REDUCTIVE COMPACTIFICATIONS OF SEMITOPOLOGICAL SEMIGROUPS

ABDOLMAJID FATTAHI, MOHAMAD ALI POURABDOLLAH, and ABBAS SAHLEH

Received 10 February 2002

We consider the enveloping semigroup of a flow generated by the action of a semitopological semigroup on any of its semigroup compactifications and explore the possibility of its being one of the known semigroup compactifications again. In this way, we introduce the notion of *E*-algebra, and show that this notion is closely related to the reductivity of the semigroup compactification involved. Moreover, the structure of the universal *E* \mathcal{F} -compactification is also given.

2000 Mathematics Subject Classification: 22A20, 43A60.

1. Introduction. A semigroup *S* is called *right reductive* if a = b for each $a, b \in S$, since at = bt for every $t \in S$. For example, all right cancellative semigroups and semigroups with a right identity are right reductive.

From now on, *S* will be a semitopological semigroup, unless otherwise is stipulated. By a *semigroup compactification* of *S* we mean a pair (Ψ, X) , where *X* is a compact Hausdorff right topological semigroup, and $\Psi: S \to X$ is a continuous homomorphism with dense image such that, for each $s \in S$, the mapping $x \to \Psi(s)x: X \to X$ is continuous. The *C**-algebra of all bounded complex-valued continuous functions on *S* will be denoted by $\mathscr{C}(S)$. For $\mathscr{C}(S)$, the left and right translations, L_s and R_t , are defined for each $s, t \in S$ by $(L_s f)(t) = f(st) = (R_t f)(s), f \in \mathscr{C}(S)$. The subset \mathscr{F} of $\mathscr{C}(S)$ is said to be left translation invariant if for all $s \in S$, $L_s \mathscr{F} \subseteq \mathscr{F}$. A left translation invariant unital *C**-subalgebra \mathscr{F} of $\mathscr{C}(S)$ is called *m*-admissible if the function $s \to T_\mu f(s) = \mu(L_s f)$ is in \mathscr{F} for all $f \in \mathscr{F}$ and $\mu \in S^{\mathscr{F}}$ (where $S^{\mathscr{F}}$ is the spectrum of \mathscr{F}). Then the product of $\mu, \nu \in S^{\mathscr{F}}$ can be defined by $\mu \nu = \mu \circ T_{\nu}$ and the Gelfand topology on $S^{\mathscr{F}}$ makes $(\epsilon, S^{\mathscr{F}})$ a semigroup compactification (called the \mathscr{F} -compactification) of *S*, where $\epsilon: S \to S^{\mathscr{F}}$ is the evaluation mapping.

Some *m*-admissible subalgebras of $\mathscr{C}(S)$, that we will need, are left multiplicatively continuous functions \mathscr{LMC} , distal functions \mathfrak{D} , minimal distal functions \mathscr{MD} , and strongly distal functions \mathscr{PD} . We also write \mathscr{GP} for $\mathscr{MD} \cap \mathscr{PD}$; and we define $\mathscr{LZ} := \{f \in \mathscr{C}(S); f(st) = f(s) \text{ for all } s, t \in S\}$. For a discussion of the universal property of the corresponding compactifications of these function algebras see [1, 2].

2. Reductive compactifications and *E*-algebras. Let (ψ, X) be a compactification of *S*, then the mapping $\sigma : S \times X \rightarrow X$, defined by $\sigma(s, x) = \psi(s)x$, is separately continuous and so (S, X, σ) is a flow. If Σ_X denotes the enveloping semigroup of the flow (S, X, σ) (i.e., the pointwise closure of semigroup $\{\sigma(s, \cdot) : s \in S\}$ in X^X) and the mapping $\sigma_X : S \rightarrow \Sigma_X$ is defined by $\sigma_X(s) = \sigma(s, \cdot)$ for all $s \in S$, then (σ_X, Σ_X) is a compactification of *S* (see [1, Proposition 1.6.5]).

One can easily verify that $\Sigma_X = \{\lambda_X : x \in X\}$, where $\lambda_X(y) = xy$ for each $y \in X$. If we define the mapping $\theta : X \to \Sigma_X$ by $\theta(x) = \lambda_X$, then θ is a continuous homomorphism with the property that $\theta \circ \psi = \sigma_X$. So (σ_X, Σ_X) is a factor of (ψ, X) , that is $(\psi, X) \ge (\sigma_X, \Sigma_X)$. By definition, θ is one-to-one if and only if X is right reductive. So we get the next proposition, which is an extension of the Lawson's result [3, Lemma 2.4(ii)].

PROPOSITION 2.1. Let (ψ, X) be a compactification of *S*. Then $(\sigma_X, \Sigma_X) \cong (\psi, X)$ if and only if *X* is right reductive.

A compactification (ψ , X) is called *reductive* if X is right reductive. For example, the MD-, GP-, and LL-compactifications are reductive.

An *m*-admissible subalgebra \mathcal{F} of $\mathscr{C}(S)$ is called an *E-algebra* if there is a compactification (ψ, X) such that $(\sigma_X, \Sigma_X) \cong (\epsilon, S^{\mathcal{F}})$. In this setting (ψ, X) is called an *E* \mathcal{F} -compactification of *S*. Trivially for every reductive compactification (ψ, X) , $\psi^*(\mathscr{C}(X))$ is an *E*-algebra. But the converse is not, in general, true. For instance, for any compactification (ψ, X) , $\sigma_X^*(\mathscr{C}(\Sigma_X))$ is an *E*-algebra; however, it is possible that Σ_X would be nonreductive, as the next example shows.

EXAMPLE 2.2. Let $S = \{a, b, c, d\}$ be the semigroup with the following multiplication table:

	а	b	С	d
а	a a	а	а	а
b	а	а	а	С
С	а	а	а	а
d	a a	С	а	b

Then for the identity compactification (i, X) of S, Σ_X is not right reductive; in fact, $\lambda_a \neq \lambda_b$, however, $\lambda_{at} = \lambda_{bt}$ for every $t \in S$.

LEMMA 2.3. If (ψ, X) is a compactification satisfying $X^2 = X$, then the compactification (σ_X, Σ_X) is reductive.

PROOF. Since $X^2 = X$, for each $x_1, x_2 \in X$, from $\lambda_{x_1} \lambda_y = \lambda_{x_2} \lambda_y$ for every $\lambda_y \in \Sigma_X$, it follows that $\lambda_{x_1} = \lambda_{x_2}$. So Σ_X is right reductive.

COROLLARY 2.4. Let *sS* (or *Ss*) be dense in *S*, for some $s \in S$, then for every compactification (ψ, X) of *S*, it follows that $X^2 = X$ and so (σ_X, Σ_X) is reductive.

Now, we are going to construct the universal $E\mathcal{F}$ -compactification of S. For this end we need the following lemma.

LEMMA 2.5. Let \mathcal{F} be an *m*-admissible subalgebra of $\mathscr{C}(S)$. Then $T_{\nu}f \in \sigma^*_{S^{\mathcal{F}}}(\mathscr{C}(\Sigma_{S^{\mathcal{F}}}))$ for all $f \in \mathcal{F}$ and $\nu \in S^{\mathcal{LMC}}$.

PROOF. Since $\Sigma_{S^{\mathcal{F}}} = \{\lambda_{\mu} : \mu \in S^{\mathcal{F}}\}$, we can define $g : \Sigma_{S^{\mathcal{F}}} \to \mathbb{C}$ by $g(\lambda_{\mu}) = \mu(T_{\nu}f)$, where \mathbb{C} denotes the complex numbers. Since the mapping $\lambda_{\mu} \to \mu\nu$: $\Sigma_{S^{\mathcal{F}}} \to S^{\mathcal{F}}$ is *p*-weak* continuous, *g* is a bounded continuous function and it is easy to see that $\sigma_{S^{\mathcal{F}}}^*(g) = T_{\nu}(f)$. Therefore, $T_{\nu}f \in \sigma_{S^{\mathcal{F}}}^*(\mathfrak{C}(\Sigma_{S^{\mathcal{F}}}))$ for all $\nu \in S^{\mathcal{F}}$. If $\tilde{\nu} \in S^{\mathcal{LM}\mathcal{C}}$ and ν is the restriction of $\tilde{\nu}$ to \mathcal{F} , then $T_{\tilde{\nu}}f = T_{\nu}f$ for all $f \in \mathcal{F}$. So the conclusion follows.

PROPOSITION 2.6. Let \mathcal{F} be an *E*-algebra. Then

$$G_{\mathcal{F}} := \{ f \in \mathcal{LMC} : T_{\nu} f \in \mathcal{F} \ \forall \nu \in S^{\mathcal{LMC}} \}$$

$$(2.1)$$

is an *m*-admissible subalgebra of $\mathscr{C}(S)$ and $(\epsilon, S^{G_{\mathcal{F}}})$ is the universal $E\mathcal{F}$ -compactification of *S*.

PROOF. It is easy to verify that $G_{\mathcal{F}}$ is an *m*-admissible subalgebra of $\mathscr{C}(S)$ containing \mathcal{F} . By definition of $G_{\mathcal{F}}$ we can define the mapping $\theta: S^{\mathcal{F}} \to \Sigma_{S^{G_{\mathcal{F}}}}$ by $\theta(\mu) = \lambda_{\tilde{\mu}}$, where $\tilde{\mu}$ is an extension of μ to $S^{G_{\mathcal{F}}}$. Clearly, θ is continuous and $\theta \circ \epsilon = \sigma_{S^{G_{\mathcal{F}}}}$. Thus $(\epsilon, S^{\mathcal{F}}) \ge (\sigma_{S^{G_{\mathcal{F}}}}, \Sigma_{S^{G_{\mathcal{F}}}})$. On the other hand, since \mathcal{F} is an *E*-algebra, there exists a compactification (ϕ, Y) of *S* such that $(\sigma_Y, \Sigma_Y) \cong (\epsilon, S^{\mathcal{F}})$ and $\mathcal{F} = \sigma_Y^*(\mathscr{C}(\Sigma_Y))$. By Lemma 2.5, we have $T_V f \in \sigma_Y^*(\mathscr{C}(\Sigma_Y))$, for each $\nu \in S^{\mathcal{LM}}$ and each $f \in \phi^*(\mathscr{C}(Y))$. This means that $\phi^*(\mathscr{C}(Y)) \subset G_{\mathcal{F}}$ and so, by [1, Proposition 1.6.7], $(\sigma_Y, \Sigma_Y) \le (\sigma_{S^{G_{\mathcal{F}}}}, \Sigma_{S^{G_{\mathcal{F}}}})$. Therefore, $(\epsilon, S^{\mathcal{F}}) \cong (\sigma_{S^{G_{\mathcal{F}}}}, \Sigma_{S^{G_{\mathcal{F}}}})$ and $(\epsilon, S^{G_{\mathcal{F}}})$ is an *E* \mathcal{F} -compactification of *S*. Finally, if (ψ, X) is an *E* \mathcal{F} -compactification of *S*. So $\psi^*(\mathscr{C}(X))$, then by Lemma 2.5, $T_\mu f \in \sigma_X^*(\mathscr{C}(\Sigma_X)) = \mathcal{F}$ for all $\mu \in S^{\mathcal{LM}}$. So $\psi^*(\mathscr{C}(X)) \subset G_{\mathcal{F}}$ and $(\psi, X) \le (\epsilon, S^{G_{\mathcal{F}}})$.

EXAMPLES 2.7. (a) We have $G_{\mathcal{M}\mathfrak{D}} = \mathfrak{D}$. To see this, if $f \in G_{\mathcal{M}\mathfrak{D}}$, then for all $\mu, \nu, \eta \in S^{\mathcal{G}\mathcal{M}\mathfrak{C}}$ with $\eta^2 = \eta$, we have $\mu\eta\nu(f) = \mu\eta(T_\nu f) = \mu(T_\nu f) = \mu\nu(f)$. So $f \in \mathfrak{D}$. Also if $f \in \mathfrak{D}$, then for all $\mu, \nu, \eta \in S^{\mathcal{G}\mathcal{M}\mathfrak{C}}$ with $\eta^2 = \eta$, we have $\mu\eta(T_\nu f) = \mu\eta\nu(f) = \mu\nu(f) = \mu(T_\nu f)$. That is, $T_\nu f \in \mathcal{M}\mathfrak{D}$ for all $\nu \in S^{\mathcal{G}\mathcal{M}\mathfrak{C}}$ and so $f \in G_{\mathcal{M}\mathfrak{D}}$ (see also [4, Lemma 2.2]).

- (b) By a similar proof, we can show that $G_{GP} = \mathcal{GD}$ (see [4, Lemma 2.2 and Theorem 2.6]).
- (c) Let $\Re := \{f \in \mathcal{LMC}(S) : f(rst) = f(rt) \text{ for } r, s, t \in S\}$. Clearly, \Re is an *m*-admissible subalgebra of $\mathscr{C}(S)$. If $f \in \Re$ and $\nu \in S^{\mathcal{LMC}}$, then for each $r, s, t \in S$ we have $L_{rt}f(s) = f(rts) = f(rs) = L_rf(s)$. So $T_\nu f(rt) = \nu(L_{rt}f) = \nu(L_rf) = T_\nu f(r)$. That is, $T_\nu f \in \mathcal{L}\mathfrak{L}$. On the other hand, if $f \in G_{\mathfrak{L}\mathfrak{L}}$, then $f(rst) = (T_{\epsilon(t)}f)(rs) = (T_{\epsilon(t)}f)(r) = f(rt)$ and so $f \in \Re$. Therefore, $G_{\mathfrak{L}\mathfrak{L}} = \Re$.

ABDOLMAJID FATTAHI ET AL.

ACKNOWLEDGMENT. In the end, we would like to thank Dr H. R. Ebrahimi-Vishki for his valuable comments.

REFERENCES

- J. F. Berglund, H. D. Junghenn, and P. Milnes, *Analysis on Semigroups, Function Spaces, Compactifications, Representations*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, 1989.
- H. D. Junghenn, *Distal compactifications of semigroups*, Trans. Amer. Math. Soc. 274 (1982), no. 1, 379–397.
- [3] J. D. Lawson, *Flows and compactifications*, J. London Math. Soc. (2) **46** (1992), no. 2, 349–363.
- [4] M. A. Pourabdollah and A. Sahleh, *Flows and universal compactifications*, J. Sci. Islam. Repub. Iran 8 (1997), no. 4, 269–273.

Abdolmajid Fattahi: Department of Mathematics, Faculty of Science, Razi University, Kermanshah, Iran

E-mail address: abfattahi@yahoo.ca

Mohamad Ali Pourabdollah: Faculty of Mathematics, Ferdowsi University of Mashhad, P.O. Box 91775-1159, Mashhad, Iran

E-mail address: pourabd@math.um.ac.ir

Abbas Sahleh: Department of Mathematics, Guilan University, Rasht, Iran *E-mail address*: sahlehj@kd.gu.ac.ir