A NEW CHARACTERIZATION OF SOME ALTERNATING AND SYMMETRIC GROUPS

AMIR KHOSRAVI and BEHROOZ KHOSRAVI

Received 5 February 2002

We suppose that $p = 2^{\alpha}3^{\beta} + 1$, where $\alpha \ge 1$, $\beta \ge 0$, and $p \ge 7$ is a prime number. Then we prove that the simple groups A_n , where n = p, p + 1, or p + 2, and finite groups S_n , where n = p, p + 1, are also uniquely determined by their order components. As corollaries of these results, the validity of a conjecture of J. G. Thompson and a conjecture of Shi and Bi (1990) both on A_n , where n = p, p + 1, or p + 2, is obtained. Also we generalize these conjectures for the groups S_n , where n = p, p + 1.

2000 Mathematics Subject Classification: 20D05, 20D60, 20D08.

1. Introduction. Let *G* be a finite group. We denote by $\pi(G)$ the set of all prime divisors of |G|. We construct the prime graph of *G* as follows. *The prime* graph $\Gamma(G)$ of a group *G* is the graph whose vertex set is $\pi(G)$, and two distinct primes *p* and *q* are joined by an edge (we write $p \sim q$) if and only if *G* contains an element of order pq. Let t(G) be the number of connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then we always suppose that $2 \in \pi_1$.

Now |G| can be expressed as a product of coprime positive integers m_i , i = 1, 2, ..., t(G), where $\pi(m_i) = \pi_i$. These integers are called *the order components* of *G*. The set of order components of *G* will be denoted by OC(*G*). Also we call $m_2, ..., m_{t(G)}$ the odd-order components of *G*. The order components of non-abelian simple groups having at least three prime graph components are obtained by Chen [7, Tables 1, 2, 3]. Similarly, the order components of non-abelian simple groups with two-order components can be obtained by using the tables in [18, 28].

The following groups are uniquely determined by their order components: Suzuki-Ree groups [6], Sporadic simple groups [4], $PSL_2(q)$ [7], $E_8(q)$ [2], $G_2(q)$, where $q \equiv 0 \pmod{3}$ [3], $F_4(q)$, where q is even [15], $PSL_3(q)$, where q is an odd prime power [14], $PSL_3(q)$, where $q = 2^n$ [13], $PSU_3(q)$, where q > 5 [16], and A_p , where p and p - 2 are primes [12].

It was proved by Oyama [20] that a finite group which has the same table of characters as an alternating group A_n is isomorphic to A_n . It was also proved by Koike [17] that a finite group which has the isomorphic subgroup-lattice as an alternating group A_n is isomorphic to A_n .

Let $\pi_e(G)$ denote the set of orders of elements in *G*. Shi and Bi [27] proved that if $\pi_e(G) = \pi_e(A_n)$ and $|G| = |A_n|$, then $G \cong A_n$. Iranmanesh and Alavi [12] proved that if *p* and *p* – 2 are primes and OC(*G*) = OC(A_p), then $G \cong A_p$. Praeger and Shi [21] and Shi and Bi [26] proved that A_8 , A_9 , A_{11} , A_{13} , S_7 , and S_8 are characterizable by their element orders. Also recently, Kondrat'ev and Mazurov [19] and Zavarnitsin [29] proved that if $\pi_e(G) = \pi_e(A_n)$, where n = s, s+1, s+2 and *s* is a prime number, then $G \cong A_n$.

Now we prove the following theorems.

THEOREM 1.1. Let $p = 2^{\alpha}3^{\beta} + 1$, where $\alpha \ge 1$, $\beta \ge 0$, and $p \ge 7$ is a prime number. Let $M = A_n$, where n = p, p + 1, p + 2. Then OC(G) = OC(M) if and only if $G \cong M$.

THEOREM 1.2. Let $p = 2^{\alpha}3^{\beta} + 1$, where $\alpha \ge 1$, $\beta \ge 0$, and $p \ge 7$ is a prime number. Let $M = S_n$, where n = p, p + 1. Then OC(G) = OC(M) if and only if $G \cong M$.

In this paper, all groups are finite and by simple groups we mean non-abelian simple groups. All further unexplained notations are standard and we refer, for example, to [10]. Also frequently we use the results of Williams [28] and Kondrat'ev [18] about the prime graph of simple groups.

2. Preliminary results

REMARK 2.1. Let *N* be a normal subgroup of *G* and $p \sim q$ in $\Gamma(G/N)$. Then $p \sim q$ in $\Gamma(G)$. In fact if $xN \in G/N$ has order pq, then there is a power of *x* which has order pq.

DEFINITION 2.2 (see [11]). A finite group *G* is called a 2-Frobenius group if it has a normal series $1 \leq H \leq K \leq G$, where *K* and *G*/*H* are Frobenius groups with kernels *H* and *K*/*H*, respectively.

LEMMA 2.3 (see [28, Theorem A]). *If G is a finite group with its prime graph having more than one component, then G is one of the following groups:*

- (a) a Frobenius or 2-Frobenius group;
- (b) *a simple group;*
- (c) an extension of a π_1 -group by a simple group;
- (d) an extension of a simple group by a π_1 -solvable group;
- (e) an extension of a π_1 -group by a simple group by a π_1 -group.

LEMMA 2.4 (see [28, Lemma 3]). *If G is a finite group with more than one prime graph component and has a normal series* $1 \leq H \leq K \leq G$ *such that H and G*/*K are* π_1 *-groups and K*/*H is a simple group, then H is a nilpotent group.*

The next lemma follows from [1, Theorem 2].

LEMMA 2.5. Let *G* be a Frobenius group of even order and let *H*, *K* be Frobenius complement and Frobenius kernel of *G*, respectively. Then $t(\Gamma(G)) = 2$,

and the prime graph components of *G* are $\pi(H)$, $\pi(K)$ and *G* has one of the following structures:

- (a) $2 \in \pi(K)$ and all Sylow subgroups of H are cyclic;
- (b) 2 ∈ π(H), K is an abelian group, H is a solvable group, the Sylow subgroups of odd order of H are cyclic groups, and the 2-Sylow subgroups of H are cyclic or generalized quaternion groups;
- (c) $2 \in \pi(H)$, *K* is an abelian group, and there exists $H_0 \le H$ such that $|H:H_0| \le 2$, $H_0 = Z \times SL(2,5)$, (|Z|, 2.3.5) = 1, and the Sylow subgroups of *Z* are cyclic.

The next lemma follows from [1, Theorem 2] and Lemma 2.4.

LEMMA 2.6. Let *G* be a 2-Frobenius group of even order. Then $t(\Gamma(G)) = 2$ and *G* has a normal series $1 \le H \le K \le G$ such that

- (a) $\pi_1 = \pi(G/K) \cup \pi(H)$ and $\pi(K/H) = \pi_2$;
- (b) *G*/*K* and *K*/*H* are cyclic, |*G*/*K*| divides |Aut(*K*/*H*)|, (|*G*/*K*|, |*K*/*H*|) = 1, and |*G*/*K*| < |*K*/*H*|;
- (c) *H* is nilpotent and *G* is a solvable group.

LEMMA 2.7 (see [8, Lemma 8]). Let *G* be a finite group with $t(\Gamma(G)) \ge 2$ and let *N* be a normal subgroup of *G*. If *N* is a π_i -group for some prime graph component of *G* and $m_1, m_2, ..., m_r$ are some order components of *G* but not a π_i -number, then $m_1m_2 \cdots m_r$ is a divisor of |N| - 1.

The next lemma follows from [5, Lemma 1.4].

LEMMA 2.8. Suppose that *G* and *M* are two finite groups satisfying $t(\Gamma(M)) \ge 2$, N(G) = N(M), where $N(G) = \{n \mid G \text{ has a conjugacy class of size } n\}$, and Z(G) = 1. Then |G| = |M|.

LEMMA 2.9 (see [5, Lemma 1.5]). Let G_1 and G_2 be finite groups satisfying $|G_1| = |G_2|$ and $N(G_1) = N(G_2)$. Then $t(\Gamma(G_1)) = t(\Gamma(G_2))$ and $OC(G_1) = OC(G_2)$.

LEMMA 2.10. Let G be a finite group and let M be a non-abelian finite group with t(M) = 2 satisfying OC(G) = OC(M).

- (1) Let $|M| = m_1 m_2$, OC $(M) = \{m_1, m_2\}$, and $\pi(m_i) = \pi_i$ for i = 1, 2. Then
 - $|G| = m_1 m_2$ and one of the following holds:
 - (a) *G* is a Frobenius or 2-Frobenius group;
 - (b) *G* has a normal series $1 \leq H \leq K \leq G$ such that *G*/*K* is a π_1 -group, *H* is a nilpotent π_1 -group, and *K*/*H* is a non-abelian simple group. Moreover, OC(*K*/*H*) = { $m'_1, m'_2, ..., m'_s, m_2$ }, |*K*/*H*| = $m'_1m'_2 \cdots m'_sm_2$, and $m'_1m'_2 \cdots m'_s \mid m_1$, where $\pi(m'_j) = \pi'_j$, $1 \leq j \leq s$.
- (2) In case (b), |G/K| | |Out(K/H)|.

PROOF. The proof of (1) follows from the above lemmas. Since $t(G) \ge 2$, we have $t(G/H) \ge 2$. Otherwise t(G/H) = 1, so that t(G) = 1. Since *H* is a π_i -group,

A. KHOSRAVI AND B. KHOSRAVI

TABLE 2.1

р	Finite simple C_{pp} groups
2	A_5 , A_6 ; $L_2(q)$, where q is a Fermat prime, a Mersenne prime, or $q = 2^n$, $n \ge 3$, $L_3(2^2)$, $Sz(2^{2n+1})$, $n \ge 1$
3	<i>A</i> ₅ , <i>A</i> ₆ ; <i>L</i> ₂ (<i>q</i>), where $q = 2^3$, 3^{n+1} , or $2 \cdot 3^n \pm 1$ which is a prime, $n \ge 1$, <i>L</i> ₃ (2 ²)
5	<i>A</i> ₅ , <i>A</i> ₆ , <i>A</i> ₇ ; <i>M</i> ₁₁ , <i>M</i> ₂₂ ; <i>L</i> ₂ (<i>q</i>), where $q = 7^2$, 5^n , or $2.5^n \pm 1$ which is a prime, $n \ge 1$, <i>L</i> ₃ (2^2), <i>S</i> ₄ (<i>q</i>), $q = 3$, 7, <i>U</i> ₄ (3); <i>Sz</i> (<i>q</i>), $q = 2^3$, 2^5
7	A7, A8, A9; M22, J1, J2, HS; $L_2(q), q = 2^3, 7^n, \text{ or } 2.7^n - 1$ which is a prime, $n \ge 1, L_3(2^2), S_6(2), O_8^+(2), G_2(q), q = 3, 19;$ $U_3(q), q = 3, 5, 19; U_4(3), U_6(2), Sz(2^3)$
13	$\begin{array}{l} A_{13}, A_{14}, A_{15}; Suz, Fi_{22};\\ L_2(q), q = 3^3, 5^2, 13^n, \text{ or } 2.13^n - 1 \text{ which is a prime, } n \geq 1, L_3(3),\\ L_4(3), O_7(3), S_4(5), S_6(3), O_8^+(3), G_2(q), q = 2^3, 3;\\ F_4(2), U_3(q), q = 2^2, 23, Sz(2^3), {}^3D_4(2), {}^2E_6(2), {}^2F_4(2)' \end{array}$
17	$A_{17}, A_{18}, A_{19}; J_3, He, Fi_{23}, Fi'_{24};$ $L_2(q), q = 2^4, 17^n, 2.17^n \pm 1$ which is a prime, $n \ge 1, S_4(4), S_8(2), F_4(2), O_8^-(2), O_{10}^-(2), {}^2E_6(2)$
19	$A_{19}, A_{20}, A_{21};$ $J_1, J_3, O'N, Th, HN; L_2(q), q = 19^n, 2.19^n - 1$ which is a prime, $n \ge 1$, $L_3(7), U_3(2^3), R(3^3), {}^2E_6(2)$
37	$A_{37}, A_{38}, A_{39}; J_4, Ly;$ $L_2(q), q = 37^n, 2.37^n - 1$ which is a prime, $n \ge 1$, $U_3(11), R(3^3), {}^2F_4(2^3)$
73	$A_{73}, A_{74}, A_{75};$ $L_2(q), q = 73^n, 2.73^n - 1$ which is a prime, $n \ge 1, L_3(2^3), S_6(2^3),$ $G_2(q), q = 2^3, 3^2;$ $F_4(3), E_6(2), E_7(2), U_3(3^2), {}^3D_4(3)$
109	$A_{109}, A_{110}, A_{111};$ $L_2(q), q = 109^n, 2.109^n - 1$ which is a prime, $n \ge 1, {}^2F_4(2^3)$
$p = 2^m + 1,$ $m = 2^s$	$\begin{array}{l} A_{p}, A_{p+1}, A_{p+2};\\ L_{2}(q), q = 2^{m}, p^{k}, 2 \cdot p^{k} \pm 1 \text{ which is a prime, } s \geq k \geq 1, S_{a}(2^{b}),\\ a = 2^{c+1} \text{ and } b = 2^{d}, c \geq 1, c + d = s, F_{4}(2^{e}), e \geq 1, 4e = 2^{s},\\ O_{2(m+1)}^{-}(2), s \geq 2, O_{a}^{-}(2^{b}), c \geq 2, c + d = s \end{array}$
Other	$A_p, A_{p+1}, A_{p+2}; L_2(q), q = p^k, 2 \cdot p^k - 1$ which is a prime, $k \ge 1$

we arrive at a contradiction. Moreover, we have Z(G/H) = 1. For any $xH \in G/H$ and $xH \notin K/H$, xH induces an automorphism of K/H and this automorphism

is trivial if and only if $xH \in Z(G/H)$. Therefore, $G/K \leq Out(K/H)$ and since Z(G/H) = 1, (2) follows.

DEFINITION 2.11. A group *G* is called a C_{pp} group if the centralizers of its elements of order *p* in *G* are *p*-groups.

LEMMA 2.12 (see [9]). Let p be a prime and $p = 2^{\alpha}3^{\beta} + 1$, $\alpha \ge 0$ and $\beta \ge 0$. Then any finite simple C_{pp} group is given by Table 2.1.

3. Characterization of some alternating and symmetric groups. In the sequel, we suppose that $p = 2^{\alpha}3^{\beta} + 1$, where $\alpha \ge 1$, $\beta \ge 0$, and $p \ge 7$ is a prime number.

LEMMA 3.1. Let *G* be a finite group and let *M* be A_n , where n = p, p + 1, or p + 2, or S_n , where n = p, p + 1. If OC(G) = OC(M), then *G* is neither a Frobenius group nor a 2-Frobenius group.

PROOF. If *G* is a Frobenius group, then by Lemma 2.5, $OC(G) = \{|H|, |K|\}$, where *K* and *H* are Frobenius kernel and Frobenius complement of *G*, respectively. Since $|H| \mid |K| - 1$, we have |H| < |K|. Therefore, $2 \nmid |H|$, and hence $2 \mid |K|$. So, |H| = p, |K| = |G|/p. We claim that there exists a prime p' such that 3n/4 < p'. Note that $p \le n$, and hence $p'^2 \nmid |A_n|$. Let $\beta(n)$ be the number of prime numbers less than or equal to *n*. In fact, by [22, Theorem 2] we have

$$\frac{n}{\log n - 1/2} < \beta(n) < \frac{n}{\log n - 3/2},\tag{3.1}$$

where $n \ge 67$. Thus

$$\beta(n) - \beta\left(\frac{3n}{4}\right) > \frac{n}{\log n - 1/2} - \frac{3n/4}{\log(3n/4) - 3/2}.$$
(3.2)

When $n \ge 405$, we get $\beta(n) - \beta(3n/4) > 1$, and for n < 405, we can immediately obtain the result by checking the table of prime numbers. Now let P' be the p'-Sylow subgroup of K. Since K is nilpotent, $P' \triangleleft G$. Then $p \mid p' - 1$, by Lemma 2.7, which is a contradiction since p' < p. Therefore, G is not a Frobenius group.

Now let *G* be a 2-Frobenius group. By Lemma 2.6, there is a normal series $1 \leq H \leq K \leq G$ such that |K/H| = p and |G/K| < p. So, $|H| \neq 1$ since $|G| = |G/K| \cdot |K/H| \cdot |H|$. Since $2 \mid |H|$, let p' be as above and let P' be the p'-Sylow subgroup of *H*. Now, $p \mid p' - 1$, which is impossible. Hence, *G* is not a 2-Frobenius group.

LEMMA 3.2. Let *G* be a finite group and $M = A_n$, where n = p, p + 1, or p + 2, or S_n , where n = p, p + 1. If OC(G) = OC(M), then *G* has a normal series $1 \leq H \leq K \leq G$ such that *H* and *G*/*K* are π_1 -groups and *K*/*H* is a simple group. Moreover, the odd-order component of *M* is equal to an odd-order component of *K*/*H*. In particular, $t(\Gamma(K/H)) \geq 2$. Also |G/H| divides |Aut(K/H)|, and in fact $G/H \leq Aut(K/H)$.

PROOF. The first part of the lemma follows from the above lemmas since the prime graph of *M* has two prime graph components. For primes *p* and *q*, if *K*/*H* has an element of order *pq*, then *G* has one. Hence, by the definition of prime graph component, the odd-order component of *G* must be an odd-order component of *K*/*H*. Since *K*/*H* \triangleleft *G*/*H* and *C*_{*G*/*H*}(*K*/*H*) = 1, we have

$$G/H = \frac{N_{G/H}(K/H)}{C_{G/H}(K/H)} \cong T, \quad T \le \operatorname{Aut}(K/H).$$
(3.3)

THEOREM 3.3. Let $p = 2^{\alpha}3^{\beta} + 1$, where $\alpha \ge 1$, $\beta \ge 0$, and $p \ge 7$ is a prime number. Let $M = A_n$, where n = p, p + 1, p + 2. Then OC(G) = OC(M) if and only if $G \cong M$.

PROOF. By Lemma 3.2, *G* has a normal series $1 \leq H \leq K \leq G$ such that $\pi(H) \bigcup \pi(G/K) \subset \pi_1, K/H$ is a non-abelian simple group, $t(\Gamma(K/H)) \geq 2$, and the odd-order component of *M* is an odd-order component of *K*/*H*. Therefore, *K*/*H* is a finite simple C_{pp} group. Now using Table 2.1, we consider each possibility of *K*/*H* separately.

In the sequel, we frequently use the results of [28, Table I] and [18, Tables 2, 3].

STEP 1. Let *p* = 7,13,17,19,37,73, or 109.

Since the proofs of these cases are similar, we state only one of them, say p = 13. Using Table 2.1, we have

- (1) $K/H \cong Suz$ or Fi_{22} . It is a contradiction since $3^7 | |Suz|$ and $3^9 | |Fi_{22}|$ but $3^7 \nmid |A_n|$, where n = 13, 14, 15;
- (2) $K/H \cong L_2(27), L_2(25), L_3(3), L_4(3), Sz(8), {}^2F_4(2)'$, or $U_3(4)$. If $K/H \cong L_2(27)$, then $|G|/|K/H| = |H| \cdot |G/K| \neq 1$. By Lemma 2.6, |G/K| | |Out(K/H)| = 6. So, $|H| \neq 1$. Let *P* be the 5-Sylow subgroup of *H*. But since *H* is nilpotent, $P \triangleleft G$. Hence, 13 | (|P| 1), which is a contradiction. Other cases are similar;
- (3) $K/H \cong L_2(13^r)$ or $L_2(2.13^r 1)$, where $2.13^r 1$ is a prime, $r \ge 1$. Note that $13^2 \nmid |G|$, hence r = 1. So, $K/H \cong L_2(13)$ or $L_2(25)$, and we can proceed similar to (2);
- (4) $K/H \cong O_7(3)$. It is a contradiction since $3^9 \mid |O_7(3)|$ but $3^9 \nmid |A_n|$;
- (5) $K/H \cong S_4(5)$ or $S_6(3)$. It is a contradiction since $5^4 | |S_4(5)|$ but $5^4 \nmid |A_n|$. Also $3^9 | |S_6(3)|$ but $3^9 \nmid |A_n|$;
- (6) $K/H \cong O_8^+(3)$. It is a contradiction since $3^{12} | |O_8^+(3)|$ but $3^{12} \nmid |A_n|$;
- (7) $K/H \cong G_2(3)$ or $G_2(8)$. If $K/H \cong G_2(3)$, then we get a contradiction since for n = 13, 14 we have $3^6 \mid |G_2(3)|$ but $3^6 \nmid |A_n|$. For n = 15, since $|\operatorname{Out}(G_2(3))| = 2$, we have $|H| \neq 1$. Now we proceed similar to (2). If $K/H \cong G_2(8)$, then we get a contradiction since $2^{18} \mid |G_2(8)|$ but $2^{18} \nmid |A_n|$;
- (8) $K/H \cong F_4(2)$. It is a contradiction since $17 \mid |F_4(2)|$ but $17 \nmid |A_n|$;
- (9) $K/H \cong U_3(23)$. It is a contradiction since $23 | |U_3(23)|$ but $23 \nmid |A_n|$;

- (10) $K/H \cong {}^{3}D_{4}(2)$ or ${}^{2}E_{6}(2)$. It is a contradiction since $2^{12} \nmid |A_{n}|$. Also $19 \nmid |A_{n}|$;
- (11) K/H is an alternating group, namely A_{13} , A_{14} , or A_{15} .

First suppose that n = 13. Since $|K/H| \le |A_{13}|$, $K/H \cong A_{13}$. But $|G| = |A_{13}|$, and hence H = 1 and $K = G \cong A_{13}$. If n = 14, then $K/H \cong A_{13}$ or A_{14} . But if $r \ne 6$, then $\operatorname{Aut}(A_r) = S_r$, and hence $|\operatorname{Out}(A_r)| = 2$. If $K/H \cong A_{13}$, then $|G/K| \mid 2$, and hence $|H| \ne 1$. Now we get a contradiction similar to (2). Therefore, $K/H \cong A_{14}$, and hence $G \cong A_{14}$. If n = 15, we do similarly.

STEP 2. Let $p = 2^m + 1$, where $m = 2^s$.

Using Table 2.1, we have

(i) $K/H \cong L_2(2^m)$. Note that for every m we have $|L_2(2^m)| | |G|$. Using Lemma 2.6, |G/K| | |Out(K/H)|. Also $|Out(L_2(2^m))| = m$. Hence, $|H| \neq 1$. Now let p' be a prime number less than p such that

$$p'\|\frac{|A_n|}{m|K/H|}.$$
(3.4)

Let *P*' be the *p*'-Sylow subgroup of *H*. Since *H* is nilpotent, $P' \triangleleft G$. Hence, $p \mid (|P'| - 1)$, which is a contradiction;

- (ii) $K/H \cong L_2(p^k)$ or $L_2(2p^k \pm 1)$, where $2p^k \pm 1$ is a prime and $1 \le k \le s$. We know that $p \parallel |A_n|$, hence k = 1. Now we proceed similar to (i);
- (iii) $K/H \cong S_a(2^b)$, where $a = 2^{c+1}$ and $b = 2^d$, $c \ge 1$, c + d = s. Let $q = 2^b$ and $f = 2^c$, Then $p = q^f + 1$ and we have

$$|S_a(2^b)| = q^{f^2}(q^f - 1)(q^f + 1)\Pi_{i=1}^{f-1}(q^i - 1)(q^i + 1).$$
(3.5)

Each factor of the form $(q^j \pm 1)$ is less than or equal to p and therefore divides $|A_n|$. Also $q^{f^2} = (2^m)^f \le 2^{m^2} \le 2^{2^m}$. Hence, $|S_a(2^b)| ||A_n|$. But $|\operatorname{Out}(S_a(2^b))| = b$. Then $|H| \neq 1$ and we can proceed similar to (i);

- (iv) $K/H \cong F_4(2^e)$, where $e \ge 1$, $4e = 2^s$, or $O_{2(m+1)}^-(2)$, where $s \ge 2$, or $O_a^-(2^b)$, where $c \ge 2$, c + d = s. Again this part is similar to (iii);
- (v) $K/H \cong A_p, A_{p+1}, A_{p+2}$.

First suppose that n = p. Since $|K/H| \le |A_p|$, $K/H \cong A_p$. But $|G| = |A_p|$, and hence H = 1 and $K = G \cong A_p$. If n = p + 1, then $K/H \cong A_p$ or A_{p+1} . But if $r \ne 6$, then $\operatorname{Aut}(A_r) = S_r$, and hence $|\operatorname{Out}(A_r)| = 2$. If $K/H \cong A_p$, then |G/K| | 2, and hence $|H| \ne 1$. Now we get a contradiction similar to (i). Therefore, $K/H \cong A_{p+1}$, and hence $G \cong A_{p+1}$. If n = p + 2, we do similarly.

STEP 3. For other primes p, we have $K/H \cong A_p, A_{p+1}, A_{p+2}; L_2(q)$, where $q = p^k, 2p^k - 1$ which is a prime, $k \ge 1$.

In fact the proof of this step is exactly similar to that of Step 2 and we omit it for convenience.

THEOREM 3.4. *If G is a non-abelian finite group with connected prime graph, then G is not characterizable with its order component.*

PROOF. Clearly,
$$OC(G) = OC(\mathbb{Z}_{|G|})$$
, but $G \notin \mathbb{Z}_{|G|}$.

COROLLARY 3.5. *Every simple group with one component (see* [28, Table I]*) is not characterizable with this method.*

THEOREM 3.6. Let *n* be a positive integer. If there exist at least two nonisomorphic abelian groups of order *n*, then abelian groups of order *n* are not characterizable with their order component.

PROOF. The proof is obvious.

REMARK 3.7. It was a conjecture that every finite simple group M, where $\Gamma(M)$ is not connected, is characterizable with its order components. But the following example is a counterexample.

EXAMPLE 3.8. If *q* is an odd-prime power and $n = 2^k \ge 4$, then $OC(S_{2n}(q)) = OC(O_{2n+1}(q))$, but obviously $S_{2n}(q) \notin O_{2n+1}(q)$.

THEOREM 3.9. Let $p = 2^{\alpha}3^{\beta} + 1$, where $\alpha \ge 1$, $\beta \ge 0$, and $p \ge 7$ is a prime number. Let $M = S_n$, where n = p, p + 1. Then OC(G) = OC(M) if and only if $G \cong M$.

PROOF. Similar to the proof of Theorem 3.3, since *G* is a C_{pp} group, we have $K/H \cong A_n$. Now using Lemma 3.2, we have

$$A_n \le \frac{G}{H} \le \operatorname{Aut}(A_n) = S_n. \tag{3.6}$$

Therefore, $G/H \cong A_n$ or $\operatorname{Aut}(A_n) = S_n$. If $G/H \cong A_n$, then |H| = 2 and $H \triangleleft G$. Hence, $H \subseteq Z(G) = 1$, which is a contradiction. Therefore, $G/H \cong S_n$, and since $|G| = |S_n|$, we have $G \cong S_n$.

4. Some related results

REMARK 4.1. It is a well known conjecture of J. G. Thompson that if *G* is a finite group with Z(G) = 1 and *M* is a non-abelian simple group satisfying N(G) = N(M), then $G \cong M$.

We can generalize this conjecture for the groups under discussion by our characterization of these groups.

COROLLARY 4.2. Let *G* be a finite group with Z(G) = 1 and let *M* be A_p , A_{p+1} , A_{p+2} , S_p , or S_{p+1} . If N(G) = N(M), then $G \cong M$.

PROOF. By Lemmas 2.8 and 2.9, if *G* and *M* are two finite groups satisfying the conditions of Corollary 4.2, then OC(G) = OC(M). So, Theorems 3.3 and 3.9 imply this corollary.

REMARK 4.3. Shi and Bi in [26] put forward the following conjecture.

SHI'S CONJECTURE. Let G be a group and M a finite simple group. Then $G \cong M$ if and only if

(i) |G| = |M|,

(ii) $\pi_e(G) = \pi_e(M)$, where $\pi_e(G)$ denotes the set of orders of elements in *G*.

This conjecture is valid for sporadic simple groups [24], groups of alternating type [27], and some simple groups of Lie type [23, 25, 26]. As a consequence of Theorems 3.3 and 3.9, we prove a generalization of this conjecture for the groups under discussion.

COROLLARY 4.4. Let *G* be a finite group and let *M* be A_p , A_{p+1} , A_{p+2} , S_p , or S_{p+1} . If |G| = |M| and $\pi_e(G) = \pi_e(M)$, then $G \cong M$.

PROOF. By assumption, we must have OC(G) = OC(M). Thus the corollary follows by Theorems 3.3 and 3.9.

REFERENCES

- [1] G. Y. Chen, *On structure of Frobenius groups and 2-Frobenius groups*, J. Southwest China Normal Univ. **20** (1995), no. 5, 485–487.
- [2] _____, *A new characterization of* $E_8(q)$, J. Southwest China Normal Univ. **21** (1996), no. 3, 215-217.
- [3] _____, *A new characterization of* $G_2(q)$, $[q \equiv 0 \pmod{3}]$, J. Southwest China Normal Univ. (1996), 47-51.
- [4] _____, A new characterization of sporadic simple groups, Algebra Colloq. 3 (1996), no. 1, 49-58.
- [5] _____, On Thompson's conjecture, J. Algebra 185 (1996), no. 1, 184-193.
- [6] _____, A new characterization of Suzuki-Ree group, Sci. China Ser. A 40 (1997), no. 8, 807-812.
- [7] _____, A new characterization of PSL₂(q), Southeast Asian Bull. Math. 22 (1998), no. 3, 257–263.
- [8] _____, Further reflections on Thompson's conjecture, J. Algebra **218** (1999), no. 1, 276–285.
- [9] Z. M. Chen and W. J. Shi, *On simple C_{pp} groups*, J. Southwest China Teachers Univ. (Nat. Sci) **18** (1993), no. 3, 249–256.
- [10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, *Atlas of Finite Groups*, Oxford University Press, Oxford, 1985.
- K. W. Gruenberg and K. W. Roggenkamp, *Decomposition of the augmentation ideal* and of the relation modules of a finite group, Proc. London Math. Soc. (3) 31 (1975), no. 2, 149–166.
- [12] A. Iranmanesh and S. H. Alavi, *A new characterization of* A_p *where* p *and* p 2 *are primes*, Korean J. Comput. Appl. Math. **8** (2001), no. 3, 665–673.
- [13] A. Iranmanesh, S. H. Alavi, and B. Khosravi, A characterization of PSL(3,q) for $q = 2^m$, Acta Math. Sin. (Engl. Ser.) **18** (2002), no. 3, 463-472.
- [14] _____, *A characterization of* PSL(3,*q*) *where q is an odd prime power*, J. Pure Appl. Algebra **170** (2002), no. 2-3, 243–254.
- [15] A. Iranmanesh and B. Khosravi, *A characterization of* $F_4(q)$ *where* $q = 2^n (n > 1)$, Far East J. Math. Sci. **2** (2000), no. 6, 853–859.

- [16] A. Iranmanesh, B. Khosravi, and S. H. Alavi, A Characterization of $PSU_3(q)$ for q > 5, S. E. Bull. Math. **26** (2002), no. 1, 33-44.
- [17] K. Koike, On some groups which are determined by their subgroup-lattices, Tokyo J. Math. 6 (1983), no. 2, 413-421.
- [18] A. S. Kondrat'ev, Prime graph components of finite simple groups, Math. USSR-Sb. 67 (1990), no. 1, 235-247.
- [19] A. S. Kondrat'ev and V. D. Mazurov, *Recognition of alternating groups of prime degree from their element orders*, Siberian Math. J. 41 (2000), no. 2, 294–302.
- [20] T. Oyama, *On the groups with the same table of characters as alternating groups*, Osaka J. Math. **1** (1964), no. 1, 91–101.
- [21] C. E. Praeger and W. J. Shi, *A characterization of some alternating and symmetric groups*, Comm. Algebra **22** (1994), no. 5, 1507–1530.
- [22] J. B. Rosser and L. Schoenfeld, *Approximate formulas for some functions of prime numbers*, Illinois J. Math. **6** (1962), 64–94.
- [23] W. J. Shi, A new characterization of some simple groups of Lie type, Classical Groups and Related Topics (Beijing, 1987), Contemp. Math., vol. 82, American Mathematical Society, Rhode Island, 1989, pp. 171–180.
- [24] _____, *A new characterization of the sporadic simple groups*, Group Theory (Singapore, 1987), de Gruyter, Berlin, 1989, pp. 531-540.
- [25] _____, Pure quantitative characterization of finite simple groups. I, Progr. Natur. Sci. (English Ed.) 4 (1994), no. 3, 316–326.
- [26] W. J. Shi and J. X. Bi, A characteristic property for each finite projective special linear group, Groups—Canberra 1989, Lecture Notes in Math., vol. 1456, Springer, Berlin, 1990, pp. 171–180.
- [27] _____, *A new characterization of the alternating groups*, Southeast Asian Bull. Math. **16** (1992), no. 1, 81–90.
- [28] J. S. Williams, *Prime graph components of finite groups*, J. Algebra **69** (1981), no. 2, 487-513.
- [29] A. V. Zavarnitsin, Recognition of alternating groups of degrees r + 1 and r + 2 for prime r and of a group of degree 16 by the set of their element orders, Algebra i Logika 39 (2000), no. 6, 648–661 (Russian), translated in Algebra and Logic 39 (2000), no. 6, 370–377.

Amir Khosravi: Faculty of Mathematical Sciences and Computer Engineering, University for Teacher Education, 599 Taleghani Ave., Tehran 15614, Iran

Behrooz Khosravi: 241 Golnaz Street, Velenjak, Tehran 19847, Iran *E-mail address*: khosravibbb@yahoo.com