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We consider a Schrödinger-type differential expression ∇∗∇+ V , where ∇ is a
C∞-bounded Hermitian connection on a Hermitian vector bundle E of bounded
geometry over a manifold of bounded geometry (M,g) with positive C∞-bounded
measure dµ, and V is a locally integrable linear bundle endomorphism. We de-
fine a realization of ∇∗∇+V in L2(E) and give a sufficient condition for its m-
accretiveness. The proof essentially follows the scheme of T. Kato, but it requires
the use of a more general version of Kato’s inequality for Bochner Laplacian opera-
tor as well as a result on the positivity of solution to a certain differential equation
on M .
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1. Introduction and the main result

1.1. The setting. Let (M,g) be a C∞ Riemannian manifold without bound-

ary, with metric g, dimM = n. We will assume that M is connected. We will

also assume that M has bounded geometry. Moreover, we will assume that we

are given a positive C∞-bounded measure dµ, that is, in any local coordinates

x1,x2, . . . ,xn, there exists a strictly positive C∞-bounded density ρ(x) such

that dµ = ρ(x)dx1dx2 ···dxn.

Let E be a Hermitian vector bundle overM . We will assume that E is a bundle

of bounded geometry (i.e., it is supplied by an additional structure: trivializa-

tions of E on every canonical coordinate neighborhood U such that the corre-

sponding matrix transition functions hU,U′ on all intersections U
⋂
U ′ of such

neighborhoods are C∞-bounded, that is, all derivatives ∂αyhU,U′(y), where α is

a multiindex, with respect to canonical coordinates, are bounded with bounds

Cα which do not depend on the chosen pair U , U ′).
We denote by L2(E) the Hilbert space of square integrable sections of E with

respect to the scalar product

(u,v)=
∫
M

〈
u(x),v(x)

〉
Exdµ(x). (1.1)

Here 〈·,·〉Ex denotes the fiberwise inner product.
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Let

∇ : C∞(E) �→ C∞(T∗M⊗E) (1.2)

be a Hermitian connection on E which is C∞-bounded as a linear differential

operator, that is, in any canonical coordinate system U (with the chosen trivi-

alizations of E|U and (T∗M⊗E)|U ), ∇ is written in the form

∇=
∑
|α|≤1

aα(y)∂αy, (1.3)

whereα is a multiindex, and the coefficients aα(y) are matrix functions whose

derivatives ∂βyaα(y) for any multiindex β are bounded by a constant Cβ which

does not depend on the chosen canonical neighborhood.

We will consider a Schrödinger type differential expression of the form

HV =∇∗∇+V. (1.4)

Here

∇∗ : C∞
(
T∗M⊗E) �→ C∞(E) (1.5)

is a differential operator which is formally adjoint to ∇ with respect to the

scalar product (1.1), and V is a linear bundle endomorphism of E, that is, for

every x ∈M ,

V(x) : Ex �→ Ex (1.6)

is a linear operator.

We make the following assumption on V .

Assumption 1.1. Assume that V ∈ Lploc(EndE), where

(i) p = 2n/(n+2) for n≥ 3,

(ii) p > 1 for n= 2,

(iii) p = 1 for n= 1.

We will use the following notations:

V1(x) := V(x)+
(
V(x)

)∗
2

, V2(x) := V(x)−
(
V(x)

)∗
2i

, x ∈M, (1.7)

where i=√−1 and (V(x))∗ denotes the adjoint of the linear operator (1.6) (in

the sense of linear algebra).

By (1.7), for all x ∈M , we have the following decomposition:

V(x)= V1(x)+iV2(x). (1.8)
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1.2. Sobolev space W 1,2(E). By W 1,2(E) we will denote the set of all u ∈
L2(E) such that∇u∈ L2(T∗M⊗E). It is well known (see, e.g., [5, Section A1.1])

that W 1,2(E) is the completion of the space C∞c (E) with respect to the norm

‖·‖1 defined by the scalar product

(u,v)1 := (u,v)+(∇u,∇v), u,v ∈ C∞c (E). (1.9)

By W−1,2(E) we will denote the dual of W 1,2(E).
Since (M,g) and E have bounded geometry, by [5, Section A1.1], it follows

that the usual Sobolev embedding theorem (see, e.g., [1, Theorem 2.21]) holds

for W 1,2(E).

1.3. A realization of HV in L2(E). Let V be as in Assumption 1.1. We define

an operator S associated to HV as an operator in L2(E) given by Su = HVu
with domain

Dom(S)= {u∈W 1,2(E) :HVu∈ L2(E)
}
. (1.10)

Remark 1.2. We will show that for all u ∈ W 1,2(E), we have Vu ∈ L1
loc(E)

so that HVu in (1.10) can be understood in distributional sense.

Letu∈W 1,2(E). Forn≥ 3, by Section 1.2 above and the first part of Theorem

2.21 from Aubin [1], we have the following continuous embedding

W 1,2(E)⊂ Lp′(E), (1.11)

where 1/p′ = 1/2−1/n.

Letp = 2n/(n+2) be as in Assumption 1.1. Since 1/p+1/p′ = 1, by Hölder’s

inequality, it follows that Vu∈ L1
loc(E).

For n = 2, by the first part of Theorem 2.21 from Aubin [1], we get the

continuous embedding (1.11) for all 2<p′ <∞. By Assumption 1.1, for n= 2,

we have p > 1. We may assume that 1 < p < 2 (if V ∈ Ltloc(EndE) with t ≥ 2,

then V ∈ Lploc(EndE) for all 1<p < 2). Given 1<p < 2, we can take p′ > 2 such

that 1/p+1/p′ = 1. By Hölder’s inequality, we have Vu∈ L1
loc(E).

For n= 1, it is well known (see, e.g., the second part of Theorem 2.21 in [1])

that (1.11) holds with p′ = ∞. By Assumption 1.1, for n = 1, we have p = 1.

Thus, by Hölder’s inequality, we have Vu∈ L1
loc(E).

We now state the main result.

Theorem 1.3. Assume that (M,g) is a manifold of bounded geometry with a

positive C∞-bounded measuredµ. Assume that E is a Hermitian vector bundle of

bounded geometry overM . Assume∇ to be a C∞-bounded Hermitian connection
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on E. Let V be as in Assumption 1.1. Moreover, assume that for all x ∈M ,

V1(x)≥ 0, as an operator Ex �→ Ex, (1.12)

where V1(x) is as in (1.7).

Then S is m-accretive.

Remark 1.4. The main source of inspiration for Theorem 1.3 was a result

of Kato [3, Theorem I] which was proven for the operator−∆+V on an open set

Ω ⊂ Rn, where −∆ is the standard Laplacian on Rn with the standard metric

and measure, and V ∈ Lploc(Ω), with p as in Assumption 1.1, is a complex-

valued function such that ReV ≥ 0.

Let d : C∞(M) → Ω1(M) be the standard differential. Then d∗d : C∞(M) →
C∞(M) is called the scalar Laplacian and will be denoted by ∆M .

2. Proof of Theorem 1.3. We will adopt the proof of [3, Theorem I] in our

context. Throughout this section, we assume that all hypotheses of Theorem

1.3 are satisfied. We begin by introducing another realization of HV .

2.1. Maximal realization of HV between W 1,2(E) and W−1,2(E). We define

an operator T associated to HV as an operator W 1,2(E) → W−1,2(E) given by

Tu=HVu with domain

Dom(T)= {u∈W 1,2(E) :HVu∈W−1,2(E)
}
. (2.1)

Remark 2.1. ConditionHVu∈W−1,2(E) for u∈W 1,2(E)makes sense since

HVu is a distributional section of E by Remark 1.2. Since∇∗∇u∈W−1,2(E) for

u∈W 1,2(E), it follows that the conditionHVu∈W−1,2(E) in (2.1) is equivalent

to Vu∈W−1,2(E) for u∈W 1,2(E).

Lemma 2.2. The following inclusion holds: C∞c (E)⊂Dom(T).

Proof. Let u∈ C∞c (E). Then Vu∈ Lp(E), where p is as in Assumption 1.1.

By Remark 1.2, it follows that W 1,2(E) ⊂ Lp′(E), where 1/p+1/p′ = 1. By du-

ality, we have Lp(E)⊂W−1,2(E). Thus Vu∈W−1,2(E), and hence u∈Dom(T).

2.2. Minimal realization of HV between W 1,2(E) and W−1,2(E). By T0 we

will denote the restriction of T with Dom(T0)= C∞c (E). Clearly, T0 is a densely

defined operator.

Remark 2.3. Since Dom(S), where S is as in (1.10), does not necessarily

contain C∞c (E), there is no minimal realization of HV in L2(E) (in the sense of

Section 2.2).

2.3. Maximal and minimal realization of HV∗ . In what follows, we will de-

note by T ′ and T ′0 the maximal and minimal realization of HV∗ in the sense of

Sections 2.1 and 2.2, respectively, where V∗ is the adjoint of V as in (1.7).
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Lemma 2.4. The following holds: T = (T ′0)∗, where ∗ denotes the adjoint of

an operator.

Proof. We need to show that for any u ∈ W 1,2(E) and f ∈ W−1,2(E), the

equation Tu= f is true if and only if

(u,T ′s)= (f ,s), ∀s ∈ C∞c (E), (2.2)

where (·,·) denotes the duality between W 1,2
loc (E) and W−1,2

comp(E) extending the

inner product in L2(E) by continuity from C∞c (E).
(1) Assume that u ∈ W 1,2(E), f ∈ W−1,2(E), and Tu = f . Then Vu ∈

W−1,2(E). By Lemma 2.2, for all s ∈ C∞c (E), we have V∗s ∈ W−1,2
comp(E). Since

s ∈ C∞c (E), we have V∗s ∈ Lpcomp(E) with p as in Assumption 1.1. By the proof

in Remark 1.2, we have u ∈W 1,2(E) ⊂ Lp′(E) (continuous embedding), where

1/p+1/p′ = 1. By Hölder’s inequality, Lp
′

loc(E) is in a continuous duality with

Lpcomp(E) by the usual integration. Thus, for all s ∈ C∞c (E), we have (after ap-

proximating u by sections uj ∈ C∞c (E) in W 1,2-norm in a neighborhood of

supps)

(
u,V∗s

)= lim
j→∞

(
uj,V∗s

)= lim
j→∞

∫ 〈
uj(x),

(
V∗s

)
(x)

〉
dµ(x)

=
∫ 〈
u(x),

(
V∗s

)
(x)

〉
dµ(x),

(2.3)

where (·,·) is as in (2.2). The second equality in (2.3) holds since V∗s ∈ L1
loc(E)

by Remark 1.2 and uj ∈ C∞c (E).
Therefore, we obtain

(
u,V∗s

)=
∫ 〈
u(x),

(
V∗s

)
(x)

〉
dµ(x)

=
∫ 〈
(Vu)(x),s(x)

〉
dµ(x)= (Vu,s),

(2.4)

where (·,·) is as in (2.2). The first equality in (2.4) follows from (2.3). The

second equality in (2.4) holds by the definition of (V(x))∗ : Ex → Ex . The third

equality in (2.4) holds for all s ∈ C∞c (E) since Vu∈W−1,2(E) and Vu∈ L1
loc(E)

by Remark 1.2.

Using (2.4), we obtain

(u,T ′s)= (u,∇∗∇s+V∗s)= (u,∇∗∇s)+(u,V∗s)
= (∇∗∇u,s)+(Vu,s)= (Tu,s), (2.5)

where V∗ is the adjoint of V as in (1.7) and (·,·) is as in (2.2). In the third

equality, we also used the integration by parts (see, e.g., [2, Lemma 8.8]).

(2) Assume that u ∈ W 1,2(E), f ∈ W−1,2(E), and (2.2) holds. Then the first

two equalities in (2.4) hold (we do not know a priori that Vu∈W−1,2(E) so the
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third equality in (2.4) is not yet justified). Thus for all s ∈ C∞c (E),
(f ,s)= (u,T ′s)= (u,∇∗∇s)+(u,V∗s)

= (∇∗∇u,s)+
∫ 〈
(Vu)(x),s(x)

〉
dµ(x),

(2.6)

where the second equality follows as in (2.5), and the third equality follows

from integration by parts and the second equality in (2.4).

Since ∇∗∇u∈W−1,2(E) and f ∈W−1,2(E), we obtain

(
f −∇∗∇u,s)=

∫ 〈
(Vu)(x),s(x)

〉
dµ(x), ∀s ∈ C∞c (E), (2.7)

where (·,·) is as in (2.2).

Since u∈W 1,2(E), from Remark 1.2, we know that Vu∈ L1
loc(E). By (2.7), we

get Vu∈W−1,2(E) since C∞c (E) is dense in W 1,2(E). Thus, as in (2.4),
∫ 〈
(Vu)(x),s(x)

〉
dµ(x)= (Vu,s), ∀s ∈ C∞c (E), (2.8)

where (·,·) is as in (2.2).

From (2.7) and (2.8), we obtain

(
f −∇∗∇u,s)= (Vu,s), ∀s ∈ C∞c (E), (2.9)

where (·,·) is as in (2.2).

Therefore,

(f ,s)= (∇∗∇u,s)+(Vu,s)= (Tu,s), ∀s ∈ C∞c (E), (2.10)

where (·,·) is as in (2.2).

This shows that Tu= f , and the lemma is proven.

In what follows, we will adopt the terminology of Kato [3] and distinguish

between monotone and accretive operators. Accretive operators act within the

same Hilbert space, while monotone operators act from a Hilbert space into

its adjoint space (antidual).

Lemma 2.5. The operator T0 is monotone, that is,

Re
(
T0s,s

)≥ 0, ∀s ∈ C∞c (E), (2.11)

where (·,·) denotes the duality between W−1,2(E) and W 1,2(E).

Proof. We have for all s ∈ C∞c (E),

Re
(
T0s,s

)= Re
[(∇∗∇s,s)+

∫
〈Vs,s〉dµ

]

= ‖∇s‖2+Re
[∫ 〈

V1s,s
〉
dµ+i

∫ 〈
V2s,s

〉
dµ
]

≥ ‖∇s‖2,

(2.12)
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where (·,·) is as in (2.11), ‖ · ‖ denotes the L2-norm, and V1 ≥ 0 and V2 are

linear selfadjoint bundle endomorphisms as in (1.7).

The lemma is proven.

Lemma 2.6. The operator 1+T0 is coercive in the sense that

∥∥(1+T0
)
s
∥∥−1 ≥ ‖s‖1, ∀s ∈Dom

(
T0
)= C∞c (E), (2.13)

where ‖·‖−1 is the norm in W−1,2(E), and ‖·‖1 is the norm in W 1,2(E).

Proof. As in (2.12), we have for all s ∈ C∞c (E),

Re
((
T0+1

)
s,s
)≥ ‖s‖2+‖∇s‖2 = ‖s‖2

1, (2.14)

where (·,·) is as in (2.11).

Since the left-hand side of (2.14) does not exceed ‖(1+T0)s‖−1‖s‖1, inequal-

ity (2.13) immediately follows from (2.14).

In what follows, KerA and RanA denote the kernel and the range of operator

A, respectively, and Ā denotes the closure of A.

Lemma 2.7. The following holds:

(i) the operator T0 is closable with closure T∗∗0 ,

(ii) Ran(1+T∗∗0 ) is closed.

Proof. By Lemma 2.4, it follows that T ′ = T∗0 , where T ′ is as in Section 2.3.

Since T ′0 ⊂ T ′ (as operators), it follows that T ′ is densely defined. Thus T∗∗0

exists and equals T0. This proves property (i).

We will now prove property (ii). Since 1+ T0 is coercive by Lemma 2.6, it

follows by definition of T0 that 1+T∗∗0 = 1+T0 is also coercive, that is,

∥∥(1+T∗∗0

)
u
∥∥−1 ≥ ‖u‖1, ∀u∈Dom

(
T∗∗0

)
, (2.15)

where ‖·‖−1 is the norm in W−1,2(E), and ‖·‖1 is the norm in W 1,2(E).
We will now show that Ran(1+T∗∗0 ) is closed.

Let fj ∈ Ran(1+T∗∗0 ) and ‖fj−f‖−1 → 0 as j→∞. Letuj ∈Dom(1+T∗∗0 ) be

a sequence such that (1+T∗∗0 )uj = fj . Since fj is a Cauchy sequence in ‖·‖−1,

by (2.15) it follows that uj is a Cauchy sequence in ‖·‖1. Thus uj converges

in ‖·‖1, and we will denote its limit by u. Since 1+T∗∗0 is a closed operator,

it follows that u∈Dom(1+T∗∗0 ) and f = (1+T∗∗0 )u. Thus f ∈ Ran(1+T∗∗0 ),
and property (ii) is proven.

In what follows, we will use the general version of Kato’s inequality whose

proof is given in [2, Theorem 5.7].

Lemma 2.8. Assume that (M,g) is a Riemannian manifold. Assume that E
is a Hermitian vector bundle over M and ∇ is a Hermitian connection on E.
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Assume that w ∈ L1
loc(E) and ∇∗∇w ∈ L1

loc(E). Then

∆M |w| ≤ Re
〈∇∗∇w,signw

〉
, (2.16)

where ∆M is the scalar Laplacian on M and

signw(x)=



w(x)∣∣w(x)∣∣ if w(x)≠ 0,

0 otherwise.
(2.17)

We now state and prove the key proposition.

Proposition 2.9. The following holds: Ran(1+T∗∗0 )=W−1,2(E).

Proof. By Lemma 2.7, it suffices to show that if u∈W 1,2(E) and

((
1+T0

)
s,u

)= 0, ∀s ∈ C∞c (E), (2.18)

where (·,·) is as in (2.11), then u= 0.

Using condition (2.18) and the same arguments as in the proof of the first

two equalities in (2.4) and the equation (2.8), we have

0= (s,u)+(∇∗∇s,u)+(Vs,u)
= (s,u)+(s,∇∗∇u)+(s,V∗u), ∀s ∈ C∞c (E),

(2.19)

where (·,·) is as in (2.11), and V∗ is as in (1.7).

Therefore, the following distributional equality holds (recall that by Remark

1.2, we have V∗u∈ L1
loc(E))

∇∗∇u+V∗u+u= 0. (2.20)

From (2.20), we have∇∗∇u=−V∗u−u∈ L1
loc(E). Therefore, by Lemma 2.8,

we get

∆M |u| ≤ Re
〈∇∗∇u,signu

〉
= Re

〈−u−V1u+iV2u,signu
〉

=−|u|−〈V1u,signu
〉≤−|u|,

(2.21)

where ∆M , 〈·,·〉 and signu are as in (2.16), and V1 ≥ 0, V2 are linear selfadjoint

bundle endomorphisms as in (1.7).

By (2.21), we get the following distributional inequality:

(
∆M+1

)|u| ≤ 0. (2.22)

Since (M,g) is a manifold of bounded geometry, by [2, Proposition B.3], in-

equality (2.22) implies that |u| = 0, that is, u= 0. This concludes the proof of

the proposition.
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Corollary 2.10. The operator T∗∗0 is maximal monotone (in the sense that

it is monotone and has no proper monotone extension).

Proof. The corollary follows immediately from Proposition 2.9, inequality

(2.15), and the remark after equation (3.38) of [4, Section 5.3.10].

Proposition 2.11. The following holds:

(i) T = T∗∗0 ,

(ii) the operator T is maximal monotone.

Proof. We first prove property (i). Since T0 ⊂ T (as operators), it follows

that T∗∗0 ⊂ T because T is closed by Lemma 2.4. By Proposition 2.9, Ran(1+
T∗∗0 ) =W−1,2(E). By the same proposition (with V replaced by V∗), it follows

that Ran(1+ (T ′0)∗∗) = W−1,2(E), where T ′0 is as in Section 2.3. Since 1+T =
1+(T ′0)∗ (see Lemma 2.4), it follows that Ker(1+T)= {0}. Hence, T cannot be

a proper extension of T∗∗0 . This shows that T∗∗0 = T .

Property (ii) follows immediately from property (i) and Corollary 2.10.

3. Proof of Theorem 1.3. First, note that the following holds: u ∈ Dom(S)
if and only if u∈Dom(T) and Tu∈ L2(E) (in which case Su= Tu).

By Propositions 2.9 and 2.11, it follows that Ran(1+T) =W−1,2(E). There-

fore, Ran(1 + S) = L2(E). Furthermore, since T is maximal monotone by

Proposition 2.11, it follows that

Re(Su,u)L2(E) = Re(Tu,u)≥ 0, ∀u∈Dom(S), (3.1)

where (·,·)L2(E) denotes the inner product in L2(E), and (·,·) is the duality

between W−1,2(E) and W 1,2(E).
Thus we proved that S is accretive and Ran(1+S) = L2(E). By the remark

after equation (3.37) of [4, Section 5.3.10], it follows that S is m-accretive.
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