
IJMMS 2003:4, 199–207
PII. S016117120320627X

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

NONLINEAR VARIATIONAL INEQUALITIES ON REFLEXIVE
BANACH SPACES AND TOPOLOGICAL VECTOR SPACES

ZEQING LIU, JEONG SHEOK UME, and SHIN MIN KANG

Received 8 June 2002

The purpose of this paper is to introduce and study a class of nonlinear variational
inequalities in reflexive Banach spaces and topological vector spaces. Based on the
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1. Introduction. It is well known that variational inequality theory has sig-

nificant applications in various fields of mathematics, physics, economics, and

engineering science. Siddiqi et al. [6] considered the solvability of a class of

nonlinear variational inequality problems in nonempty closed convex subsets

and nonempty compact convex subsets of reflexive Banach spaces and locally

convex spaces, respectively. Carbone [3] extended the results of Siddiqi et al.

[6]. Recently, Verma [7] presented the existence and uniqueness of solutions

for a class of nonlinear variational inequality problems involving a combina-

tion of operators of p-monotone and p-Lipschitz types, which generalizes a

result due to Browder [1]. On the other hand, Carbone [4] established the ex-

istence of solutions of a class of nonlinear variational inequality problems in

nonempty convex subsets of topological vector spaces.

Inspired and motivated by research works [1, 3, 4, 6, 7], in this paper, we

study the solvability of a new class of nonlinear variational inequality problems

in nonempty closed convex subsets and nonempty convex subsets of reflex-

ive Banach spaces and topological vector spaces, respectively. The obtained

results extend, improve, and unify the corresponding results in [1, 3, 4, 6, 7]

and others.

2. Preliminaries. Throughout this paper, let R=(−∞,+∞) and R+=[0,+∞).
Let 〈X,X∗〉 be a dual system of topological vector spaces or of Banach spaces,

let the bilinear form 〈·,·〉 be continuous, and let K be a nonempty convex set in

X. Let A,B,C : K→X∗, M :X∗×X∗×X∗ →X∗, and h : K×K→ K be mappings

and let f :K→R be a convex functional. Assume that h is linear with respect to

the first argument. We consider the nonlinear variational inequality problem:
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for each given w ∈X∗, find u∈K such that

〈
M(Au,Bu,Cu)−w,h(v,u)〉+f(v)−f(u)≥ 0 ∀v ∈K. (2.1)

If M(x,y,z) = x −y + z, then problem (2.1) is equivalent to the following

problem: for each given w ∈X∗, find u∈K such that

〈
Au−Bu+Cu−w,h(v,u)〉+f(v)−f(u)≥ 0 ∀v ∈K. (2.2)

Remark 2.1. For a suitable choice of M , A, B, C , h, w, and f , problem (2.1)

includes a few kinds of known variational inequalities as special cases (see

[1, 3, 4, 6, 7] and the references therein).

Recall that a multivalued mapping F :X → 2X is called the KKM mapping if,

for every finite subset {ui : 1 ≤ i ≤ n} of X, conv{ui : 1 ≤ i ≤ n} ⊂ ∪ni=1Fui,
where conv(A) denotes the convex hull of A.

Lemma 2.2 [5]. Let K be a nonempty subset of a Hausdorff topological vector

space X and let F :K→ 2X be a KKM mapping. If Fx is closed in X for any x ∈K
and there exists at least a point u∈K such that Fu is compact, then

⋂
x∈K

Fx ≠∅. (2.3)

Lemma 2.3 [2]. Let C be a nonempty convex subset of a topological vector

space X. Let A ⊂ C ×C and g : C → C such that the following conditions are

satisfied:

(i) (x,gx)∈A for all x ∈ C ;

(ii) for each y ∈ C , the set {x ∈ C : (x,gy) ∈A} is convex or empty;

(iii) for each x ∈ C , the set {y ∈ C : (x,gy)∈A} is closed in C ;

(iv) there exists a nonempty compact convex subset B of C such that the set

D = {y ∈ C : (x,gy)∈A for all x ∈ B} is compact.

Then, there exists u∈ C satisfying C×{gu} ⊂A.

In the rest of this section, let (X,‖·‖) be a Banach space, X∗ the topological

dual space of X, and 〈·,·〉 the dual pair between X and X∗.

Definition 2.4. A mapping A : K → X∗ is called h−φ monotone with

respect to the first argument ofM :X∗×X∗×X∗ →X∗ if there exist mappings

φ :R+ →R+ with φ(0)= 0, h :K×K→K satisfying

〈
M(Av,·,·)−M(Au,·,·),h(v,u)〉≥φ(∥∥h(v,u)∥∥) ∀v,u∈K. (2.4)
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Definition 2.5. A mapping A : K → X∗ is called h−φ monotone if there

exist mappings φ :R+ →R+ with φ(0)= 0, h :K×K→K satisfying

〈
Av−Au,h(v,u)〉≥φ(∥∥h(v,u)∥∥) ∀v,u∈K. (2.5)

Definition 2.6. A mapping B : K → X∗ is called h−ψ relaxed monotone

with respect to the second argument of M : X∗×X∗×X∗ → X∗ if there exist

mappings ψ :R+ →R+ with ψ(0)= 0, h :K×K→K satisfying

〈
M(·,Bv,·)−M(·,Bu,·),h(v,u)〉≥−ψ(∥∥h(v,u)∥∥) ∀v,u∈K. (2.6)

Definition 2.7. A mapping A :K→X∗ is called h−φ Lipschitzian if there

exist mappings φ :R+ →R+ with φ(0)= 0, h :K×K→K satisfying

〈
Av−Au,h(v,u)〉≤φ(∥∥h(v,u)∥∥) ∀v,u∈K. (2.7)

In a similar way, we can define the h−φ monotonicity of the mapping C :

K→X∗ with respect to the third argument of M .

Definition 2.8. A mapping A :K→X∗ is called hemicontinuous if the real

function t→ 〈A(x+ty),z〉 is continuous on [0,1] for any x,y,z ∈K.

Remark 2.9. For a suitable choice ofM ,A, B, C ,h,φ, andψ, Definitions 2.5,

2.6, and 2.7 include many known definitions of various monotone mappings,

relaxed monotone mappings, and Lipschitzian mappings as special cases (see

[1, 3, 4, 6, 7] and the references therein).

3. Main results. Our main results are as follows.

Theorem 3.1. Let X be a reflexive Banach space, X∗ its dual space, and K
a nonempty convex closed subset of X. Suppose that M : X∗×X∗×X∗ → X∗ is

continuous,h :K×K→K is linear with respect to the first argument and satisfies

h(x,x) = 0 for all x ∈ K, and f : K → R is convex functional. Assume that

A,B,C :K→X∗ are continuous from line segments in K to the weak topology of

X∗ such that A is h−φ monotone with respect to the first argument of M , B is

h−ψ relaxed monotone with respect to the second argument of M , C is h−ω
monotone with respect to the third argument of M , and

lim
t→0+

φ(t)−ψ(t)+ω(t)
t

= 0. (3.1)
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Then, for each given w ∈X∗, u∈K is a solution of problem (2.1) if and only if

u∈K is a solution of the following problem: find u∈K such that

〈
M(Av,Bv,Cv)−w,h(v,u)〉+f(v)−f(u)

≥φ(∥∥h(v,u)∥∥)−ψ(∥∥h(v,u)∥∥)+ω(∥∥h(v,u)∥∥) ∀v ∈K. (3.2)

Proof. Suppose that u∈ K is a solution of problem (2.1). Since A is h−φ
monotone with respect to the first argument ofM,B is h−ψ relaxed monotone

with respect to the second argument of M , and C is h−ω monotone with

respect to the third argument of M , it follows that

〈
M(Av,Bv,Cv)−w,h(v,u)〉+f(v)−f(u)

= 〈M(Av,Bv,Cv)−M(Au,Bv,Cv),h(v,u)〉
+〈M(Au,Bv,Cv)−M(Au,Bu,Cv),h(v,u)〉
+〈M(Au,Bu,Cv)−M(Au,Bu,Cu),h(v,u)〉
+〈M(Au,Bu,Cu)−w,h(v,u)〉+f(v)−f(u)

≥φ(∥∥h(v,u)∥∥)−ψ(∥∥h(v,u)∥∥)+ω(∥∥h(v,u)∥∥)

(3.3)

for all v ∈K. That is, (3.2) is satisfied.

Conversely, suppose that (3.2) holds. Let v be an arbitrary point in K. Set

vt = (1−t)u+tv for t ∈ [0,1]. Clearly, vt ∈K and vt−u= t(v−u). Note that

h is linear with respect to the first argument and h(x,x) = 0 for any x ∈ K.

Thus,

h
(
vt,u

)= (1−t)h(u,u)+th(v,u)= th(v,u) for any v ∈K. (3.4)

Since f is convex, by (3.2) and (3.4) we conclude that

t
{〈
M
(
Avt,Bvt,Cvt

)−w,h(v,u)〉+f(v)−f(u)}
≥ 〈M(Avt,Bvt,Cvt)−w,h(vt,u)〉+f (vt)−f(u)
≥φ(∥∥h(vt,u)∥∥)−ψ(∥∥h(vt,u)∥∥)+ω(∥∥h(vt,u)∥∥)
≥ϕ(t∥∥h(v,u)∥∥)−ψ(t∥∥h(v,u)∥∥)+ω(t∥∥h(v,u)∥∥)

(3.5)

for all t ∈ (0,1] and v ∈K. In view of (3.5), we get

〈
M
(
Avt,Bvt,Cvt

)−w,h(v,u)〉+f(v)−f(u)
≥ φ

(
t
∥∥h(v,u)∥∥)−ψ(t∥∥h(v,u)∥∥)+ω(t∥∥h(v,u)∥∥)

t

(3.6)

for all t ∈ (0,1] and v ∈K. SinceM is continuous andA, B, C are weakly contin-

uous on segments of K, M(Avt,Bvt,Cvt) weakly converges to M(Au,Bu,Cu)
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as t→ 0+. It follows from (3.1) and (3.6) that

〈
M(Au,Bu,Cu)−w,h(v,u)〉+f(v)−f(u)≥ 0 ∀v ∈K. (3.7)

This completes the proof.

Remark 3.2. Theorem 2.1 of Verma [7] and Theorem 1 of Browder [1] are

particular cases of Theorem 3.1.

From Theorem 3.1, we immediately obtain the following result.

Theorem 3.3. Let X, X∗, K, h, and f be as in Theorem 3.1. Assume that

A,B,C : K → X∗ are hemicontinuous mappings such that A is h−φ monotone,

B is h−ψ Lipschitzian, C is h−ω monotone, and (3.1) holds. Then, for any

w ∈X∗, u∈K is a solution of problem (2.2) if and only if u∈K is a solution of

the following problem: find u∈K such that

〈
Av−Bv+Cv−w,h(v,u)〉+f(v)−f(u)

≥φ(∥∥h(v,u)∥∥)−ψ(∥∥h(v,u)∥∥)+ω(∥∥h(v,u)∥∥) ∀v ∈K.
(3.8)

Remark 3.4. Theorem 3.3 extends, improves, and unifies Lemma 1 of Car-

bone [3] and Lemma 1 of Siddiqi et al. [6].

Theorem 3.5. Let X, X∗, K,M , h, f , A, B, C , φ, ψ, andω be as in Theorem

3.1. Ifφ,ψ, andω are continuous and f is lower semicontinuous, then problem

(2.1) has a solution. Furthermore, if the following conditions:

h(u,v)=−h(v,u) ∀u,v ∈K,

h(u,v)= 0 implies that u= v,

φ(t)−ψ(t)+ω(t) > 0 ∀t > 0

(3.9)

are fulfilled, then problem (2.1) has a unique solution.

Proof. Let the multivalued mappings F,G :K→ 2K be defined as

Fv = {u∈K :
〈
M(Au,Bu,Cu)−w,h(v,u)〉+f(v)−f(u)≥ 0

}
,

Gv = {u∈K :
〈
M(Av,Bv,Cv)−w,h(v,u)〉+f(v)−f(u)

≥φ(∥∥h(v,u)∥∥)−ψ(∥∥h(v,u)∥∥)+ω(∥∥h(v,u)∥∥)}
(3.10)

for all v ∈K, respectively. Now, we claim that F is a KKM mapping on K. If not,

then there exist {ui : 1 ≤ i ≤ n} ⊂ K,
∑n
i=1 ti = 1, ti > 0 for each i ∈ {1, . . . ,n}
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and u=∑ni=1 tiui ∈
⋃n
i=1Fui. It follows that

0= 〈M(Au,Bu,Cu)−w,h(u,u)〉

=
〈
M(Au,Bu,Cu)−w,h

( n∑
i=1

tiui,u
)〉

=
n∑
i=1

ti
〈
M(Au,Bu,Cu)−w,h(ui,u)〉

<
n∑
i=1

ti
(
f(u)−f (ui))

= f(u)−
n∑
i=1

tif
(
ui
)

≤ 0,

(3.11)

which is a contradiction. Hence, F is a KKM mapping.

Next, we claim that Fv ⊂Gv for all v ∈K. Indeed, let u∈ Fv . Then, we infer

that

〈
M(Av,Bv,Cv)−w,h(v,u)〉+f(v)−f(u)

= 〈M(Av,Bv,Cv)−M(Au,Bv,Cv),h(v,u)〉
+〈M(Au,Bv,Cv)−M(Au,Bu,Cv),h(v,u)〉
+〈M(Au,Bu,Cv)−M(Au,Bu,Cu),h(v,u)〉
+〈M(Au,Bu,Cu)−w,h(v,u)〉+f(v)−f(u)

≥φ(∥∥h(v,u)∥∥)−ψ(∥∥h(v,u)∥∥)+ω(∥∥h(v,u)∥∥)

(3.12)

for all v ∈ K. That is, u ∈ Gv . Thus, G is a KKM mapping. It follows from

Theorem 3.1 that

⋂
v∈K

Fv =
⋂
v∈K

Gv. (3.13)

Since f is lower semicontinuous and h,ϕ,ψ, andω are continuous, therefore

Gv is closed for any v ∈ K. Note that K is bounded closed convex. It is clear

that K is weakly compact set in X. Hence, Gv is weakly compact set in K since

Gv ⊂K for each v ∈K. Lemma 2.2 and (3.13) ensure that

⋂
v∈K

Fv =
⋂
v∈K

Gv ≠∅, (3.14)

which implies that there exists u∈K such that

〈
M(Au,Bu,Cu)−w,h(v,u)〉+f(v)−f(u)≥ 0 ∀v ∈K. (3.15)

That is, problem (2.1) has a solution u∈K.
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Finally, we show the uniqueness of solution. Suppose that v ∈K is another

solution of problem (2.1) with v ≠u. Then,

〈
M(Au,Bu,Cu)−w,h(v,u)〉+f(v)−f(u)≥ 0,〈
M(Av,Bv,Cv)−w,h(u,v)〉+f(u)−f(v)≥ 0.

(3.16)

Thus, (3.9) and (3.16) yield

〈
M(Au,Bu,Cu)−M(Av,Bv,Cv),h(v,u)〉≥ 0. (3.17)

By (3.9) and (3.17), we infer that

0≤ 〈M(Au,Bu,Cu)−M(Av,Bv,Cv),h(v,u)〉
= 〈M(Au,Bu,Cu)−M(Av,Bu,Cu),h(v,u)〉
+〈M(Av,Bu,Cu)−M(Av,Bv,Cu),h(v,u)〉
+〈M(Av,Bv,Cu)−M(Av,Bv,Cv),h(v,u)〉

≤−[φ(∥∥h(v,u)∥∥)−ψ(∥∥h(v,u)∥∥)+ω(∥∥h(v,u)∥∥)]
< 0,

(3.18)

which is a contradiction. This completes the proof.

As a consequence of Theorem 3.5, we have the following theorem.

Theorem 3.6. Let X, X∗, K, h, f , A, B, C ,φ,ψ, andω be as in Theorem 3.3.

If φ, ψ, and ω are continuous and f is lower semicontinuous, then problem

(2.2) has a solution. Furthermore, if (3.9) holds, then problem (2.2) has a unique

solution.

Remark 3.7. Theorem 3 of Siddiqi et al. [6] and Theorem 2.2 of Verma [7]

are special cases of Theorem 3.6.

Theorem 3.8. Let X be a topological vector space, X∗ the topological dual

space of X, K a nonempty convex subset of X, D a nonempty compact convex

set in K, and the bilinear form 〈·,·〉 continuous. Suppose that A,B,C : K → X∗,

M : X∗ ×X∗ ×X∗ → X∗ are continuous and f : K → R is convex lower semi-

continuous functional. Assume that h : K×K → K is linear with respect to the

first argument and continuous with respect to the second argument. If, for each

given w ∈X∗, the following condition:

〈
M(Au,Bu,Cu)−w,h(u,u)〉≥ 0 ∀u∈K (3.19)

is satisfied and the set

Y = {v ∈K :
〈
M(Av,Bv,Cv)−w,h(u,v)〉+f(u)−f(v)≥ 0 ∀u∈D} (3.20)

is compact, then problem (2.1) has a solution in K.
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Proof. Set

E = {(u,v)∈K×K :
〈
M(Av,Bv,Cv)−w,h(u,v)〉+f(u)−f(v)≥ 0

}
, (3.21)

where w is a given point in K. Condition (3.19) ensures that (u,u) ∈ E. For

each u∈K, the set

Eu =
{
v ∈K :

〈
M(Av,Bv,Cv)−w,h(u,v)〉+f(u)−f(v)≥ 0

}
(3.22)

is closed as can be easily seen from the continuity of M , A, B, C , 〈·,·〉, and h
relative to the second argument and lower semicontinuity of f . Now, we assert

that, for each v ∈K, the set

Ev =
{
u∈K :

〈
M(Av,Bv,Cv)−w,h(u,v)〉+f(u)−f(v) < 0

}
(3.23)

is convex. Let x,y ∈ Ev and t,s > 0 with t+s = 1. Then, we know that

〈
M(Av,Bv,Cv)−w,th(x,v)〉+tf (x)−tf (v) < 0,〈
M(Av,Bv,Cv)−w,sh(y,v)〉+sf (y)−sf (v) < 0.

(3.24)

Note that h is linear relative to the first argument and f is convex. By virtue

of (3.24), we infer that

〈
M(Av,Bv,Cv)−w,h(tx+sy,v)〉+f(tx+sy)−f(v)

≤ 〈M(Av,Bv,Cv)−w,th(x,v)〉+tf (x)−tf (v)
+〈M(Av,Bv,Cv)−w,sh(y,v)〉+sf (y)−sf (v)
< 0.

(3.25)

Since K is convex, by (3.25) we obtain that tx + sy ∈ Ev . It follows from

Lemma 2.3 that there exists u∈K such that K×{u} ⊂ E. This means that

〈
M(Au,Bu,Cu)−w,h(v,u)〉+f(v)−f(u)≥ 0 ∀v ∈K. (3.26)

That is, u∈K is a solution of problem (2.1). This completes the proof.

Remark 3.9. In case where w = 0, M(x,y,z) = x for all x,y,z ∈ X∗,

h(x,y) = x−gy for all x,y ∈ K, Bx = Cx = 0 for all x ∈ K, and A : K → X∗
and g :K→K are continuous, Theorem 3.8 reduces to [4, Theorem 2].

From Theorem 3.8, we have the following theorem.

Theorem 3.10. Let X, X∗, 〈·,·〉, A, B, C , M , f , and h be as in Theorem 3.8,

where K is a nonempty compact convex set in X. If (3.19) holds, then problem

(2.1) has a solution in K.

Remark 3.11. If 〈X,X∗〉 is a dual system of locally convex spaces, Theorem

3.10 reduces to a result which extends [3, Theorem 1] and [6, Theorem 4].
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