CS-MODULES AND ANNIHILATOR CONDITIONS

MAHMOUD A. KAMAL and AMANY M. MENSOWAY

Received 4 June 2002

We study S-R-bimodules SM_R with the annihilator condition $S = l_S(A) + l_S(B)$ for any closed submodule A, and a complement B of A, in M_R. Such annihilator condition has a direct connection with the CS-condition for M_R. We make use of this to give a new characterization of CS-modules. Bimodules SM_R for which $r_M l_S(A) = A$ (for every closed submodule A of M_R) are also dealt with. Such modules are called W^*-modules. We give the extra added annihilator conditions to W^*-modules to be equivalent to the continuous (quasicontinuous) modules.

2000 Mathematics Subject Classification: 16D80.

1. Introduction. Let R and S be rings and let SM_R be a bimodule. For any $X \leq M$ and $T \leq S$, write $l_S(X) = \{ s \in S : sX = 0 \}$ and $r_M(T) = \{ m \in M : Tm = 0 \}$. Let $\lambda : S \rightarrow \text{End}(M_R)$ be the canonical ring homomorphism. For each $s \in S$, we identify $\lambda(s)$ with s. A submodule A is essential in M (denoted by $A \leq^e M$) if $A \cap B \neq 0$ for every nonzero submodule B of M. A submodule A is closed in M if it has no proper essential extensions in M. $A \leq^e M$ signifies that A is a direct summand of M (or simply a summand). A module M is called a CS-module if every closed submodule of M is a summand. The module M is continuous if it is a CS-module and satisfies condition (C_2): if $A \cong B \leq M$ with $A \leq^e M$, then $B \leq^e M$. A generalization of condition (C_2) is (GC_2) (see [4]): if A is a submodule of M with $A \cong M$, then $A \leq^e M$. The module M is quasicontinuous if it is a CS-module and satisfies condition (C_3): if $A, B \leq^e M$ with $A \cap B = 0$, then $A \oplus B \leq^q M$. It is known that M is quasicontinuous if and only if $M = A \oplus B$ whenever A and B are complements of each other in M (see [3, Theorem 2.8]).

Camillo et al. [1] have dealt with Ikeda-Nakayama rings that are related to continuous and quasicontinuous rings.

For a bimodule SM_R, Wisbauer et al. [4] have studied the annihilator condition $l_S(A \cap B) = l_S(A) + l_S(B)$ for any submodules A and B of M_R, and the condition $S = l_S(A) + l_S(B)$ for any submodules A and B of M_R with $A \cap B = 0$. Consequently, they obtained new characterizations of quasicontinuous modules. We adapt their ideas here to study a variation of the above annihilator condition which is connected to CS-modules, and obtain a new characterization of CS-modules in Section 2.
In Section 3, we study the bimodules \(S M_R \) which satisfy the following condition:

\[S = l_S(A) + l_S(B) \quad (1.1) \]

for any two relative complements \(A \) and \(B \) in \(M_R \). Such modules are clearly quasicontinuous modules, while there are quasicontinuous modules which do not satisfy condition (1.1). For example, consider \(R \) as a commutative integral domain with field of quotients \(Q \) and let \(M = Q \oplus Q \). In Lemma 3.2, we give a necessary and sufficient condition for quasicontinuous modules to satisfy condition (1.1). In the case of \(S = \text{End}(M_R) \), every quasicontinuous module must have condition (1.1). As a generalization of this condition, we introduce the concept of \(W^* \)-modules (bimodules \(S M_R \) for which \(A = r_M l_S(A) \) for every closed submodule \(A \) of \(M_R \)). It is clear that any bimodule with condition (1.1) is a \(W^* \)-module, while in general the converse is not true. Proposition 3.8 indicates when a \(W^* \)-module satisfies condition (1.1).

In Section 4, we discuss the equivalence between \(W^* \)-modules and continuous (quasicontinuous) modules over an arbitrary ring \(S \). Then we draw the consequences when \(S \) is the endomorphism ring of \(M_R \).

2. CS-modules and annihilator conditions

The proofs of the lemmas and propositions, presented in this section, are adaptations of the arguments in [4].

Lemma 2.1. Let \(S M_R \) be a bimodule. If for every closed submodule \(A \) of \(M_R \) there exists a complement \(B \) of \(A \) in \(M_R \) such that \(S = l_S(A) + l_S(B) \), then \(M_R \) is a CS-module.

Proof. Let \(A \) be a closed submodule of \(M_R \). Then by assumption there exists a complement \(B \) of \(A \) in \(M_R \) such that \(S = l_S(A) + l_S(B) \). Write \(l_S = u + v \), where \(u \in l_S(A) \) and \(v \in l_S(B) \). It follows that \(a = va \) for all \(a \in A \), \(b = ub \) for all \(b \in B \), and \(vB = uA = 0 \). Thus \(B \subseteq r_M(v) \subseteq r_M(v^2) \) and \(r_M(v^2) \cap A = 0 \). Since \(B \) is a complement of \(A \) in \(M_R \), we have \(B = r_M(v) = r_M(v^2) \). Similarly, \(A = r_M(u) = r_M(u^2) \). Now we show that \((vu)M = 0 \). Let \(vum = a + b \), where \(m \in M \), \(a \in A \), and \(b \in B \). Noting that \(vu = uv \), we have that \((v^2u^2)m = (vu)(a + b) = 0 \). Hence \(u^2m \in r_M(v^2) = r_M(v) \), and this gives that \(u^2vm = vu^2m = 0 \). Then \(vm \in r_M(u^2) = r_M(u) \); and thus \(vum = uv = 0 \). So \((vu)M \cap (A + B) = 0 \). Since \(A + B \) is essential in \(M_R \), \((vu)M = 0 \). So \(uM \subseteq r_M(v) = B \) and \(vM \subseteq r_M(u) = A \) and hence \(M = vM + uM = A + B = A \oplus B \). Therefore \(A \) is a summand of \(M_R \).

Remark 2.2. The converse of Lemma 2.1 is not true. For example, there are torsion-free CS-modules over commutative integral domains, which do not satisfy the given condition in Lemma 2.1.

The next lemma follows from [4, Lemma 3].
Lemma 2.3. Let SM_R be a bimodule, where SM is faithful, and let $M_R = A \oplus B$. If the projection f of M onto A along B is given by $f(m) = sm$ for some $s \in S$, and all $m \in M$, then $S = l_S(A) + l_S(B)$.

For any submodules A and B of M_R and any $t \in S$, define $\alpha_t : A + B \to M$, $a + b \to ta$ (see [4]).

Proposition 2.4. Let SM_R be a bimodule such that SM is faithful. The following are equivalent:

1. M_R is CS and for any $f^2 = f \in \text{End}(M_R)$, there exists $s \in S$ such that $f(m) = sm$, for all $m \in M_R$;
2. for every closed submodule A of M_R, there exists a complement B of A in M_R such that $S = l_S(A) + l_S(B)$;
3. for every closed submodule A of M_R, there exists a complement B of A in M_R such that $S = l_S(A) \oplus l_S(B)$;
4. for every closed submodule A of M_R, there exists a complement B of A in M_R such that for every $t \in S$, the diagram

$$
\begin{array}{ccc}
0 & \longrightarrow & A + B \\
& \downarrow{\alpha_t} & \longrightarrow \\
& M \\
\end{array}
$$

(2.1)

can be extended by $\lambda(s)$, for some $s \in S$.

Proof. (1)⇒(2). Let A be a closed submodule of M_R. Since M_R is a CS-module, there exists $f^2 = f \in \text{End}(M_R)$ such that $A = fM$. By (1), there exists $s \in S$ such that $f(m) = sm$, for all $m \in M_R$. Hence $(s^2 - s)M = (f^2 - f)M = 0$. Since SM is faithful, it follows that s is an idempotent in S. Now we have

$$l_S(A) = l_S(fM) = l_S(sm) = l_S(s) = S(1 - S).$$

(2.2)

Similarly, $l_S(B) = S_S$, where $B = (1 - f)M$. Thus $S = l_S(A) + l_S(B)$.

(2)⇒(1). It is clear by Lemma 2.1 that M_R is CS. Now let $f^2 = f \in \text{End}(M_R)$, and denote $A = f(M)$. By (2), there exists a complement B of A in M_R such that $S = l_S(A) + l_S(B)$. The argument of the proof of Lemma 2.1 shows that $M = A \oplus B$. Let π be the projection of M onto A along B. Then

$$l_S(A) = l_S(\pi M) = \{ s \in S : s \pi = 0 \}$$

(2.3)

(by considering s the homomorphism given by left multiplication by s) and

$$l_S(B) = l_S((1 - \pi)M) = \{ s \in S : s(1 - \pi) = 0 \}.$$

(2.4)
Let $1 = s' + s$, where $s' \in I_S(A)$ and $s \in I_S(B)$. Thus $s'\pi = 0$ and $s(1-\pi) = 0$. It follows that $0 = s(1-\pi) = (1-s')(1-\pi) = 1-\pi-s'$. Therefore $f(m) = \pi(m) = sm$ for all $m \in M$.

(2)\Rightarrow(3). From the argument in the proof of Lemma 2.1, we have $M = A \oplus B$. Since sM is faithful, we have $0 = I_S(M) = I_S(A + B) = I_S(A) \oplus I_S(B)$ and hence $S = I_S(A) \oplus I_S(B)$.

(3)\Rightarrow(4). Let A be a closed submodule of M_R. By (3), there exists a complement B of A such that $S = I_S(A) \oplus I_S(B)$. Write $t = u + v$, where $u \in I_S(A)$ and $v \in I_S(B)$. Then $\alpha_t(a+b) = ta = (u + v)a = v(a+b) = \lambda(v)(a+b)$. This follows that $1-s)a + (-s)b = 0$, for all $a \in A$ and $b \in B$. So $1-s \in I_S(A)$ and $-s \in I_S(B)$ and hence $1 = (1-s) - (-s) \in I_S(A) + I_S(B)$. Therefore $S = I_S(A) + I_S(B)$.

COROLLARY 2.5. The following are equivalent for a bimodule $S M_R$ with $S = \text{End}(M_R)$:

1. M_R is a CS-module;
2. for every closed submodule A of M_R, there exists a complement B of A in M_R such that $S = I_S(A) + I_S(B)$;
3. for every closed submodule A of M_R, there exists a complement B of A in M_R such that $S = I_S(A) \oplus I_S(B)$;
4. for every closed submodule A of M_R, there exists a complement B of A in M_R such that for every $t \in S$, diagram (2.1) can be extended by some $g : M \to M$.

PROPOSITION 2.6. Let S be the center of $\text{End}(M_R)$. The following are equivalent:

1. for every closed submodule A of M_R, there exists a complement B of A in M_R such that $S = I_S(A) + I_S(B)$;
2. M_R is CS and every idempotent of $\text{End}(M_R)$ is central;
3. M_R is CS and every closed submodule of M_R is fully invariant.

PROOF. (1)\Leftrightarrow(2) by Proposition 2.4.

(2)\Rightarrow(3). Let A be a closed submodule of M. By CS, A is a direct summand of M_R. Then $A = f(M)$ for some $f^2 = f \in \text{End}(M_R)$. For any $g \in \text{End}_R(M)$, since f is central by (2), $g(A) = g(f(M)) = f(g(M)) \subseteq f(M) = A$. This shows that A is a fully invariant submodule of M.

(3)\Rightarrow(2). Let $f, g \in \text{End}_R(M)$ with $f^2 = f$. Therefore $f(M)$ is a closed submodule of M_R. By (3), $g(f(M)) \subseteq f(M)$ and $g((1-f)(M)) \subseteq (1-f)(M)$. It follows that $fgf = gf$ and $(1-f)g(1-f) = g(1-f)$. Thus, $g - gf = g(1-f) = (1-f)g(1-f) = g - gf - fg + fgf = g - gf - fg + gf = g - fg$. This shows that $fg = gf$.

\square
CS-MODULES AND ANNIHILATOR CONDITIONS

3. Condition (1.1) and its generalizations. The next lemma is clear.

Lemma 3.1. The following are equivalent for a bimodule \(SM_R \):

1. \(S = l_S(A) + l_S(B) \) for any two relative complements \(A \) and \(B \) of \(M_R \);
2. for any submodules \(A \) and \(B \) of \(M_R \) with \(A \cap B = 0 \), \(S = l_S(A) + l_S(B) \).

We say that a bimodule \(SM_R \) has condition (1.1) if it satisfies one of the equivalent conditions of **Lemma 3.1**.

The next lemma follows from [4, Lemma 3].

Lemma 3.2. Let \(SM_R \) be a bimodule such that \(S_M \) is faithful. Then the following are equivalent:

1. \(M \) has condition (1.1);
2. \(M \) is quasicontinuous and every idempotent in \(\text{End}(M_R) \) is a left multiplication by an element of \(S \).

Remark 3.3 [4, Theorem 8]. In the case of \(S = \text{End}(M_R) \), it is clear from **Lemma 3.2** that an \(R \)-module \(M \) is quasicontinuous if and only if \(M \) has condition (1.1).

Proposition 3.4. Let \(SM_R \) be a bimodule which satisfies condition (1.1). Then \(A = r_M l_S(A) \) for all closed submodules \(A \) of \(M_R \).

Proof. Let \(A \) be a closed submodule of \(M_R \) and \(B \) a submodule of \(r_M l_S(A) \) such that \(A \cap B = 0 \). By Zorn’s lemma, there exists a complement \(C \) of \(A \) in \(M_R \) with \(B \subseteq C \). By condition (1.1), we have \(S = l_S(A) + l_S(C) \subseteq l_S(A) + l_S(B) \), so \(S = l_S(A) + l_S(B) \). Since \(l_S(A) = l_S r_M l_S(A) \leq l_S(B) \), it follows that \(S = l_S(B) \) and hence \(B = 0 \). This shows that \(A \leq^e r_M l_S(A) \). Since \(A \) is a closed submodule of \(M_R \), we have \(A = r_M l_S(A) \). \(\Box \)

A bimodule \(SM_R \) is called a \(W^* \)-module if \(A = r_M l_S(A) \) for every closed submodule \(A \) of \(M_R \). It is clear by **Proposition 3.4** that every bimodule \(SM_R \) with condition (1.1) is a \(W^* \)-module. But there are bimodules which are \(W^* \)-modules and do not satisfy condition (1.1). For example, let \(S = R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix} \), where \(F \) is any field and let \(M = r_R \). It is clear that \(M \) is \(W^* \)-module. But \(M_R \) is not quasicontinuous, and hence \(M \) does not satisfy condition (1.1).

Lemma 3.5. The following are equivalent for a bimodule \(SM_R \):

1. \(A \leq^e r_M l_S(A) \) for all submodules \(A \) of \(M_R \);
2. \(SM_R \) is a \(W^* \)-module.

Proof. (1) \(\Rightarrow \) (2). This implication is obvious.

(2) \(\Rightarrow \) (1). Let \(A \) be a submodule of \(M_R \) and \(C \) a maximal essential extension of \(A \) in \(M_R \). We have by (2) that \(A \leq^e C = r_M l_S(C) \). Since \(r_M l_S(A) \leq r_M l_S(C) \), we have \(A \leq^e r_M l_S(A) \). \(\Box \)

Proposition 3.6. If \(SM_R \) is a \(W^* \)-module, then \(r_M(T) = 0 \), or \(r_M(T) \) is uniform for every maximal left ideal \(T \) of \(S \).
Proof. Let T be a maximal left ideal of S. Since $T \subseteq l_S r_M(T)$, we have either $l_S r_M(T) = T$ or $l_S r_M(T) = S$. If $l_S r_M(T) = S$, then $r_M(T) = 0$. If $l_S r_M(T) = T$, let N be a nonzero submodule of $r_M(T)$. Then $T = l_S r_M(T) \subseteq l_S(N) \subseteq S$, and the maximality of T yields $T = l_S(N)$. It follows that $r_M(T) = r_M l_S(N)$. Since M is W^*-module, we have by Lemma 3.5 that $N \leq^e r_M(T)$. Therefore $r_M(T)$ is uniform.

Corollary 3.7. Let sM_R be a W^*-module, where every maximal left ideal of S is a left annihilator. Then $r_M(T)$ is uniform for every maximal left ideal T of S.

Proof. Let T be a maximal left ideal of S. From Proposition 3.6, it is enough to show that $r_M(T) \neq 0$. Let $r_M(T) = 0$. By assumption, $T = l_S r_M(T) = l_S(0) = S$, which contradicts the maximality of T.

Proposition 3.8. The following are equivalent for a bimodule sM_R:

1. sM_R is a W^*-module and $l_S(A) + l_S(B)$ is a left annihilator for any two relative complements A and B in M_R;
2. sM_R has condition (1.1).

Proof. (1)\Rightarrow(2). Let A and B be two relative complements in M_R. Then by (1), $S = l_S(0) = l_S(A \cap B) = l_S(r_M l_S(A) \cap r_M l_S(B)) = l_S r_M(l_S(A) + l_S(B)) = l_S(A) + l_S(B)$. Therefore M has condition (1.1).

(2)\Rightarrow(1). This implication is obvious.

4. The relation between W^*-modules and (quasi-) continuous modules.

The following is an immediate consequence of Proposition 3.8.

Proposition 4.1. Let sM_R be a bimodule with $S = \text{End}(M_R)$. Then the following are equivalent:

1. sM_R is a W^*-module and $l_S(A) + l_S(B)$ is a left annihilator for any two relative complements A and B of M_R;
2. M_R is quasicontinuous.

Proposition 4.2. Let sM_R be a bimodule, where sM is faithful. Then the following are equivalent:

1. sM_R is a W^*-module, $l_S(A) + l_S(B)$ is an annihilator for any two relative complements A and B of M_R, and M_R has G_2;
2. M_R is a continuous module and every idempotent in $\text{End}(M_R)$ is a left multiplication by an element of S.

Proof. (1)\Rightarrow(2). We have by Proposition 3.8 that M_R has condition (1.1). Therefore, by Lemma 3.2, M_R is a quasicontinuous module. Let $s \in \text{End}(M_R)$ be a monomorphism, with $sM \leq^e M$. By G_2 it follows that $sM = M$. Then by [3, Lemma 3.14], M_R is a continuous module. The rest of the proof of (2) follows from Lemma 3.2.

(2)\Rightarrow(1). This implication is obvious.
Corollary 4.3. Let S_MR be a bimodule with $S = \text{End}(M_R)$. Then the following are equivalent:

1. S_MR is a W^{*}-module, $l_{S}(A) + l_{S}(B)$ is an annihilator for any two relative complements A and B of M_R, and M_R has GC_2;
2. M_R is a continuous module.

In particular, if M_R is of finite uniform dimension, then S is semiperfect.

Proof. It is clear that every monomorphism $f \in \text{End}(M_R)$ is an isomorphism (due to GC_2 and M of finite uniform dimension). Hence, M satisfies the assumptions in Camps and Dicks [2, Theorem 5], and so $\text{End}(M_R)$ is semilocal. Therefore by using [3, Proposition 3.5 and Lemma 3.7], idempotents of $S/J(S)$ lift to idempotents of S, and thus S is semiperfect.

Lemma 4.4. Let S_MR be a bimodule such that every finitely generated left ideal of S is a left annihilator of a subset of M_R, and every closed submodule of M_R is a right annihilator of a finite subset of S. Then M has condition (1.1).

Proof. Let A_1 and A_2 be complements of each other in M_R. Then by assumption, we have $A_i = r_M(Y_i)$ for some finite subsets Y_i of S. Again by assumption, $SY_i = l_{S}(K_i)$ for some subsets K_i in M_R, where $i = 1, 2$. Now $S = l_{S}(A_1 \cap A_2) = l_{S}(r_M(Y_1) \cap r_M(Y_2)) = l_{S}r_M(SY_1 + SY_2) = SY_1 + SY_2$ (due to the assumption and since $SY_1 + SY_2$ is finitely generated). Hence $S = l_{S}(K_1) + l_{S}(K_2) = l_{S}r_Ml_{S}(K_1) + l_{S}r_Ml_{S}(K_2) = l_{S}r_M(Y_1) + l_{S}r_M(Y_2) = l_{S}(A_1) + l_{S}(A_2)$. Therefore M satisfies condition (1.1).

Lemma 4.5. Let S_MR be a bimodule and let every idempotent in $\text{End}(M_R)$ be a left multiplication by an element of S. If M_R is a CS-module, then every closed submodule of M_R is a right annihilator of a finite subset of S.

Proof. Let A be a closed submodule of M_R. Then by CS, there exists $f^2 = f \in \text{End}(M_R)$ such that $A = r_M(1 - f) = \{m \in M : (1 - s)m = 0\} = r_M(1 - s)$, where $(1 - s) \in S$.

The following corollary is an immediate consequence of Lemmas 4.4 and 4.5.

Corollary 4.6. Let S_MR be a bimodule, where $S = \text{End}(M_R)$. Let every finitely generated left ideal of S be a left annihilator of a subset of M. Then the following are equivalent:

1. every closed submodule of M is a right annihilator of a finite subset of M;
2. M is a CS-module.

Theorem 4.7. Let S_MR be a bimodule, where $S = \text{End}(M_R)$. Let every finitely generated left ideal of S be a left annihilator of a subset of M. Then the following are equivalent:

1. M is a CS-module;
2. M is continuous.
Proof. By Lemmas 4.4 and 4.5, we have that M has condition (1.1). By Remark 3.3, M is quasicontinuous. To show that M is continuous, by [3, Lemma 3.14], it is enough to show that every essential monomorphism $s \in S$ is an isomorphism. Let $s \in S$ be a monomorphism, with $sM \leq^e M$. By assumption, $S_S = l_S(X)$ for some subset X of M. It follows that $X = 0$ and hence $S_S = s$. Then s is a split monomorphism, and therefore $sM = M$. \qed

References

Mahmoud A. Kamal: Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
E-mail address: mahmoudkamal333@hotmail.com

Amany M. Menshawy: Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie

Hindawi Publishing Corporation
http://www.hindawi.com