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METHOD FOR SOLVING A CONVEX INTEGER
PROGRAMMING PROBLEM
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We consider a convex integer program which is a nonlinear version of the as-
signment problem. This problem is reformulated as an equivalent problem. An
algorithm for solving the original problem is suggested which is based on solving
the simple assignment problem via some of known algorithms.
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1. Introduction. Consider the problem

c(X)= max
1≤i, j≤n

{
aijxij

}
�→min (1.1)

subject to

n∑
j=1

xij = 1, i= 1, . . . ,n,

n∑
i=1

xij = 1, j = 1, . . . ,n,

xij ≥ 0, xij ∈ Z, i,j = 1, . . . ,n,

(1.2)

whereA= (aij)ni,j=1,X = (xij)ni,j=1 are matrices of real entries. Linear functions

aijxij are both convex and concave, and maximum of convex functions is also

convex. Therefore c(X) is a convex function.

Such a problem arises, for example, in determining the optimal matching,

and it is a nonlinear version of the assignment problem (see [5, 6]) and the

marriage problem (see [8]).

Convex continuous programming is one of the most developed branches of

the nonlinear programming (see, e.g., [1, 2, 10, 11]); however, integer nonlin-

ear programming problems and, in particular, integer convex programming

problems are quite difficult and there is no general approach for solving such

problems. That is why methods and algorithms for—even specific—problems

of this type are very useful.
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Denote by � the set of all automorphisms {α(i)} of the set N = {i}ni=1.

Cardinality of � is |�| =n!. Denote

µ =min
α∈�

max
i∈N

{
aiα(i)

}
. (1.3)

It turns out that problem (1.1)-(1.2) is equivalent to the following problem:

find a number µ and α∗ ∈� such that

aiα∗(i) ≤ µ, i= 1, . . . ,n. (1.4)

2. Main result. To each real number r , associate via the matrixA the matrix

Ar = (arij)ni,j=1, where

arij =



0, if aij > r ,

1, if aij ≤ r .
(2.1)

We say that r ∈ F if there exists an α̃∈� with

ariα̃(i) = 1, i= 1, . . . ,n, (2.2)

that is, if the simple assignment problem with a matrix Ar = (arij)ni,j=1 is solv-

able,

F = {r : ∃α̃∈� with ariα̃(i) = 1, i= 1, . . . ,n
}
. (2.3)

Whether r ∈ F or not can be determined, for example, via the algorithm of

Ford and Fulkerson (see [3, 4]) or via the Hungarian method (see [9, 12]).

Theorem 2.1. Let

ν = min
aij∈F

{
aij
}
. (2.4)

Then µ = ν .

Proof. (i) From the definition of µ it follows that

µ ∈ {aij}ni,j=1, (2.5)

and from the existence of solution α∗ of problem (1.4) (aij ∈ F ) and from (2.1)

it follows that

aµiα(i) = 1, i= 1, . . . ,n, (2.6)

that is, µ ∈ F .

Relations (2.5) and (2.6) imply

µ ≥ ν. (2.7)
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(ii) We will prove that µ ≤ ν . From definition of ν it follows that ν ∈ F , that

is, there exists an α∈� such that

aνiα(i) = 1, i= 1, . . . ,n. (2.8)

From (2.1) it follows that

aiα(i) ≤ ν, i= 1, . . . ,n, (2.9)

whence

max
i∈N

{
aiα(i)

}≤ ν. (2.10)

However,

min
α∈�

max
i∈N

{
aiα(i)

}≤max
i∈N

{
aiα(i)

}≤ ν, (2.11)

that is,

µ ≤ ν. (2.12)

Relations (2.7) and (2.12) imply µ = ν .

3. An algorithm for finding µ. Reindex all entries of the matrix A =
(aij)ni,j=1 in strictly increasing order; equal elements are considered once:

ai1j1 <ai2j2 < ···<aikjk < ···<aipjp , p ≤n2. (3.1)

Consider the sequence of indexes

1,2, . . . ,k, . . . ,p. (3.2)

We say that k ∈ F∗ if aikjk ∈ F . Denote by [x] the largest integer less than or

equal to x.

Let

k,k+1, . . . ,k+l, (3.3)

where k > 0, l≥ 0, be part of the sequence of the positive integers. The number

[(2k+l)/2] is said to be the average number of sequence (3.3).

Find the average numbern1 of the sequence (3.2). Throw away half of the se-

quence (3.2) for which k≥n1 if n1 ∈ F∗, and k≤n1 if n1 �∈ F∗. After that, find

the average number n2 of the remaining sequence (half-sequence of (3.2)) and

similarly throw away its half-sequence. Continue this process until all terms

of the sequence (3.2) are thrown away.

Denote by nk the average number of the sequence obtained from (3.2) after

we have thrown away the respective half-sequences k−1 times. Denote by m
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the number of steps necessary for throwing away all elements of sequence

(3.2).

Theorem 3.1. Let

n∗ = min
nk∈F∗, 1≤k≤n

{
nk
}
. (3.4)

Then µ = ain∗ jn∗ .

Proof. Let

k∗ = min
k∈F∗, 1≤k≤p

{k}. (3.5)

Our purpose is to prove that n∗ = k∗. From definitions of n∗, k∗, and nk it is

obvious that

n∗ ≥ k∗. (3.6)

If k≥ k∗, then

k∈ F∗ (3.7)

according to definition of k∗.

Assume that n∗ > k∗ strictly. Taking into account (3.7), it turns out that

after the mth step of throwing away the respective half-sequence, we have

not thrown away number k∗ from the sequence (3.2), which contradicts the

definition of m (m is the number of steps necessary for throwing away all

elements of sequence (3.2)). Therefore this assumption was wrong, and (3.6)

implies n∗ = k∗. From definitions of k∗ and ν (Theorem 2.1) it follows that

aik∗ jk∗ ≡ ain∗ jn∗ = ν, (3.8)

and according to Theorem 2.1 (µ = ν), we have

µ = ain∗ jn∗ . (3.9)

4. Estimates for µ and m. Denote by b the least element of (3.1) with the

following property: the set of all elements of the matrix A = (aij)ni,j=1 such

that

aij ≤ b (4.1)

contains n elements with different indices i and n elements with different

indices j. For a given matrix A, number b can be determined.
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Let

a=max
[

max
i

min
j

{
aij
}
,max

j
min
i

{
aij
}]
. (4.2)

From definitions of a, b, and µ it follows that

a≤ b ≤ µ ≤max
{
aij
}
. (4.3)

That is why the sequence (3.1) could begin with b. In any case the number of

all entries of matrix A satisfying condition (4.1) is at least n. In case that this

number is exactly equal to n, then µ = b.

Let integers k and l satisfy

2k ≤ p ≤ 2k+1, 2l ≤n2 ≤ 2l+1. (4.4)

Then from definitions of p and n and the algorithm for finding µ it follows

that

m≤ k+2≤ l+2. (4.5)

5. An algorithm for finding α∗. Let µ be found. Construct the matrix Aµ =
(aµij)

n
i,j=1 (see Section 2). From µ ∈ F it follows that there exists an α∗ such

that

aµiα∗(i) = 1, i= 1, . . . ,n, (5.1)

that is, the simple assignment problem associated with matrix Aµ = (aµij)ni,j=1,

is solvable. The problem of finding α∗ is now reduced to solving the simple

assignment problem that can be solved, for example, via the method of Ford

and Fulkerson (see [3, 4]), via the Hungarian method (see [9, 12]), or via other

methods (see, e.g., [7]).

From (5.1), taking into account (2.1), we get (1.4). By the equivalence of prob-

lem (1.1)-(1.2) and problem (1.4) it follows that the solution α∗ of the simple

assignment problem, associated with matrix Aµ = (aµij)ni,j=1, is a solution to

the original problem (1.1)-(1.2).

6. Concluding remarks. In this note, we study a convex integer program-

ming problem which can be considered as a nonlinear version of the assign-

ment problem. Due to specificity of this problem, it is reformulated as an equiv-

alent problem and an algorithm for solving it is suggested which is based on

solving the simple assignment problem.
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