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A multiplicative function f is said to be specially multiplicative if there is a com-
pletely multiplicative function fA such that f(m)f(n)=∑d|(m,n) f (mn/d2)fA(d)
for allm andn. For example, the divisor functions and Ramanujan’s τ-function are
specially multiplicative functions. Some characterizations of specially multiplica-
tive functions are given in the literature. In this paper, we provide some further
characterizations of specially multiplicative functions.
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1. Introduction. An arithmetical function f is said to be multiplicative if

f(1)= 1 and

f(m)f(n)= f(mn) (1.1)

whenever (m,n) = 1. If (1.1) holds for all m and n, then f is said to be com-

pletely multiplicative. A multiplicative function is known if the values f(pn)
are known for all prime numbers p and positive integers n. A completely mul-

tiplicative function is known if the values f(p) are known for all prime num-

bers p.

A multiplicative function f is said to be specially multiplicative if there is a

completely multiplicative function fA such that

f(m)f(n)=
∑

d|(m,n)
f
(
mn
d2

)
fA(d) (1.2)

for all m and n, or equivalently

f(mn)=
∑

d|(m,n)
f
(
m
d

)
f
(
n
d

)
µ(d)fA(d) (1.3)

for all m and n, where µ is the Möbius function. If fA = δ, where δ(1)= 1 and

δ(n)= 0 forn> 1, then (1.2) reduces to (1.1). Therefore, the class of completely

multiplicative functions is a subclass of the class of specially multiplicative

functions.
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The study of specially multiplicative functions was initiated in [7], and arose

in an effort to understand the identity

σα(mn)=
∑

d|(m,n)
σα
(
m
d

)
σα
(
n
d

)
µ(d)dα, (1.4)

where σα(n) denotes the sum of the αth powers of the positive divisors of n.

Vaidyanathaswamy used the term “quadratic function,” while the term “spe-

cially multiplicative function” was coined by Lehmer [3]. For more background

information, reference is made to the books by McCarthy [4] and Sivarama-

krishnan [6].

The Dirichlet convolution of two arithmetical functions f and g is defined

as

(f ∗g)(n)=
∑
d|n
f(d)g

(
n
d

)
. (1.5)

The function δ serves as the identity under the Dirichlet convolution. An arith-

metical function f possesses a Dirichlet inverse f−1 if and only if f(1) �= 0.

We next review some basic characterizations of specially multiplicative func-

tions, see [4, 6].

Proposition 1.1. The following statements are equivalent.

(1) The function f is a specially multiplicative function.

(2) The function f is the Dirichlet convolution of two completely multiplica-

tive functions a and b. (In this case fA = ab, the usual product of a and

b.)

(3) The function f is a multiplicative function, and for each prime number

p,

f−1(pn)= 0, n≥ 3. (1.6)

(In this case fA(p)= f−1(p2) for all prime numbers p.)

(4) The function f is a multiplicative function, and for each prime number

p, there exists a complex number g(p) such that

f
(
pn+1)= f(p)f (pn)−g(p)f (pn−1), n≥ 1. (1.7)

(In this case fA(p)= g(p) for all prime numbers p.)

(5) The function f is a multiplicative function, and for each prime number

p, there exists a complex number g(p) such that

f
(
pn
)= �n/2�∑

k=0

(−1)k
(
n−k
k

)[
f(p)

]n−2k[g(p)]k, n≥ 0. (1.8)

(In this case fA(p)= g(p) for all prime numbers p.)
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Remark 1.2. Completely multiplicative functionsa and b in part 2 need not

be unique. The usual product ab, however, is unique. For example, let a, b, c,

and d be completely multiplicative functions such that a(p)= 1 and b(p)= 2

for all prime numbers p, and c(2)= 2, c(p)= 1, d(2)= 1, and d(p)= 2 for all

prime numbers p �= 2. Then a∗b = c∗d, but a,b �= c and a,b �= d. However,

ab = cd.

The purpose of this paper is to provide some further characterizations of

specially multiplicative functions. As applications, we obtain formulas for the

usual products σαφβ, σασβ, and σατ , where φβ is a generalized Euler totient

function and τ is Ramanujan’s τ-function. The function φβ is given by φβ =
Nβ∗µ, where Nβ(n) = nβ for all n. In particular, we denote N1 = N, N0 = ζ,

and φ1 =φ, where φ is the Euler totient function. Ramanujan’s τ-function is

a specially multiplicative function with τA =N11.

In the characterizations, we need the concepts of the unitary convolution

and the kth convolute. The unitary convolution of two arithmetical functions

f and g is defined as

(f ⊕g)(n)=
∑
d‖n
f(d)g

(
n
d

)
, (1.9)

where d‖n means that d|n, (d,n/d) = 1. The kth convolute of an arithmeti-

cal function f is defined as Ωk(f )(n) = f(n1/k) if n is a kth power, and

Ωk(f )(n)= 0 otherwise.

2. Characterizations

Theorem 2.1. If f is a specially multiplicative function and g is a completely

multiplicative function, then

h∗f(g∗µ)= fg, (2.1)

where h is the specially multiplicative function such that

h(p)= f(p), hA(p)= g(p)fA(p) (2.2)

for all prime numbers p. Conversely, if f(1) = 1 and there exist completely

multiplicative functions a, b, g, and k such that

a∗b∗f(g∗µ)= fg, (2.3)

where

a(p)+b(p)= f(p), a(p)b(p)= g(p)k(p), (g∗µ)(n) �= g(n) (2.4)

for all prime numbers p and integers n (≥ 2), then f is a specially multiplicative

function with fA = k.
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Proof. By multiplicativity, it suffices to show that (2.1) holds at prime pow-

ers, that is,

[
f(g∗µ)](pe)= (fg∗h−1)(pe) (2.5)

for all prime powerspe. If e= 1, then both sides of (2.5) are equal to f(p)g(p)−
f(p). Assume that e≥ 2. Then

(
fg∗h−1)(pe)= f (pe)g(pe)+f (pe−1)g(pe−1)h−1(p)

+f (pe−2)g(pe−2)h−1(p2)
= f (pe)g(pe)−f (pe−1)g(pe−1)f(p)
+f (pe−2)g(pe−2)g(p)fA(p).

(2.6)

By (1.7), we obtain

(
fg∗h−1)(pe)= f (pe)g(pe)−f (pe)g(pe−1)= f (pe)(g∗µ)(pe). (2.7)

Thus we have proved (2.5).

To prove the converse, we write (2.3) in the form

(
f(g∗µ))(n)= (fg∗a−1∗b−1)(n). (2.8)

We write n= pe+1 (e≥ 1) and, after some simplifications, obtain

f
(
pe+1)= f (pe)f(p)−f (pe−1)k(p). (2.9)

Therefore, by (1.7), it remains to prove that f is multiplicative. Denote n =
pe1

1 ···perr pr+1 ···pr+s , where ei > 1 (i = 1,2, . . . ,r ). We proceed by induction

on e1+···+er +s to prove that

f(n)= f (pe1
1

)···f (perr )f (pr+1
)···f (pr+s). (2.10)

If e1+···+er +s = 1, then (2.10) holds. Suppose that (2.10) holds when e1+
···+er+s <m. Then for e1+···+er+s =m, we have after some manipulation

f(n)(g∗µ)(n)
= (fg∗a−1∗b−1)(n)
= f(n)g(n)+

∑
d|n
d>1

f
(
n
d

)
g
(
n
d

)(
a−1∗b−1)(d)

= f(n)g(n)−
∏
pe‖n

f
(
pe
)
g
(
pe
)+ ∏

pe‖n

(
fg∗a−1∗b−1)(pe)
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= f(n)g(n)−
∏
pe‖n

f
(
pe
)
g
(
pe
)

+
r∏
i=1

[
f
(
peii

)
g
(
peii

)
−f

(
pei−1
i

)
f
(
pi
)
g
(
pei−1
i

)
+f

(
pei−2
i

)
k
(
pi
)
g
(
pei−1
i

)]

×
s∏
i=1

(
f
(
pr+i

)
g
(
pr+i

)−f (pr+i)).
(2.11)

Using (2.9), we obtain

f(n)(g∗µ)(n)= f(n)g(n)−g(n)
∏
pe‖n

f
(
pe
)+(g∗µ)(n) ∏

pe‖n
f
(
pe
)
.

(2.12)

This gives (2.10).

Remark 2.2. The converse part of Theorem 2.1 can also be written as fol-

lows. If f(1) = 1 and there exist completely multiplicative functions g and k,

and a specially multiplicative function h such that

h∗f(g∗µ)= fg, (2.13)

where

h(p)= f(p), hA(p)= g(p)k(p), (g∗µ)(n) �= g(n) (2.14)

for all prime numbersp and integersn (≥ 2), then f is a specially multiplicative

function with fA = k.

Corollary 2.3. If f is a specially multiplicative function, then

h∗fφ= fN, (2.15)

where h is the specially multiplicative function such that

h(p)= f(p), hA(p)= pfA(p) (2.16)

for all prime numbers p. Conversely, if f(1) = 1 and if there exist completely

multiplicative functions a, b, and k such that

a∗b∗fφ= fN, (2.17)

where

a(p)+b(p)= f(p), a(p)b(p)= pk(p) (2.18)

for all prime numbersp, then f is a specially multiplicative function with fA = k.
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Corollary 2.4. If f and g are completely multiplicative functions, then

f ∗f(g∗µ)= fg. (2.19)

Conversely, if f(1) = 1 and if there exists a completely multiplicative function

g such that

f ∗f(g∗µ)= fg, (2.20)

where

(g∗µ)(n) �= g(n) (2.21)

for all integers n (≥ 2), then f is a completely multiplicative function.

Corollary 2.5 (Sivaramakrishnan [5]). If f(1) = 1, then f is a completely

multiplicative function if and only if

f ∗fφ= fN. (2.22)

Example 2.6. We have

σαφβ = σαNβ∗h−1, (2.23)

where h is the specially multiplicative function such that

h(p)= σα(p)= pα+1, hA(p)= pβpα = pα+β (2.24)

for all prime numbers p.

Theorem 2.7. If f is a specially multiplicative function and g is a completely

multiplicative function, then

f(g∗µ)= fg∗(µf ⊕Ω2
(
µ2fAg

))
. (2.25)

Conversely, if f(1) �= 0 and if there exist completely multiplicative functions g
and k such that

f(g∗µ)= fg∗(µf ⊕Ω2
(
µ2kg

))
, (2.26)

where

(g∗µ)(n) �= g(n) (2.27)

for all n, then f is a specially multiplicative function with fA = k.

Proof. We observe that(
µf ⊕Ω2

(
µ2fAg

))
(p)=−f(p),(

µf ⊕Ω2
(
µ2fAg

))(
p2)= fA(p)g(p),(

µf ⊕Ω2
(
µ2fAg

))(
pn
)= 0

(2.28)
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for all prime numbers p and integers n (≥ 3). Therefore µf⊕Ω2(µ2fAg)= h−1,

where h is the specially multiplicative function in Theorem 2.1. Thus (2.25)

follows from (2.1).

The converse follows from Theorem 2.1 since µf ⊕Ω2(µ2gk) = a−1∗b−1,

where a and b are completely multiplicative functions as given in Theorem 2.1.

Theorem 2.8. If f is a specially multiplicative function and g is a completely

multiplicative function, then

f(g∗µ)= fg∗(f−1⊕Ω2
(
µ2fA(g⊕µ)

))
. (2.29)

Conversely, if f(1)= 1 and there exist completely multiplicative functions c, d,

and g such that

f(g∗µ)= fg∗((c∗d)−1⊕Ω2
(
µ2cd(g⊕µ))), (2.30)

where

c(p)+d(p)= f(p), (g∗µ)(n) �= g(n) (2.31)

for all prime numbers p and integers n (≥ 2), then f is the specially multiplica-

tive function given as f = c∗d.

Proof. Proof of Theorem 2.8 is similar to that of Theorem 2.7.

Example 2.9. We have

σαφβ = σαNβ∗
(
µσα⊕Ω2

(
µ2Nα+β

))
,

σαφβ = σαNβ∗
(
σ−1
α ⊕Ω2

(
µ2Nα

(
Nβ⊕µ))). (2.32)

Lemma 2.10. Suppose that f is an arithmetical function such that f(1)= 1

and f−1(pi)= 0 for 3≤ i < k (k≥ 4). Then

f
(
pk
)= f(p)f (pk−1)−f−1(p2)f (pk−2)−f−1(pk). (2.33)

Proof. Lemma 2.10 follows from the equation

k∑
i=0

f−1(pi)f (pk−i)= 0. (2.34)

Theorem 2.11. If f is a specially multiplicative function and g is a com-

pletely multiplicative function, then

f(g∗ζ)= fg∗f ∗Ω2
(
fAg

)−1. (2.35)
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Conversely, if f is a multiplicative function such that

f(g∗ζ)= fg∗f ∗Ω2(hg)−1, (2.36)

where g is a completely multiplicative function with g(p)(g∗ζ)(pe) �= 0 for all

prime powers pe and where h is a completely multiplicative function, then f is

a specially multiplicative function with fA = h.

Proof. Let f = a∗b, where a and b are completely multiplicative func-

tions. It is known [7] that

f(g∗ζ)= (a∗b)(g∗ζ)= ag∗aζ∗bg∗bζ∗Ω2(abgζ)−1. (2.37)

Using elementary properties of arithmetical functions, we obtain

f(g∗ζ)= (a∗b)g∗(a∗b)∗Ω2
(
fAg

)−1 = fg∗f ∗Ω2
(
fAg

)−1. (2.38)

This proves (2.35).

Assume that (2.36) holds. Then (2.36) at p2 gives

h(p)= f(p)2−f (p2). (2.39)

Since f−1(p2)= f(p)2−f(p2) for all multiplicative functions, we obtain

h(p)= f−1(p2). (2.40)

We next prove that

f−1(pi)= 0 ∀i≥ 3. (2.41)

We proceed by induction on i. Calculating (2.36) at p3 and using (2.40) gives

f
(
p3)= f(p)f (p2)−f(p)f−1(p2). (2.42)

Since

f
(
p3)−f (p2)f(p)+f(p)f−1(p2)+f−1(p3)= 0, (2.43)

we see that f−1(p3)= 0.

Suppose that f−1(pi)= 0 for all 3≤ i < k (k > 3). We write (2.36) as

f(g∗ζ)∗f−1 = fg∗Ω2(hg)−1. (2.44)
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Suppose that k is even, say k = 2e (e > 1). At p2e, the left-hand side of (2.44)

becomes

2e∑
i=0

f
(
pi
)
(g∗ζ)(pi)f−1(p2e−i)

= f−1(p2e)+f (p2e−2)(g∗ζ)(p2e−2)f−1(p2)
+f (p2e−1)(g∗ζ)(p2e−1)f−1(p)+f (p2e)(g∗ζ)(p2e)

= f−1(p2e)−f−1(p2e)(g∗ζ)(p2e−2)
−f(p)f (p2e−1)g(p2e−1)+f (p2e)g(p2e−1)+f (p2e)g(p2e)

= f−1(p2e)−f−1(p2e)(g∗ζ)(p2e−1)
−f−1(p2)f (p2e−2)g(p2e−1)+f (p2e)g(p2e),

(2.45)

where the last two equations are derived by Lemma 2.10. Further, at p2e, the

right-hand side of (2.44) becomes

2e∑
i=0

f
(
p2e−i)g(p2e−i)Ω2(hg)−1(pi)

=
e∑
i=0

f
(
p2(e−i))g(p2(e−i))µ(pi)h(pi)g(pi)

= f (p2e)g(p2e)−f (p2(e−1))g(p2(e−1))h(p)g(p).

(2.46)

Now, we see that f−1(p2e)= 0, that is, f−1(pk)= 0.

If k is odd, a similar argument applies. Thus (2.41) holds and therefore, by

(1.6), f is a specially multiplicative function with fA = h.

Corollary 2.12. If f is a specially multiplicative function, then

fσ0 = f ∗f ∗Ω2
(
fA
)−1. (2.47)

Conversely, if f is a multiplicative function such that

fσ0 = f ∗f ∗Ω2(h)−1, (2.48)

where h is a completely multiplicative function, then f is a specially multiplica-

tive function with fA = h.

Corollary 2.13 (Apostol [1]). If f and g are completely multiplicative

functions, then

f(g∗ζ)= fg∗f . (2.49)

Conversely, if f is a multiplicative function such that

f(g∗ζ)= fg∗f , (2.50)
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where g is a completely multiplicative function with g(p)(g∗ζ)(pe) �= 0 for all

prime powers pe, then f is a completely multiplicative function.

Corollary 2.14 (Carlitz [2]). Suppose that f is a multiplicative function.

Then f is a completely multiplicative function if and only if

fσ0 = f ∗f . (2.51)

Corollary 2.15. There exist

τσα = τNα∗τ∗Ω2
(
Nα+11)−1,

σασβ = σαNβ∗σα∗Ω2
(
Nα+β

)−1.
(2.52)
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