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Using the formulation of a moving curve, we demonstrate that an asymptotic
helix goes over to the linear time-dependent Schrödinger equation as shown by
Dmitriyev (2002).
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1. Introduction. Here we consider unbounded, inviscid, and incompressible

fluid flows. In the absence of external force, the motion of such fluid with unit

density is described by the Euler equations

∂tu+u·∇u=−∇p, ∇·u= 0, (1.1)

where u(x, t) is the velocity, x= (x1,x2,x3) is the position, p is the pressure,

and ∇ is the differentiation vector. The curl of the velocity field

ω=∇×u, (1.2)

is the vorticity. The velocity u(x) can be determined from the vorticity ω(x)
through the Biot-Savart law:

u(x)=− 1
4π

∫
(x−x′)×ω(x′)

|x−x′|3 dx′. (1.3)

If the vorticity is concentrated on a single thin filament C of circulation Γ ,
equation (1.3) becomes

u(x)=− Γ
4π

∫
C

(x−x′)×dl(x′)
|x−x′|3 dx′. (1.4)

If one computes the self-induced motion of the filament by evaluating the

velocity from (1.4) on the filament itself, then the result is logarithmically in-

finite if the filament is curved and zero if it is straight. So the self-induced

motion occurs only for curved filaments. We must focus our attention on a

very slender vortex filament.

One can avoid singularity in (1.4) by simply ignoring the nonlocal contribu-

tion of the filament and replace the Biot-Savart law by a velocity expression
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that depends only on the local curvature of the vortex filament. If a vortex fila-

ment is described by r(s), where s is an arc length parameter measured along

the filament, then r(s) is the position vector. Let t, n, and b denote the unit

tangent, normal, and binormal vectors, respectively.

Hence this leads to the local induction approximation, this is,

∂r
∂t
= κb= t× ∂t

∂s
, (1.5)

where κ is the curvature. Differentiating both sides with respect to arc length

s yields the Heisenberg spin chain equation in terms of tangent vector:

∂t
∂t
= κb= t× ∂

2t

∂s2
. (1.6)

In this paper, we investigate the relation between filament equation and

Schrödinger equation of quantum mechanics. We consider the (stationary)

Schrödinger equation

− �2

2m
ψXX+V(X)ψ= Eψ. (1.7)

This equation can easily be transformed into

ψxx−v(x)ψ=−Eψ, (1.8)

where ι = �/√2m and ι∂X = ∂x . Similarly, we can scale the time-dependent

Schrödinger equation

−i�ψτ =− �2

2m
ψXX+V(X)ψ. (1.9)

We scale

τ �→ T =−
(

1√
2m

)
τ, (1.10)

hence (1.9) becomes

−iιψT =−ι2ψXX+Vψ. (1.11)

Then for ιx =X and iιt = T , one has

ψt =ψxx−vψ. (1.12)

It is well known that under the connection between the Hasimoto vortex soli-

tons [8] and the nonlinear Schrödinger equation (NLSE), the basis in the Frenet-

Serret frame (t,n,b) is associated to certain quantities in NLS equations. Sub-

sequently, Lamb [9] demonstrated that various integrable systems could also
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be associated with the motion of a curve. In recent years, there has been a

tremendous growth of interest in the applications of the Frenet-Serret equa-

tions for a curve to various contexts of integrable systems [3, 6, 7, 10, 11, 12].

Balakrishnan and Dandoloff [2] have shown that the time-dependent

Schrödinger equation for a particle in a potential V(s,u), u denoting time,

can be interpreted geometrically as a moving curve whose Fermi-Walker phase

density is given by −(∂V/∂s). In an extremely interesting paper, Dmitriyev [4]

showed that the small amplitude to thread ratio helical configuration of a vor-

tex filament in the ideal fluid behaves exactly as de Broglie wave. In this paper,

using the formulation of a moving curve, we give a direct proof of how an as-

ymptotic helix goes over to the linear time-dependent Schrödinger equation as

shown by Dmitriyev.

2. Frenet-Serret frame. We consider a space curve γ(s), parametrized by

arc length s; κ and τ are the curvature and the torsion of the space curve. We

denote by t the unit tangent vector to this curve and by n and b its princi-

ple normal and binormal, respectively. Then the Frenet frame {t,n,b} forms a

moving triad of the curve and they form a right-handed system of axes, that

is,

b= t×n. (2.1)

A space curve embedded in 3D is described using the usual Frenet-Serret

equations (see, e.g., [5]):




t

n

b



s

=




0 κ 0

−κ 0 τ
0 τ 0






t

n

b


 (2.2)

and these underlie central investigations in the theory of space curves. From

the equation, κ and τ are given by

κ2 = ts ·ts ,

τ = t·(ts×tss
)

κ2
.

(2.3)

If we introduce the Darboux vector (s-angular velocity of Frenet frame)

Ω= τt+κb, (2.4)

then the Frenet-Serret equations may be written as

ts =Ω×t, ns =Ω×n, bs =Ω×b. (2.5)
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If the curve moves with time u, then all quantities in (2.2) become functions

of both s and u, and the time evolution is given by




t

n

b



u

=




0 f g
−f 0 h
−g −h 0






t

n

b


 . (2.6)

This set of equations may be written as

ts = Ω̃×t, ns = Ω̃×n, bs = Ω̃×b, (2.7)

where Ω̃ is another Darboux vector given by

Ω̃ = ht+gn+fb. (2.8)

The compatibility condition of (2.2) and (2.6) leads to

∂κ
∂u

− ∂f
∂s
+τg = 0,

∂τ
∂u

− ∂h
∂s
−κg = 0,

∂g
∂s
−κh+τf = 0.

(2.9)

2.1. Lamb formalism of moving curves. The Frenet-Serret equations can

be combined to give one complex and one real equations [7]

(n+ib)s+iτ(n+ib)=−κt,

ts = κn.
(2.10)

Following Lamb, we introduce a complex quantity

N= (n+ib)exp

[
i
∫ s
−∞
ds′τ

]
. (2.11)

Definition 2.1. The Hasimoto transformation is a map which assigns to a

space curve a complex curvature function via the formula

γ �→�(γ), q = κ(s)exp

[
i
∫ s
−∞
ds′τ

]
. (2.12)

The image of the Hasimoto map is defined up to an arbitrary constant phaseφ.

The Frenet-Serret equations in terms of {t,N,N∗} are

Ns =−qt,

ts = 1
2

(
q∗N+qN∗). (2.13)
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Lemma 2.2. The new Frenet frame {t,N,N∗} satisfies the following condi-

tions:

N·t=N∗ ·t=N·N= 0N·N∗ = 2,

N×t= iN, N∗×t=−iN∗,

N∗×N= 2it.
(2.14)

Then this complex basis {t,N,N∗} can be identified with SO(3), where t is

an element of the unit sphere and we regard (N,N∗) as a positive orthonormal

frame of the tangent space of S2 at t.

2.2. Equations of curve. The derivatives of N and t with respect to u may

be written, in general, as

Nu = εN+µN∗+γt,

tu = λN+πN∗+νt.
(2.15)

Using (2.13) and the compatibility conditions of tus = tsu, these equations

boil down to

Nu = iCN+γt, (2.16)

tu =−1
2

(
γ∗N+γN∗), (2.17)

where C = C(s,u) is a real function.

Using the compatibility condition Nus = Nsu, we obtain one complex and

one real equations

qu+γs−iCq = 0, (2.18)

Cs = i
2

(
γq∗−γ∗q). (2.19)

In Section 3, we will see that the integrodifferential equation

qu+γs+ q
2

∫ s
−∞

(
γq∗−γ∗q)ds′ = 0 (2.20)

connects the moving space curve equations and other evolutionary systems.

Since t·tu = 0, we may assume that

tu = fn+gb. (2.21)

Then from

tu =−1
2
γ∗(n+ib)exp

[
i
∫ s
−∞
ds′τ

]
+γ(n−ib)exp

[
−i
∫ s
−∞
ds′τ

]
, (2.22)
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we obtain

γ =−(f +ig)exp

[
i
∫ s
−∞
ds′τ

]
. (2.23)

Proposition 2.3 (zero-curvature equation). The compatibility conditions of

∂φ
∂s

= 1
2

(
0 −q
q∗ 0

)
φ,

∂φ
∂u

= 1
2

(
iC γ
−γ∗ −iC

)
φ

(2.24)

describe the motion of moving curves.

Proof. By direct computation, the off-diagonal term satisfies (2.18) and the

diagonal term yields (2.19).

2.3. Examples

Example 2.4. We first consider the Belavin-Polyakov equation tu = −t× ts .

In this case, f = 0 and g = −k. Hence γ = iq and C = −∫ s∞ |q|2ds′. Thus the

equation of motion is

qu−iqs−iq
∫ s
∞
|q|2ds′. (2.25)

This equation was introduced in [1]. The real part of this equation coincides

with the elliptic Liouville equation.

Example 2.5. We consider the Heisenberg spin chain equation tu = t× tss .

It is easy to see that

t×tss = κsb−κτn. (2.26)

Thus we can identify f =−κτ , g = κs , and

γ =−(−κτ+iκs)exp

[
−
∫ s
−∞
ds′τ

]
=−iqs. (2.27)

Also, Cs = (1/2)|q|2s . Thus the equation of motion becomes NLSE

iqu+qss+ 1
2
|q|2q = 0. (2.28)

3. Connection to quantum mechanics. We consider an approximation of

(2.18). Suppose that g� f , then

γ ∼ f exp

[
i
∫ s
−∞
τds′

]
. (3.1)



A NOTE ON ASYMPTOTIC HELIX . . . 3037

It is easy to see that, for g� f ,

Cs = i
2

[
(f +ig)κ−(f −ig)κ] �→ 0. (3.2)

Thus (2.17) becomes

qu+γs = 0. (3.3)

Proposition 3.1. The Hasimoto mapping from the Heisenberg spin chain

equation yields the time-dependent Schrödinger equation for κ� τ .

Proof. The proof is given by direct computation.

In the event, κ� τ tends to an asymptotic helix. This is the humped helix

approximated by the wave packet, as shown by Dmitriyev [4].

We consider the solutions of the Schrödinger equation

q = a[cos
(
τs−τ2u

)+isin
(
τs−τ2u

)]≡ aexp
[
i
(
τs−τ2u

)]
, (3.4)

and φ =ψ1(s,u)+ iψ2(s,u), then this denotes a helix rotating counterclock-

wise around the s-axis with the constant angular velocity ω= τ2.

3.1. Schrödinger equation with potential and geometric phase. We con-

sider a generalized Hasimoto map

q = κei
∫ s
−∞ τds′+iλu, γ =−(f +ig)ei

∫ s
−∞ τds′+iλu, (3.5)

where λ is some parameter. Then the zero-curvature equation becomes

qu+γs−iCq+iλγ = 0. (3.6)

This results from the compatibility condition of

∂φ
∂s

= 1
2

(
iλ −q
q∗ −iλ

)
φ,

∂φ
∂u

= 1
2

(
iC γ
−γ∗ −iC

)
φ. (3.7)

So the Schrödinger equation becomes

iqu+qss+λqs = 0 for κ� τ. (3.8)

Thus we can introduce a potentialV(s,u). In this prototypical case,V(s,u)=
λqs . We can manipulate λ to get a slightly more general potential V(s,u). Thus,

we obtain iqu+qss+V(s,u)= 0.

Finally, following Balakrishnan and Dandoloff [2], we present an intimate

connection with the potential function V(s,u) and the Fermi-Walker phase. It is

clear from (2.5) and (2.7) with their Darboux vectors that if we work in a Fermi-

Walker frame, t essentially gets parallel transported and the triad undergoes

a rotation τds about t. Similarly, the triad undergoes a rotation hdu as one

moves along the temporal curve by an interval du.
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Definition 3.2. The Fermi-Walker phase associated with an evolution of a

curve undergoing a rotation around t is given by an angle

δφFW = (τu−hs)dsdu. (3.9)

Proposition 3.3. If the evolution of the curve satisfies Heisenberg spin chain

equation, then the Fermi-Walker phase satisfies

φFW = Vs. (3.10)

Proof. Here f and g satisfy

f =−κτ, g = κs. (3.11)

Substituting these in equation (2.9) gives

h=
[
κss
κ
−τ2

]
. (3.12)

If we preform a Hasimoto transformation to iqs +qss +V(s,u) = 0, the real

part yields

τs =
[
κss
κ
−τ2

]
+Vs, (3.13)

and our result immediately follows from the above.

Thus, in this paper, we formulated a direct and more geometrical connection

between an evolution of a space curve satisfying the Heisenberg spin chain and

quantum mechanics.
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