp(α,β)\Ω(α,β). Then there exist

θ ∈ [0,2π)\(παZ∪π(α+1)Z
)

(5.20)

and a normalized eigenvector ξ = {ξn} of H(α,β,θ) for χ which decays ex-

ponentially as |n| → ∞. So, there exist constants r ∈ (0,1) and b > 0 such

that ∣∣ξn∣∣≤ br |n|, n∈ Z. (5.21)

Let

ϕ(a)= 〈πθ(a)ξ,ξ〉, a∈�. (5.22)

Then ϕ is a pure eigenstate of h(α,β) for χ and the same is true for ψ =ϕ◦
σ . Specifically, we have ϕ(wpq) = eqθi〈wpqξ,ξ〉, ψ(wpq) = e−qθi〈w−p,−qξ,ξ〉,
q ∈ Z. As in the proof of Assertion 1.2, we see that the double sequence

{ϕ(wpq)−ψ(wpq)} is uniformly bounded of type (1). Let c = β(ϕ(w01)−
ψ(w01)). Then c ≠ 0 and by (4.10),

cd(+)pq (χ)= eqθi
〈
wpqξ,ξ

〉−e−qθi〈w−p,−qξ,ξ〉 for q ≥ 0. (5.23)
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We have∣∣〈wpqξ,ξ〉∣∣≤ ∑
n∈Z

∣∣ξn+pξn∣∣≤ b2
∑
n∈Z
r |n+p|r |n|

≤ b2
∑
n∈Z
r ‖p|−|n‖+|n| ≤ b(2|p|+1

)
r |p| +b2

∑
|n|>|p|

r |n|

= b2
(

2|p|+1+ 2r
1−r r

|p|
)
.

(5.24)

Let

a= 4c−1b2
∞∑
p=0

(
2p+1+ 2r

1−r
)
rp. (5.25)

Then we have for every δ∈ (0,1),∑
p,q∈Z

δq
∣∣d(+)pq (χ)∣∣= ∑

q∈Z,q≥0

δq
∣∣d(+)pq (χ)∣∣

≤
∞∑
q=1

δq
∞∑
k=0

(∣∣d(+)k,q+k(χ)∣∣+∣∣d(+)−k,q+k(χ)
∣∣)

=
∞∑
q=1

δq
∞∑
k=0

2
∣∣d(+)k,q+k(χ)∣∣

≤
∞∑
q=1

δq
∞∑
k=0

2c−1(∣∣〈wk,q+kξ,ξ〉∣∣+∣∣〈w−k,−q−kξ,ξ〉∣∣)

≤
∞∑
q=1

δqa= aδ
1−δ.

(5.26)

This shows that the series
∑
p,q∈Zδqd

(+)
pq (χ)wpq converges absolutely and since

{δqd(+)pq (χ)} solves (4.4) and (4.6) for γ = 1, its limit is an inverse of h(1,δ)−χ.

Moreover,

∥∥(h(1,δ)−χ)−1∥∥≤ ∑
p,q∈Z

δq
∣∣d(+)pq (χ)∣∣∥∥wpq∥∥≤ aδ

1−δ. (5.27)

Whence,

sup
δ∈(0,1)

(1−δ)ρ((h(1,δ)−χ)−1)<∞, (5.28)

where ρ(y) denotes the spectral radius of y . By virtue of Assertion 1.2, this

implies that

sup
z≠χ

(
1−β−1)exp

(∫
log |z−s|dµ(s)

)
·|z−χ|−1 <∞, (5.29)

which in turn yields mχ <∞.
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Proof of Assertion 1.3. Suppose thatK ⊂ Sp(α,β) is an open and closed

subset which is a Cantor set. For every t ∈R\K and n∈N, we define

M(t,n)= {χ ∈K/∆χ(t) > n}, (5.30)

which is an open subset of K. Whence,

Mn =
⋃

t∈R\K
M(t,n) (5.31)

is open in K. Assertion 1.2 and Appendix B.2 in conjunction with the mean

value property entail that for any n, the set Mn contains the (finite) boundary

points of maximal intervals ofR\K. Since, by assumption,K is a Cantor set, this

entails thatMn is dense in K for every n. Whence,
⋂∞
n=1Mn =

{
χ ∈K/mχ =∞

}
is a dense Gδ-subset of K, which is a perfect compactum. On account of the

Baire category theorem, we conclude thatmχ =∞ for uncountably many χ ∈K.

Assuming that (L) holds, this contradicts Lemma 5.4 combined with the fact

that the set Ω(α,β) is at most countable.

Remark 5.5. In [19], it is shown that the conclusion of Assertion 1.2 always

holds for irrational numbers α which are sufficiently well approximable by

rationals in terms of a Diophantine condition and for |β| ≥ 1. By virtue of

duality, this translates into a similar statement for 0< |β|< 1.

Appendices

A. Subharmonic functions and potential theory. In the sequel, we present

without proofs the material from classical potential theory which has been

used in the paper.

A.1. Let K ⊂ C be a compact subset, let �(K) be the set of all probability

measures on K, and let

η(K)= sup
{∫∫

log |s−t|dν(s)dν(t)/ν ∈�(K)
}
. (A.1)

Then −η(K) is called the Robin constant of K, and γ(K) = eη(K) is the (loga-

rithmic) capacity of K. (If η(K) = −∞, then γ(K) = 0.) If γ(K) > 0, then there

exists exactly one measure µ ∈�(K), called the equilibrium distribution of K,

such that

η(K)=
∫∫

log |s−t|dµ(s)dµ(t) (A.2)

(see [22, page 55, Section III.32]). The logarithmic potential

uK(z)=
∫

log |z−s|dµ(s) (A.3)

is called the conductor potential of K.
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A.2. If M ⊂ C is an arbitrary set, then its capacity γ(M) is defined to be

equal to sup{γ(K) |K ⊂M, K compact}. A subset M ⊂ C is called polar if M is

the union of countably many compact subsets of C and γ(M) = 0. Any finite

or countable subset of C is polar (see [22, Section III.8]).

A.3. Fundamental theorem. Let K ⊂ C be compact of positive capacity.

Then uK(z) ≥ η(K) in C and uK(z) = η(K) on K\N, where N ⊂ K is polar

(see [22, Section III.12]).

A.4. Phragmén-Lindelöf principle. Suppose that G ⊂ C is an open subset

with boundary K. Let N ⊂ K be a polar set. Suppose that u is a subharmonic

function on G (i.e., −∞ ≤ u(z) < ∞ in G, u is upper semicontinuous, and

u is submean, which means that for any z ∈ G and sufficiently small r > 0,

u(z) ≤ ∫ 2π0 u(z+reit)dt), bounded above, and c is a real constant such that

for all ξ ∈K\N,

lim
z→ξ
u(z)≤ c (A.4)

as z approaches ξ from inside G. If K = N, then u is constant and otherwise

u(z) < c in G or u(z)= c in G (see [8, Section 5.16]).

A.5. Let K ⊂ C be a compact set of positive capacity. Suppose that u is a

subharmonic function in C, c is a real constant, and N ⊂ K is a polar set such

that the following properties hold:

(i) u(z)≥ c in C\K,

(ii) u is harmonic in C\K,

(iii) u(z)= c for all z ∈K\N,

(iv) u(z)= log |z|+o(1) as |z| →∞.

Then u is the conductor potential of K. (This is a simple consequence of

Appendix A.4; see also [8, Section 5.17].)

A.6. Let K ⊂ C be compact of positive capacity. Then K is said to be regu-

lar if its conductor potential uK is constant on K. If K is regular, then uK is

continuous in C (see [22, Section III.13]). The set K is regular if and only if the

Dirichlet problem is solvable in the component containing ∞ of (C∪{∞})\K
for any continuous function on K (see [22, Section III.38]).

B. Logarithmic potentials and conformal mappings. In this appendix we

prove a property of conductor potentials for regular compact subsets of R
which is used in the proof of Assertion 1.3.

Let µ be a probability measure on R with compact support K. On the upper

half plane Γ = {z | Imz > 0}, we define an analytic function

fµ(z)= exp
(
−
∫

log(z−s)dµ(s)
)
. (B.1)
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This function has properties akin to starlike functions (see [13]):

(1) fµ is univalent,

(2) tfµ(Γ)⊂ fµ(Γ) for every t ∈ (0,1],
(3) fµ(Γ)⊂−Γ ,
(4) lim|z|→∞fµ(z)= 0 and lim|z|→∞ |zfµ(z)| = 1.

We also note that fµ has an analytic univalent extension on (C∪{∞})\[m,M],
where m is the smallest number in K and M is the largest number in K.

B.1. Suppose that K has a positive capacity c. Let B = {z ∈−Γ | |z| = c−1}∪
[−c−1,c−1]. Then the following statements are equivalent:

(I) K is a regular compactum and µ is its equilibrium distribution,

(II) the boundary of fµ(Γ) is equal to B and has a continuous extension on

Γ ,
(III) the boundary of fµ(Γ) is equal to B, and for every r ∈ (0,c−1), the bound-

ary ∂fµ(Γ) of fµ(Γ) intersects the circle {z | |z| = r} at finitely many

points only.

Proof. (I)⇒(II). The logarithmic potential

z � �→
∫

log |z−s|dµ(s) (B.2)

takes its minimum value at all points of K; it is continuous everywhere

(Appendix A.6) and, since µ is a diffuse measure, its conjugate function in

the upper half plane is continuous on Γ .
(II)⇒(III). If fµ has a continuous extension on Γ , then ∂fu(Γ) is locally con-

nected (see [13, Theorem 9.8]), which, by virtue of property (2), entails that

∂fµ(Γ) intersects {z | |z| = r} at finitely many points only, for every r ∈
(0,c−1).

(III)⇒(I). Property (III) implies that ∂fµ(Γ) is locally connected. Whence, fµ has

a continuous extension on Γ (see [13, Theorem 9.8]). It follows that − log |fµ|
is the restriction of a continuous subharmonic function g in C which takes

its minimum value at all points of K. Since g(z) = ∫ log |z− s|dµ(s) in C\K,

g is the logarithmic potential associated with µ (Appendix A.4). Whence, K is

regular and µ is its equilibrium distribution.

B.2. Suppose that K is regular and µ its equilibrium distribution. Further-

more, suppose that �⊂R\K is a maximal open interval and a a finite boundary

point of �. Then |∫ (x−s)−1dµ(s)| →∞ as x ∈ � approaches a.

Proof. Suppose that a is a left boundary point of �. The case of a right

boundary point can be dealt with in a similar fashion. Since
∫
(x− s)−1dµ(s)

decreases asx ∈ � increases, limx→a+
∫
(x−s)−1dµ(s) is either finite or positive

infinite. Suppose that the limit is a finite number b. We claim that∫
(z−s)−1dµ(s) �→ b as z �→ a in Aθ =

{
z ∈ C | −θ ≤ arg(z−a)≤ θ}

(B.3)
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for every θ ∈ (0,π). For convenience, we assume that a = 0. Then, |z− s| ≥
|s||sinθ| for z ∈Aθ and s ≤ 0, and hence∫∞

−∞
|z−s|−1dµ(s)=

∫ 0

−∞
|z−s|−1dµ(s)+

∫∞
0
|z−s|−1dµ(s),∫ 0

−∞
|z−s|−1dµ(s)≤ 1

|sinθ|
∫ 0

−∞
1
|s|dµ(s).

(B.4)

Since
∫ 0
−∞(1/|s|)dµ(s) is finite by assumption, then it follows that the integral∫ |z−s|−1dµ(s) is uniformly bounded for z ∈Aθ , but close to a. By Lebesgue’s

dominated convergence theorem, we infer that the limit in question exists and

it is equal to b. Since the function x�
∫
(x−s)−1dµ(s) is decreasing in � and

it takes the value 0 exactly once in case � is a finite interval (see [23, Section

7.2, Corollary 3]) and it vanishes at infinity only in case � is an infinite interval,

we conclude that b ≠ 0. Moreover,

f ′µ(z) �→−b ·w ≠ 0 as z �→ a in Γ ∩Aθ, (B.5)

where fµ(z) → w as z → a in Γ . Let ηk : [0,1] → C be differentiable injec-

tive curves (k = 1,2) such that ηk([0,1)) ⊂ Γ ∩Aθ for some θ ∈ (0,π) and

ηk(1) = a. Let ϕ be the angle between η1 and η2 at a. Then (B.5) entails that

the images η̃1 and η̃2 of η1 and η2 with respect to fµ form the same angle ϕ
at the point w ∈ ∂fµ(Γ) = B (See Appendix B.1). Since the curves η̃1 and η̃2

eventually evolve exclusively on only one side of the line through 0 and w, as

they approach the point w, the angle between η̃1 and η̃2 can never exceed the

value π/2. However, since we can arrange ϕ to be any number in (0,π), we

have reached a contradiction.
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