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Goldman points of a topological space are defined in order to extend the notion
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1. Introduction. We start by recalling several definitions and notations we

will be using in this paper.

If X is a topological space, we denote by �(X) the set of all open subsets of

X. Recall that a continuous map g : Y → Z is said to be a quasihomeomorphism

if U � g−1(U) defines a bijection �(Z)→ �(Y) [9].

A subset S of a topological spaceX is said to be strongly dense inX if S meets

every nonempty locally closed subset of X [9]. Thus a subset S of X is strongly

dense if and only if the canonical injection S ↩ X is a quasihomeomorphism.

It is well known that a continuous map q : X → Y is a quasihomeomorphism

if and only if the topology of X is the inverse image by q of that of Y and the

subset q(X) is strongly dense in Y [9].

The notion of quasihomeomorphism is used in algebraic geometry and it has

recently been shown that this notion arises naturally in the theory of some

foliations associated to closed connected manifolds (see [2, 3]). It is worth

noting that quasihomeomorphisms are also linked with sober spaces. Recall

that a topological spaceX is said to be sober if any nonempty irreducible closed

subset of X has a unique generic point. Let X be a topological space and S(X)
the set of all irreducible closed subsets of X [9]. Let U be an open subset of

X and set Ũ = {C ∈ S(X) | U ∩C ≠∅}. Then the collection (Ũ , U is an open

subset ofX) provides a topology on S(X) and the following properties hold [9].

(i) The map

ηX :X �→ S(X), x � �→ {x} (1.1)

is a quasihomeomorphism.
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(ii) The set S(X) is a sober space.

(iii) Let f : X → Y be a continuous map and let S(f ) : S(X) → S(Y) be the

map defined by S(f )(C)= f(C), for each irreducible closed subset C ofX. Then

S(f ) is continuous.

(iv) The topological space S(X) is called the sobrification of X, and the as-

signment S defines a functor from the category Top of topological spaces to

itself.

(v) If q :X → Y is a continuous map, then the following diagram is commu-

tative:

X

�

f

ηX

Y

ηY

S(X)
S(f )

S(Y).

(1.2)

The sobrification serves, sometimes, to give topological characterization of

particular spaces (see, e.g., [6]).

Now, we make some observations.

Observation 1 (General extension theorem of H. Tietze). Let X and Y be

two topological spaces. A “general extension theorem for maps of closed subsets

of X into Y ” is a statement giving conditions on X and Y , under which it is true

that for every closed A ⊂ X, each continuous f : A→ Y is extendable over X
relative to Y . General extension theorems are rare and usually have interesting

topological consequences. One can mention then a well-known result of H.

Tietze.

Theorem 1.1 (H. Tietze). Let X be Hausdorff. The following two properties

are equivalent:

(1) X is normal;

(2) for every closed A ⊂ X, each continuous f : A→ [0,1] has a continuous

extension F : X → [0,1]. Furthermore, if |f(a)| < c on A, then F can be

chosen so that |F(x)|< c on X.

The Tietze extension theorem for normal spaces has been improved, by

Dugundji [5], using the richer structure of metric spaces.

Theorem 1.2 (Dugundji [5]). Let X be an arbitrary metric space, A ⊂ X a

closed subset, and L an affine space of type m. Then each continuous f :A→ L
has a continuous extension F :X → L, and in fact F(X)⊂ [convex hull of f(A)].

Observation 2. Let X be a topological space and βX the Stone-Čech com-

pactification of X. Then every continuous function from X to a compact space

K can be extended to βX.
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The above two observations have a common point: they provide theorems

of extension. Our goal is to give such extension theorems for sober spaces.

Thus we state the following natural questions.

Problem 1.3. Let X and Y be topological spaces, characterize the continu-

ous maps q :X → Y , such that for each sober space Z and for each continuous

map f :X → Z , there exists one and only one continuous map f̃ : Y → Z making

the following diagram commutative:

X

�

q

f

Y

f̃

Z.

(1.3)

Problem 1.4. Characterize the collection of topological spaces Z such that

for each continuous map q :X → Y satisfying Problem 1.3 and for each contin-

uous map f : X → Z , there exists one and only one continuous map f̃ : Y → Z
such that diagram (1.3) commutes.

The second section deals entirely with the solution of Problems 1.3 and

1.4: quasihomeomorphisms answer Problem 1.3 and sober spaces answer Pro-

blem 1.4. Naturally, these answers must provide some interesting applications;

these are what we promise in Sections 5 and 6.

A topology � on a set X is defined to be spectral (and (X,�) is called a

spectral space) if the following conditions hold:

(i) � is sober;

(ii) the quasicompact open subsets of X form a basis of �;

(iii) the family of quasicompact open subsets of X is closed under finite

intersections.

In a remarkable paper [10], Hochster has proved that a topological space is

homeomorphic to the prime spectrum of some ring if and only if it is a spectral

space. In the same paper, Hochster characterizes the maximal prime spectrum

of a commutative ring as a quasicompact T1-space. Two years later, Hochster

gave a topological characterization of the minimal prime spectrum of a ring

[11].

Goldman ideals are important objects of investigation in algebra mostly be-

cause of their role in the study of graded rings and some applications to al-

gebraic geometry. Thus it is important to pay attention to the Goldman prime

spectrum of a ring. Recall that a prime ideal of a commutative ring R is said

to be a Goldman ideal (G-ideal) if there exists a maximal ideal M of R[X] such

that p = M ∩R. If R is an integral domain and (0) is a G-ideal, R is called a

G-domain.

Over the years, mathematicians have focused attention on G-domains; for

instance, Goldman [8] and Krull [13] used G-ideals for a short inductive proof
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of the Nullstellensatz. The set of allG-ideals of a commutative ringR is denoted

by Gold(R) and called the Goldman prime spectrum of that ring.

Recall that a topological space X is said to be a TD-space if for each x ∈ X,

{x} is locally closed.

In [4], Conte has proved that Spec(R) is a TD-space if and only if every prime

ideal of R is a G-ideal. He has also proved that if Spec(R) is Noetherian, then

Spec(R) is a TD-space if and only if it is finite.

Fontana and Maroscia [7] have also established, by topological methods,

several properties of the set of G-ideals of a commutative ring. They also dis-

cussed in detail a topological approach to a classification of the class of the

commutative rings in which every prime ideal is a G-ideal.

Note also that rings in which every prime ideal is aG-ideal have been studied

by Picavet in [15].

By a goldspectral space we mean a topological space which is homeomorphic

to some Gold(R). Using the notion of sobrification, Echi has given an intrinsic

topological characterization of the Goldman prime spectrum of a commutative

ring [6].

Picavet characterizedG-ideals by a topological property: p is aG-ideal of R if

and only if {p} is locally closed in Spec(R) (equipped with the Zariski topology)

[14]. This characterization motivated us to introduce in Section 3 the notion

of a Goldman point in a topological space (a locally closed point).

We also give some characterizations of Goldman points. For instance, x ∈X
is a G-point if and only if {x} is strongly irreducible. Define Gold(X) to be the

set of all Goldman points of a topological space X. When X is T0 and has a base

of quasicompact open subsets, then Gold(X) is the smallest strongly dense

subset of X. Salhi [17] defined a property (∗) on topological spaces satisfied

by spectra of rings: a topological space (X,T) satisfies (∗) if T is compatible

with a partial ordering and for every chain C ⊆X there is some a∈X such that

{a} = C . IfX satisfies (∗) and Gold(X)=X, thenX is partially well ordered (for

the partial ordering induced on X by the topology). Moreover, if the topology

on X is compatible with a total ordering and X satisfies (∗), then Gold(X)=X
if and only if each nonmaximal element of X has an immediate successor. All

these results and others are reminiscents of the theory of G-ideals.

Picavet defined a new topology on the spectrum of a ring and called it the

Goldman topology or G-topology owing to its links with G-ideals. This defini-

tion can be extended to an arbitrary topological space (X,T), providing a new

topology (X,G) called again the Goldman topology or G-topology. Moreover,

the locally closed subsets in the original topology are a base of open sets for

the G-topology. If the original topological space is T0, the G-topology is T2; if

X is a sober space, the sober subspaces of (X,T) identify with the G-closed

subsets.

In Section 4, we define and study the G-topology on a topological space X.

When X is the spectrum of a ring R, then (X,G) is homeomorphic to the space
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of minimal prime ideals of a ring S. However, we do not know of any natural

link between R and S. Actually, the G-topology on a spectrum has a definition

which looks like the patch topology definition of Hochster [10]. More precisely,

the G-topology is finer than the patch topology. On a spectral space, these

topologies are the same if and only if X is a Noetherian space (this is not the

case for an arbitrary topological space).

Jacobson topological spaces are also used in algebraic geometry and are

linked with quasihomeomorphisms. A topological space X is called a Jacobson

space if the set �(X) of its closed points is strongly dense in X. If X is a

topological space, we denote by Jac(X) the set {x ∈X : {x} = {x}∩�(X)}. It is

obviously seen that Jac(X) is a Jacobson space; we call it the Jacobson subspace

of X.

Let R be a ring and Spec(R) its prime spectrum equipped with the Zariski

topology. We denote by Jac(R) the Jacobson subspace of Spec(R). Following

Picavet [14], a prime ideal p of R lies in Jac(R) if and only if p is the intersection

of some maximal ideals of R.

By a jacspectral space we mean a topological space homeomorphic to the

Jacobson subspace of Spec(R) for some ring R. Section 5 deals with a nice

topological characterization of jacspectral spaces: Jacspectral spaces are ex-

actly the quasicompact Jacobson sober spaces.

In Section 6, we collect some examples, showing that many of the results in

the earlier sections are best possible.

Note that through this paper, ⊂ denotes proper containment and ⊆ denotes

containment with possible equality. If ≤ is an ordering on a set X and x ∈ X,

then [x ↑ [ denotes the set {y ∈X | x ≤y} and ] ↓ x] is the set {y ∈X |y ≤ x}.
Recall that a topology T on a space X is compatible with a partial ordering ≤
on X if {x} = [x ↑ [.

2. An extension theorem for sober spaces. In this section, we look more

closely at quasihomeomorphisms.

Lemma 2.1. Let q : X → Y be a quasihomeomorphism. Then the following

properties hold:

(1) if X is a T0-space, then q is injective;

(2) if X is sober and Y is a T0-space, then q is a homeomorphism.

Proof. (1) Let x1 and x2 be two points of X with q(x1) = q(x2). Suppose

that x1 ≠ x2, then there exists an open subset U of X such that x1 ∈ U and

x2 ∉U . Since there exists an open subset V of Y satisfying q−1(V)=U , we get

q(x1)∈U and q(x2) ∉U , which is impossible. It follows that q is injective.

(2) We start with the obvious observation that if S is a closed subset of Y ,

then S is irreducible if and only if is so q−1(S).
We prove that q is surjective. For this end, let y ∈ Y . According to the above

observation, q−1({y}) is a nonempty irreducible closed subset of X. Hence
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q−1({y}) has a generic point x. Thus we have the containments

{x} ⊆ q−1({q(x)})⊆ q−1({y})= {x}. (2.1)

Then q−1({q(x)})= q−1({y}). It follows, from the fact that q is a quasihome-

omorphism, that {q(x)} = {y}. Since Y is a T0-space, we get q(x) = y . This

proves that q is a surjective map, and thus q is bijective. One may see that

bijective quasihomeomorphisms are homeomorphisms.

Theorem 2.2. Let q :X → Y be a continuous map. Then the following state-

ments are equivalent:

(a) q is a quasihomeomorphism;

(b) S(q) is a homeomorphism.

Proof. First, we remark that the following diagram is commutative:

X

�

q

ηX

Y

ηY

S(X)
S(q)

S(Y).

(2.2)

(a)⇒(b). Since ηY ◦q = S(q) ◦ηX is a quasihomeomorphism, the map S(q)
is necessarily a quasihomeomorphism. Thus, following Lemma 2.1, S(q) is a

homeomorphism.

(b)⇒(a). Since ηX = ((S(q))−1◦ηY )◦q and (S(q))−1◦ηY are quasihomeomor-

phisms, it is easily seen that q is a quasihomeomorphism.

As a consequence of the previous theorem, we state the following one.

Theorem 2.3 (extension theorem for sober spaces). (1) Let Z be a topolog-

ical space. Then the following conditions are equivalent:

(i) Z is a sober space;

(ii) for each quasihomeomorphism q : X → Y and each continuous map

f : X → Z , there exists one and only one continuous map F : Y → Z
such that F ◦q = f .

(2) Let q : X → Y be a continuous map. Then the following conditions are

equivalent:

(i) q is a quasihomeomorphism;

(ii) for each sober space Z and each continuous map f : X → Z , there

exists one and only one continuous map F : Y → Z such that F ◦q = f .

Proof. (1) (i)⇒(ii). Suppose that such F exists. Then we have S(F)◦S(q)=
S(f ). By Theorem 2.2, S(q) is a homeomorphism, hence S(F)= S(f )◦(S(q))−1.
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On the other hand, the diagram

Y

�

F

ηY

Z

ηZ

S(Y)
S(F)

S(Z)

(2.3)

commutes; that is to say, ηZ ◦F = S(F)◦ηY . Consequently,

F = (ηZ
)−1 ◦S(F)◦ηY =

(
ηZ
)−1 ◦S(f )◦(S(q))−1 ◦ηY . (2.4)

Thus, it suffices to verify that F = (ηZ)−1 ◦S(f )◦ (S(q))−1 ◦ηY does the job.

Indeed, the following diagram is commutative:

Z

�ηZ

X

�

f q

ηX

Y

ηY

S(Z) S(X)
S(f ) S(q)

S(Y).

(2.5)

Hence,

F ◦q = (ηZ
)−1 ◦S(f )◦(S(q))−1 ◦ηY ◦q

= (ηZ
)−1 ◦S(f )◦(S(q))−1 ◦S(q)◦ηX

= (ηZ
)−1 ◦S(f )◦ηX

= (µC
)−1 ◦ηZ ◦f = f .

(2.6)

(ii)⇒(i). There exists a unique continuous map g : S(Z) → Z such that the

diagram

Z

�

ηZ

1Z

S(Z)

g

Z

(2.7)

is commutative. Thus the diagram

Z

�

ηZ

ηZ

S(Z)

ηZ◦g

S(Z)

(2.8)
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commutes. Hence ηZ ◦g = 1S(Z) by the implication (i)⇒(ii). Therefore ηZ is a

homeomorphism and consequently Z is a sober space.

(2) According to part (1), it suffices to show the implication (i)⇒(ii).

We will prove that q is a quasihomeomorphism. Following Theorem 2.2, it

suffices to prove that S(q) is a homeomorphism.

There exist two morphisms η̃X : Y → S(X) and g : S(Y)→ S(X) such that the

following diagrams commute:

X

�

q

ηX

Y

η̃X

S(X),

Y

�

ηY

η̃X

S(Y)

g

S(X).
(2.9)

Hence g ◦ηY ◦q = ηX . On the other hand, the rectangle (2.2) is commutative.

Thus (g ◦S(q))◦ηX = g ◦ηY ◦q = ηX . Hence, using part (1) (i)⇒(ii), we easily

get g◦S(q)= 1S(X).

Now, (S(q)◦g)◦(ηY ◦q)= S(q)◦ηX = ηY ◦q. To prove that S(q)◦g = 1S(Y),

an analogous reasoning to the previous one is not valid since we have not yet

shown that ηY ◦q is a quasihomeomorphism. But one can show it by noticing

that the following diagrams commute:

X

�

q

ηY ◦q

Y

ηY

S(Y),

X

�

q

ηY ◦q

Y

(S(q)◦g)◦ηY

S(Y).
(2.10)

Hence, using part (1) (i)⇒(ii), for the quasihomeomorphism q, we get (S(q)◦
g)◦ηY = ηY , that is, the diagram

Y

�

ηY

ηY

S(Y)

S(q)◦g

S(Y)

(2.11)

is commutative. Thus, since ηY is a quasihomeomorphism, one immediately

has S(q)◦g = 1S(Y), by part (1) (i)⇒(ii). This shows that S(q) is a homeomor-

phism, so that q is a quasihomeomorphism.
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3. Goldman points. In this section, we define Goldman points in topological

spaces in order to recover results about G-ideals in a more general setting.

Definition 3.1. Let X be a topological space and x ∈X. Then x is said to

be a G-point (Goldman point ) of X if {x} is a locally closed subset of X. We

denote by Gold(X) the set of all G-points of X.

Proposition 3.2. Let X be a topological space and x ∈X, then

(i) x ∈ Gold(X) if and only if the derived set {x}′ = {x}\{x} is closed;

(ii) x ∉ Gold(X) if and only if {x}′ = {x}.
Proof. It is well known that a subset S of a topological space X is locally

closed if and only if S \ S is closed. In particular, x ∈ X is a G-point if and

only if {x}′ is closed. Moreover, if {x}′ is not closed, we get {x}′ �= {x} so that

{x}′ = {x}.
Next we give a generalization of a Picavet’s result [14, Section I, Proposition

2]. To begin, we need a definition: let C be a closed subset of a topological

space X; then C is said to be strongly irreducible if for every family {Ci}i∈I of

closed subsets of X, such that C =∪i∈ICi, there is some i∈ I such that C = Ci.
Proposition 3.3. Let X be a T0-space and x ∈X. Then x is a G-point if and

only if {x} is a strongly irreducible closed subset of X.

Proof. Let X be a topological space (not necessarily T0) and x ∈ Gold(X).
Suppose that {x} = ∪i∈ICi for some family {Ci}i∈I of closed subsets ofX. Then,

assuming that Ci ⊂ {x} for all i ∈ I, we get Ci ⊆ {x}′ so that ∪i∈ICi ⊆ {x}′.
Since {x}′ is closed by Proposition 3.2, we get {x} = ∪i∈ICi ⊆ {x}′, contra-

dicting x ∈ {x}. Therefore, {x} is a strongly irreducible closed subset of X.

Conversely, suppose that {x} is a strongly irreducible closed subset of a T0-

space X. In view of Proposition 3.2, x ∉ Gold(X) gives {x}′ = {x}, whence

{x} = ∪[{y}; y ∈ {x}′]. It follows that {x} = ∪[{y}; y ∈ {x}′], from which

we deduce that there is some y0 ∈ {x}′ such that {y0} = {x}. Since X is a T0-

space, we get x =y0, contradicting y0 ∈ {x}′. Therefore, x is a G-point of X.

Remark 3.4. The T0 hypothesis cannot be deleted in the above result. Here

are two examples.

(1) Take any setX with at least two elements and consider the trivial topology

on X. Then Gold(X) = ∅. Nevertheless, {x} is a strongly irreducible closed

subset of X for each x ∈X.

(2) Let X = {1,2,3,4} and consider the topology defined by T = {∅,{1,2},
X}. Then Gold(X) is empty and {x} is a strongly irreducible closed subset of

X for each x ∈X.

(3) Define Cl(x)= {y ∈ X | {x}={y}} for x∈X. In fact, forProposition 3.3

to hold, we only need to suppose that {x} = Cl(x).

From the definition of strongly dense subsets, it is evident that we have the

following proposition.
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Proposition 3.5. Let X be a topological space and Y and Z two subspaces

of X such that X = Y ∪Z and Y ∩Z =∅.

(1) The set Gold(X) is contained in Gold(Y)∪Gold(Z).
(2) If, in addition, Y and Z are locally closed, then

(i) Gold(X)= Gold(Y)∪Gold(Z),
(ii) Gold(X) is strongly dense in X if and only if Gold(Y) is strongly dense

in Y and Gold(Z) is strongly dense in Z .

Let R be a ring and Gold(R) the set of all G-ideals of R. It is well known

that Gold(R) is strongly dense in Spec(R). Nevertheless, if X is an arbitrary

topological space, Gold(X) may be empty (see Remark 3.4 and Example 6.2).

Next we provide examples of topological spaces such that Gold(X) is strong-

ly dense in X.

Proposition 3.6. Let X be a T0-space.

(1) If X is quasicompact, then there is some closed point x ∈X.

(2) IfX has a base of quasicompact open subsets, then the following properties

hold:

(i) Gold(X) is strongly dense in X;

(ii) Gold(X) is the smallest strongly dense subset of X.

Proof. We show (1). Let � be the family of nonempty closed subsets of

X. Since X is quasicompact, the ordered set (�,⊇) is inductive, whence (�,⊆)
has a minimal element by Zorn’s lemma. Let S be a minimal element of (�,⊆),
then {x} = S for each x ∈ S. It follows that S = {x} since X is a T0-space.

Next we show (i). Let Y = U ∩ F be a nonempty locally closed subset of X,

where U is open and F is closed. Let x ∈ Y and Q a quasicompact open sub-

set such that x ∈ Q ⊆ U . Then Q∩ F is closed in Q, whence Q∩ F is qua-

sicompact. According to (1), there exists some y ∈ Q∩ F such that {y} is

closed in Q∩ F . Thus {y} is locally closed in X so that y ∈ Gold(X). This

proves that Gold(X)∩Y �= ∅. Hence Gold(X) is strongly dense in X. We prove

(ii). Let Y be a strongly dense subset of X. If x ∈ Gold(X), then {x} is a

nonempty locally closed subset, whence {x} ∩ Y �= ∅. Therefore, we have

Gold(X)⊆ Y .

Corollary 3.7. Let X be a Noetherian T0-space. Then Gold(X) is strongly

dense in X.

We next investigate when Gold(X) = X. We start with a straightforward

lemma.

Lemma 3.8. Let X be a topological space and Y a strongly dense subset of X.

Then Gold(X)⊆ Y .

Proposition 3.9. Let X be a topological space. Then the following state-

ments are equivalent:

(1) Gold(X)=X;

(2) the only strongly dense subset of X is X.
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Proof. By Proposition 3.6, we get (1)⇒(2). Conversely, assume that (2)

holds and let x ∈ X; then X\{x} is not strongly dense in X. Hence, there ex-

ists some nonempty locally closed subset Y of X such that Y ∩(X\{x}) =∅.

Therefore, we get Y = {x} so that x ∈ Gold(X).

Proposition 3.10. If X is a Noetherian T0-space such that Gold(X) is finite,

then X is finite and Gold(X)=X.

Proof. Suppose that Gold(X) �= X. Define Y to be the set of all closed

points of X. Then obviously Y ⊆ Gold(X) so that Y is closed. Since X\Y is a

nonempty Noetherian T0-space, there exists some x1 ∈ X\Y such that {x1}
is a closed point of X\Y (see Proposition 3.6(1)). Hence, {x1} is locally closed

in X, whence x1 ∈ Gold(X). Since Gold(X) �= X, we get that (X\Y)\{x1} is a

nonempty open subset of X\Y . Arguing as above, we exhibit x2 ∈ (X\Y)\{x1}
such that x2 ∈ Gold(X), and so on. Thus there is an infinite sequence in

Gold(X), contradicting the hypotheses.

Remark 3.11. Noetherian spectral spaces have properties which do not

hold for an arbitrary Noetherian topological space.

(1) In [14, Section II, Corollary of Proposition 3], Picavet proved that when

R is a ring with Noetherian spectrum, then Gold(R) = Spec(R) if and only if

Spec(R) is finite. This is no longer true for an arbitrary topological space (see

Example 6.3).

(2) In the same paper [14], we find that if R is a ring such that Spec(R) =
Gold(R), then (Spec(R),⊆) is partially well ordered (i.e., every chain in Spec(R)
is well ordered). This is also no longer true for the partial ordering induced by

the topology of an arbitrary T0-space (see Example 6.3).

(3) Nevertheless, observe that if X is a T0-space such that the closure of each

point has finitely many elements, then Gold(X)=X.

Now, we are able to prove that (X,≤) is partially well ordered if, in addition

to Gold(X)=X, we assume that X satisfies property (∗) defined below.

Let (X,T) be a topological space. We say that (X,T) satisfies property (∗) if

T is compatible with a partial ordering ≤, and for every chain C = {ai}i∈I ⊆X,

there exists some a∈X such that {a} = C . Note that the idea of property (∗)
is due to Salhi (see his work about the space of leaves classes of a foliation

[17]). First, we have the following Proposition.

Proposition 3.12. Let X be a T0-space and ≤ be the partial ordering in-

duced on X by the topology. Let C = {ai}i∈I be a chain in X and a ∈ X. If

{a} = C , then a= inf(C).

Proof. From {a} = C , we get a≤ ai for every i∈ I. Now let b ∈X such that

b ≤ ai for each i ∈ I so that C ⊆ {b}. It follows that C = {a} ⊆ {b}, whence

b ≤ a. Therefore, we have a= inf(C).
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The following result gives an example of topological spaces satisfying (∗).
Proposition 3.13. Let R be a ring. Then the spaces X = Spec(R) verify (∗).
Proof. Let C = {pi}i∈I be a chain of prime ideals of R, then p =∩[pi;i∈ I]

is the infimum of the family {pi}i∈I [12, Theorem 9]. For x ∈ A, consider the

special open subset D(x) = {q ∈ Spec(R) | x ∉ q} of Spec(R) containing p.

Since x ∉ p, there is some j ∈ I such that x ∉ pj so that pj ∈D(x)∩C and p
lies in C .

Remark 3.14. There exists a nonspectral topological space satisfying (∗)
(see Example 6.4).

Proposition 3.15. Let (X,T) be a topological space such that the topol-

ogy T is compatible with a partial ordering ≤. If X satisfies property (∗) and

Gold(X)=X, then X is partially well ordered.

Proof. Let C be a chain in (X,≤). Since X satisfies property (∗), there is

some x ∈ X such that x = inf(C) and {x} = C by Proposition 3.12. Then we

have x ∈ C , if this does not hold, then for every y ∈ C , we have x < y and

C ⊆ {x}′. Now x ∈ Gold(X) implies that {x}′ is closed by Proposition 3.2. This

leads to a contradiction: x ∈ C ⊆ {x}′. Thus C is well ordered.

Proposition 3.16 generalizes a result of Picavet [14, Section II, Proposition

5] (see also Fontana and Maroscia [7], Ramaswamy and Viswanathan [16]).

A topology � on X is called a principal topology [18] or a good topology [1] if

arbitrary intersections of open subsets of X are open. We review some proper-

ties of principal topological spaces studied in [1]. Let X be a set equipped with

a binary relation � and x ∈ X; we denote by �l(x) the subset of all elements

y ∈ X such that y = x or there exist finitely many elements x1,x2, . . . ,xn
such that x1 = y , xn = x, and xi�xi+1 for i ∈ {1, . . . ,n− 1}. The collection

{�l(x) | x ∈ X} is a base for a topology on X called the left -�-topology and

is denoted by Tl(�). We have proved that a topological space (X,T) is prin-

cipal if and only if there exists a binary relation � on X such that T is the

left-�-topology [1]. The following properties hold:

(i) a subset U of X is open in (X,Tl(�)) if and only if �l(x)⊆U for every

x ∈U ;

(ii) the closure {x} of {x} is the subset �r (x)= {y ∈X | x ∈�l(y)};
Recall that a topology T onX is said to be compatible with the binary relation

� if {x} =�r (x) for each x ∈X.

Proposition 3.16. Let (X,T) be a topological space such that the topology

T is compatible with a total ordering ≤. If X satisfies Property (∗), then the

following statements are equivalent:

(1) Gold(X)=X;

(2) every nonmaximal element of X has an immediate successor;

(3) T is a principal topology on X.
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Proof. (1)⇒(2). Let x be a nonmaximal element of X, then {x}′ is closed

by Proposition 3.2, but {x}′ is a nonempty chain in X. We get {x}′ = {y} for

some element y by property (∗). Thus y is the smallest element of {x}′ since

{x}′ is closed. It follows that y is the immediate successor of x.

(2)⇒(3). Let x be an element of X. If x is a maximal element of X, then

] ↓ x]= X is an open subset of X. When x is not maximal, let y be the imme-

diate successor of x. We get {y} = [y ↑ [=X\] ↓ x] since T is compatible with

≤. This proves that ] ↓ x] is an open subset of X. Therefore, T is a principal

topology.

(3)⇒(1). For all x ∈ X, we have {x} =] ↓ x]∩ [x ↑ [=] ↓ x]∩{x}. It follows

that X = Gold(X).

Remark 3.17. The total ordering hypothesis is essential in the previous

proposition (see Example 6.5).

Proposition 3.18. Let (X,≤) be a partially ordered set such that each ele-

ment of x ∈ X has a finite height ht(x). Assume that {x ∈ X | ht(x) = n} has

finitely many elements for each integer n. Then Gold(X)=X for each topology

T on X which is compatible with ≥.

Proof. Denote by Xn the set of all x ∈ X such that ht(x) ≤ n. Then X0 is

finite and Xn+1 =Xn∪(Xn+1\Xn). Moreover, X0 is closed since it is a union of

finitely many closed points. Suppose that Xi is a closed subset when 1≤ i≤n
and set {x1, . . . ,xp} = Xn+1\Xn. Then {x1, . . . ,xp} is a union of closed points

in the open set X\Xn. We get Xn+1 = Xn ∪ (Xn+1\Xn) = Xn ∪ {x1, . . . ,xp} =
Xn∪{x1, . . . ,xp}.

It follows thatXn+1 is a closed subset ofX. By induction,Xn is closed for each

integer n. Let x ∈X such that ht(x)=n≥ 1. Then {x} is closed in X\Xn−1. In

that case, x belongs to Gold(X). It follows that Gold(X)=X.

4. Goldman topology. Picavet [14] introduced the Goldman topology (G-

topology) on the spectrum of a ring R. This topology is defined as follows. Let

Y be a subset of Spec(R). The closure of Y with respect to the G-topology is

the set of all prime ideals of R which are an intersection of some elements of

Y . Then a prime ideal P of R is a G-ideal if and only if P is G-open.

The family {V(I)∩D(x) | I is an ideal of R, x ∈ R} is a base for the G-

topology on Spec(R). We show that this topology can be defined on any topo-

logical space.

Proposition 4.1. LetX be a topological space, �(X) the set of all its subsets,

and A∈�(X). Set AG = {x ∈X | {x} =A∩{x}}. The map µ : �(X)→�(X) de-

fined by µ(A)=AG is a Kuratowski operator closure (thus providing a topology

on X, called the Goldman topology or G-topology, for short).

Proof. We show four properties:

(1) µ(∅)=∅,

(2) A⊆ µ(A) for every A∈�(X),
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(3) µ(µ(A))= µ(A) for every A∈�(X),
(4) µ(A∪B)= µ(A)∪µ(B) for every A,B ∈�(X).

The first two properties are obvious. Next we prove (3). Using (2), we get

µ(A) ⊆ µ(µ(A)). Conversely, let x ∈ µ(µ(A)) so that {x} = µ(A)∩{x}. Let

U be an open subset of X containing x. From x ∈ µ(A)∩{x}, we deduce that

there is some y ∈U∩µ(A)∩{x} so that y ∈ {x} and y ∈A∩{y}. Therefore,

U ∩ (A∩ {y}) is nonempty and so is U ∩ (A∩ {x}) since {y} ⊆ {x}. It fol-

lows that x ∈A∩{x}. Thus we get {x} =A∩{x}. This proves that µ(µ(A))=
µ(A). To end, we show (4). It is enough to see that µ(A∪B) ⊆ µ(A)∪µ(B).
Let x ∈ µ(A∪ B); then {x} = (A∪B)∩{x} = A∩{x}∪ B∩{x} yields {x} =
A∩{x} or {x} = B∩{x}. Therefore, x lies in µ(A)∪ µ(B), which ends the

proof.

It is easy to see that theG-topology on Spec(R) is the same as theG-topology

defined by Picavet [14]. A closed (resp., open) set for the G-topology is termed

G-closed (resp., G-open). Therefore, the collection of all G-open subsets is

{X\µ(A) |A∈�(X)}.
Recall that the generization of Y ⊆ X is the subset g(Y) of all x ∈ X such

that Y ∩{x} �=∅. Moreover, we have g(Y)=∩[O;Y ⊆O,O open].

Proposition 4.2. Let X be a topological space.

(1) If A∈�(X) is open or closed, then A is G-closed.

(2) The family of all locally closed subsets of X is a base for the G-topology on

X. More precisely, {U∩{x} |U is open and x ∈U} is a base for the G-topology.

(3) The set g(A) is equal to g(AG) and AG ⊆ g(A)∩A for all A⊆X.

Proof. We first prove that every locally closed subset A of X is G-open. We

only need to show that if A is open or closed, then A is G-closed. Let x ∈AG so

that {x} =A∩{x}. If A is closed, we have {x} =A∩{x}, whence x ∈ {x} ⊂A;

if A is open, then A meets {x} and x ∈ A. In any cases, x∈A and A = AG.

Let O be a G-open subset of X; we must prove that O is the union of some

locally closed subsets of X. We set F = X\O; let x be an element of O so that

x ∉ F = FG; since x ∉ F∩{x}, there is some open subset Ux containing x and

such that Ux∩F∩{x} =∅, whence Ux∩{x} ⊆O. Therefore, O =∪[Ux∩{x};
x ∈O]. Now, (3) follows from (1) since A⊂O�AG ⊂O for all open subset O.

Corollary 4.3. Let X be a topological space. A subset Y of X is strongly

dense in X if and only if Y is G-dense in X.

Corollary 4.4. Let R be a ring. Then the G-closure of Gold(R) is Spec(R)
and every strongly dense subset of Spec(R) contains Gold(R).

Proof. The set Gold(R) is G-dense in Spec(R) by Corollary 4.3 since

Gold(R) is strongly dense in Spec(R). AG-dense subset Y of Spec(R) is strongly

dense. Hence Y contains Gold(R) by Proposition 3.6.
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Remark 4.5. The G-topology on a topological space X is finer than the

initial topology. In particular, for A⊆X, we have the containments

◦
A⊆

◦G
A ⊆A⊆AG ⊆A, (4.1)

where
◦
A,

◦G
A , AG, and A are, respectively, the interior in the initial topology, the

interior in the G-topology, the closure in the G-topology, and the closure in the

initial topology.

Proposition 4.6. Let X be a topological space and a ∈ X. Then {a}G =
Cl(a)= {b ∈X | {a} = {b}}.

Proof. Let x ∈ {a}G. From {x} = {a}∩{x}, we get a ∈ {x} and x ∈ {a}.
Thus we have {x} = {a}, that is to say, x ∈ Cl(a). The converse is straightfor-

ward.

Proposition 4.7. Let (X,T) be a topological space. Denote by (X,G) the

space X equipped with the Goldman topology induced by T . The following state-

ments are equivalent:

(1) (X,T) is a T0-space;

(2) (X,G) is a T2-space;

(3) (X,G) is a T1-space;

(4) (X,G) is a T0-space.

Proof. We first show (1)⇒(2). Let x �= y be two elements of X. Since X is

a T0-space, there exists an open subset U of X such that (x ∈ U and y ∉ U )

or (y ∈ U and x ∉ U ). Set F = X\U . We have U ∩ F = ∅ with (x ∈ U and

y ∈ F ) or (x ∈ F and y ∈ U ). Therefore, the G-topology is Hausdorff. Now we

show (4)⇒(1). Let a and b be two elements of X such that {a} = {b} so that

Cl(a)= Cl(b). In view of Proposition 4.6, we get {a}G = {b}G. Since (X,G) is a

T0-space, we have a= b. Therefore, (X,T) is a T0-space.

Remark 4.8. It may be checked easily that the following properties hold.

(1) If (X,T) is a T1-space, then (X,G) is a discrete topological space.

(2) The set (X,G) is a discrete topological space if and only if X = Gold(X).
In particular, if (X,G) is Hausdorff and nondiscrete, (X,T) is a T0-space and

not a T1-space.

(3) Every locally closed subset A of X is a clopen set in (X,G) and satisfies

A=∪[Cl(a); a∈A].
Proposition 4.9. Let (X,T) be a topological space. If the G-topology on X

is quasicompact, then the topological space (X,T) is Noetherian.

Proof. Let U be an open subset of X. Because U is G-closed by Proposition

4.2, U is G-quasicompact. Then U is quasicompact since the G-topology on X
is finer than the original topology on X. Therefore, X is a Noetherian space.
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Remark 4.10. The converse of the above proposition is not true (see Ex-

ample 6.3). Nevertheless, things are nicer for a spectral space.

The family of all closed subsets and all quasicompact open subsets of X =
Spec(R) is a subbase of closed sets for a topology called the patch topology on

X [10]. The family of all quasicompact open subsets and their complements

is an open subbase for the patch topology. A patch in X is a closed set for

the patch topology. It is easily seen that the G-topology is finer than the patch

topology.

Proposition 4.11. Let X be a spectral space. Then the following statements

are equivalent:

(1) the G-topology on X is compact;

(2) X is a Noetherian space;

(3) the G-topology on X coincides with the patch topology on X.

Proof. Thanks to [14, Section I, Proposition 4], (2) and (3) are equivalent.

Then (1)⇒(2) follows from Proposition 4.9 and (3)⇒(1) is a consequence of the

compactness of the patch topology on X [10].

Proposition 4.12. Let (X,T) be a topological space and Y ⊆ X. Then Y is

strongly dense in YG (for the topologies induced by T ).

Proof. Let Z′ = Z∩YG be a nonempty locally closed subset of YG, where

Z is a locally closed subset of X. Since Z is G-open, we get Z′ ∩ Y �= ∅ by

Z′G = Z∩YG. Hence Y is strongly dense in YG.

Proposition 4.13. EveryG-closed subset of a spectral space X has at least a

minimal element for the natural order defined by the topology (more precisely,

every G-closed subset of X is ≥-inductive).

Proof. Let X = Spec(R), where R is a ring, and Y ⊆ X a G-closed subset.

Let {pi | i∈ I} ⊆ Y be a nonempty chain and p the intersection of all pi. Since

YG is the set of all prime ideals of R which are an intersection of some prime

ideals belonging to Y , we see that p ∈ Y . Therefore (Y ,⊇) is inductive.

Remark 4.14. The above proposition does not hold for an arbitrary T0-

space (see Example 6.3).

Proposition 4.15. Let R be a ring. Every patch of Spec(R) is an intersection

of Zariski quasicompact G-open sets of Spec(R).

Proof. According to [10, Section 7], a patch set is an intersection of con-

structible subsets. Moreover, a constructible subset is a union of finitely many

locally closed quasicompact subsets.

Theorem 4.16. Let X be a T0-space.

(1) If X is a sober space, every G-closed subset of X is sober.

(2) Every sober subspace of X is a G-closed subset of X.
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Proof. We show (1). Let F be an irreducible closed subset of a G-closed

subset Y of X. We have F = Y ∩ F . Since F is irreducible in Y , so is F in X.

Hence F is an irreducible closed subset of X. Therefore, F has a generic point

x, that is to say, F = {x} because X is sober. It follows that F = Y ∩{x} and

F = {x} = Y ∩{x}. This implies that x ∈ Y by G-closeness of Y . Moreover,

we have x ∈ Y ∩F = F , which proves that x is the generic point of F (in the

subspace Y ). Now we prove (2). Let Y be a sober subspace of X and x ∈ YG,

that is to say, {x} = Y ∩{x}. Since Y ∩{x} is irreducible, so is Y ∩{x}. Hence

Y ∩{x} has a generic point y ∈ Y ∩{x} so that Y ∩{x} = Y ∩{y}. Moreover,

x and y belong to YG. This yields {x} = {y}. It follows that x = y ∈ Y since

X is a T0-space. Therefore, Y is a G-closed subset of X.

Remark 4.17. In view of Theorem 4.16, the G-closed subsets of X are the

sober subspaces of X when X is a sober space. Nevertheless, when X is a T0-

space, a G-closed subset of X need not be sober (see Example 6.3).

Proposition 4.18. Let X be a T0-space and Y a G-dense subset. Then, for

each x ∈X, x = inf({x}∩Y) (X is equipped with the partial ordering ≤ induced

by the topology).

Proof. For each y ∈ {x}∩Y , we have y ∈ {x} = [x ↑ [= {z ∈ X/x ≤ z},
whence x ≤y . Let z ∈X, such that z ≤y for any y ∈ Y∩{x}, and assume that

x ∉ {z}. Then {x}∩(X\{z}) is nonempty and locally closed. Since Y is strongly

dense, we get {x}∩ (X\{z})∩Y �= ∅. Hence, there exists some y ∈ {x}∩Y
such that y ∈ X\{z}, that is to say, z � y ; this is a contradiction. It follows

that z ≤ x, proving that x = inf({x}∩Y).
We recall some topological definitions and link them with the G-topology.

Let Min(R) denote the set of all minimal prime ideals of a ring R equipped

with the relativization of the Zariski topology. It is well known that Min(R) is

Hausdorff.

According to Hochster, a topological space X is said to be minspectral if

there is some ring R such that X is homeomorphic to Min(R) [11]. As in [11], an

m-base � for a Hausdorff space X is a base of open sets such that every subset

S of � which has the finite intersection property has nonempty intersection.

A topology is said to be scattered if every point has a base of clopen neigh-

borhoods. Such a topology is totally disconnected. A Hausdorff space X is said

to be completely regular (or Tychonoff ) if for each pointx ∈X and every closed

subset V of X such that x ∉ V , there is a continuous map ϕ : X → [0,1] such

that ϕ(x)= 1 and ϕ(a)= 0 for every a∈ V .

Proposition 4.19. Let X be a topological space.

(1) If X is a spectral space, then the G-topology on X is minspectral.

(2) If X is a T0-space, then the G-topology on X is scattered.

(3) Every scattered topology is completely regular. In particular theG-topology

on a T0-space is completely regular.
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Proof. With the hypothesis of (1) being granted, the G-topology on X is

Hausdorff since X is T0. Let � be the family of all subsets Y of X such that

Y = F ∩O, where F is closed and O is quasicompact open. Then � is a base

for the G-topology and its elements are patches. Since the patch topology is

compact [10], � is an m-base. Thanks to Hochster’s result [11, Theorem 1],

the G-topology on X is minspectral. We show (2). Every locally closed subset

is G-open and G-closed. Let x ∈ X, then the family of locally closed subsets

of X containing x is a base of G-clopen neighborhoods of x. Now, (3) is a

consequence of the following considerations. Let X be a scattered topologi-

cal space, x ∈ X, and V a closed subset of X such that x ∉ V . There exists

a clopen subset O of X containing x such that O ⊆ X\V . Since {O,X\O} is

an open covering of X, we can define a continuous map ϕ : X → [0,1] such

that ϕ(O) = {1} and ϕ(X\O) = {0}. We have thus checked out the three

conditions.

Theorem 4.20. Let X be a sober topological space and Y ⊆ X. Then YG is

homeomorphic to S(Y).

Proof. In view of Theorem 4.16, YG is a sober space so that YG � S(YG).
On the other hand, the inclusion Y → YG is a quasihomeomorphism (see Propo-

sition 4.12). Hence S(Y)� S(YG) by Theorem 2.2. Therefore YG is homeomor-

phic to S(Y).

Proposition 4.21. Let X be a Noetherian T0-topological space.

(1) The canonical injection X → S(X) identifies X with a subspace of S(X), X
is strongly dense in S(X) and S(X) is a Noetherian spectral space. In particular,

the G-topology on S(X) is the patch topology and induces the G-topology on X.

(2) The set Gold(X) is equal to Gold(S(X)).

Proof. Let X be a Noetherian topological T0-space. Then its sobrification

S(X) is a Noetherian spectral space. Indeed, S(X) is Noetherian whenever X
is Noetherian [9, Chapter 0, Section 3, Proposition 7.6]. In this case, S(X) is

Noetherian and sober, whence a spectral space. Then X can be identified with

a subspace of S(X) and X is strongly dense in S(X) by [9, Chapter 0, Section

3, Proposition 7.1(b)]. We get Gold(S(X)) ⊆ X by Proposition 3.6 because X
is strongly dense. It follows that Gold(S(X)) ⊆ Gold(X). Now Gold(S(X)) is

strongly dense in X so that Gold(X)= Gold(S(X)).

5. A topological characterization of the Jacobson prime spectrum of a

commutative ring. Recall that a topological space X is said to be a Jacob-

son space if the set �(X) of all closed points of X is strongly dense in X [9,

Chapter 0, Section 3, Proposition 8.1]. Therefore, X is a Jacobson space if and

only if X = �(X)
G

. Obviously, when X is a topological space, Jac(X) = �(X)
G

is a Jacobson space; we call it the Jacobson subspace of X.

Let R be a ring. We denote by Jac(R) the Jacobson subspace of Spec(R).
Following Picavet [14], a prime ideal p of R is in Jac(R) if and only if p is the
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intersection of all maximal ideals m of R such that p ⊆m. A jacspectral space

is defined to be a topological space homeomorphic to the Jacobson space of

Spec(R) for some ring R.

We aim to give a topological characterization of jacspectral spaces by using

our previous results. We need a lemma.

Lemma 5.1. Let f : Y → Z be a quasihomeomorphism. If U is an open subset

of Z , then the following statements are equivalent:

(i) U is quasicompact;

(ii) f−1(U) is quasicompact.

Denote by �(X) the set of all open subsets of a topological space X. Then the

proof of Lemma 5.1 is an easy consequence of the following fact: U � f−1(U)
defines a bijection �(Z)→ �(Y).

We now head towards an important result which completely characterizes

jacspectral spaces.

Theorem 5.2. Let X be a topological space. The following statements are

equivalent:

(1) X is a jacspectral space;

(2) X is a quasicompact Jacobson sober space.

Proof. We first prove (1)⇒(2). We need only to show that the Jacobson

space of a spectral space is a quasicompact Jacobson sober space. Let R be a

ring and X = Jac(R) the Jacobson space of Spec(R). As we have seen, X is a

Jacobson space. Since X = Max(R)
G

and Spec(R) is a sober space, X is sober

by Theorem 4.16. It is well known that Max(R) is quasicompact [10]. Moreover,

the canonical injection Max(R) ↩ Max(R)
G = X is a quasihomeomorphism

since Max(R) is strongly dense in Max(R)
G

(see Proposition 4.12). Hence X
is quasicompact by Lemma 5.1. Next we show that (2)⇒(1). Suppose that X is

a quasicompact Jacobson sober space and let �(X) be the set of all its closed

points. We have X = �(X)
G

. Consequently, the canonical injection �(X)↩ X
is a quasihomeomorphism, whence �(X) is quasicompact by Lemma 5.1. Ob-

serve that �(X) is a T1-space. Therefore, there exists some ring R such that

�(X) is homeomorphic to Max(R) (see Hochster [10]). Let ϕ : �(X)→Max(R)
be a homeomorphism and i : Max(R) → Jac(R) the canonical injection. Then

f = i◦ϕ : �(X)→ Jac(R) is a quasihomeomorphism. In view of Theorem 2.3,

there exists a continuous extension f̃ : X → Jac(R). This extension is also a

quasihomeomorphism. Now, since X is sober and Jac(R) is a T0-space, f̃ is a

homeomorphism by Lemma 2.1.

Our next concern will be the construction of jacspectral spaces from Jacob-

son quasicompact spaces. First, we need some preliminary results.

Proposition 5.3. (1) Let q : X → Y be an injective quasihomeomorphism,

then �(Y)⊆ q(�(X)).
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(2) Let X be a T0-space. Then q(�(X)) = �(S(X)), where q : X → S(X) is the

injection of X onto its sobrification S(X).
(3) Let q : X → Y be a quasihomeomorphism and S a subset of X. Then the

following statements are equivalent:

(i) S is strongly dense in X;

(ii) q(S) is strongly dense in Y .

Proof. (1) The proof is straightforward.

(2) Following (1), the proof will be complete if we show that q(�(X)) ⊆
�(S(X)).

Let x ∈�(X). We claim that {q(x)} = {q(x)}.
Let F ∈ {q(x)}. We must prove that F = q(x)= {x} = {x}.
First, we observe that x ∈ F . To see this, suppose that x ∉ F , then F ∈ Ũ ,

where U = X −{x}. Since F ∈ {q(x)}, q(x) ∈ Ũ , hence q(x)∩U ≠ ∅. This

yields x ∈U , a contradiction. It follows that x ∈ F .

Let y ∈ F . Suppose that y ≠ x, then F∩U ≠∅, where U =X−{x}. The rest

of the proof runs as before, proving that y = x. Therefore q(x)∈�(S(X)).
(3) The proof is straightforward.

Next, we derive a useful tool for constructing jacspectral spaces.

Corollary 5.4. Let X be a T0-space. Then the following statements are

equivalent:

(i) X is a quasicompact Jacobson space;

(ii) S(X) is a jacspectral space.

Proof. We start with the following two observations.

(i) Let q : X → S(X) be the injection of X onto its sobrification S(X). Fol-

lowing Proposition 5.3, X is a Jacobson space if and only if S(X) is.

(ii) The equivalence, X is quasicompact if and only if S(X) is, follows im-

mediately from Lemma 5.1.

Therefore, if X is a quasicompact Jacobson space, then S(X) is a sober qua-

sicompact Jacobson space, and according to Theorem 5.2, S(X) is a jacspectral

space. Conversely, if S(X) is jacspectral, then it is a quasicompact Jacobson

space, and the above observations imply that X is so.

Corollary 5.5. Let X be a Noetherian T0-space. Then S(Jac(X)) is a jac-

spectral space.

Corollary 5.6. Let X and Y be two T0-spaces and q : X → Y a quasihome-

omorphism. Then X is a quasicompact Jacobson space if and only if is so Y .

Corollary 5.7. Let X be a T0-space. Then the following statements are

equivalent:

(i) X is a quasicompact Jacobson space;

(ii) X is injected by a quasihomeomorphism into a jacspectral space.
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6. Examples. Recall that a topological space is said to be principal if every

intersection of open subsets of X is open [1, 18]. Principal topological spaces

provide examples of G-points and G-topologies. The left topology associated

to a partially ordered set is principal and every element of X is a G-point.

Nevertheless, there exists a principal topological space which does not have a

G-point.

Next, we describe G-points in principal topological spaces. It is not hard to

verify the following proposition.

Proposition 6.1. LetX be a set equipped with a quasiordering � anda∈X.

The following statements are equivalent:

(1) a is a G-point in (X,Tl(�));
(2) a = b whenever b ∈ X is such that a�b and b�a (i.e., �l(a)∩�r (a) =

{a}).
Example 6.2 (a principal topological space without any G-point). Take X =

Z equipped with the binary relation � defined by m�n� (m ≤ n) or (n is

even and n=m−1).
If we equip X with the left-�-topology, then, in view of Proposition 6.1,

Gold(X) is empty.

Example 6.3 (a topological space X which is Noetherian, infinite, and such

that Gold(X)=X). Consider the set X = {0}∪{1/n |n∈N∗}. Then X equipp-

ed with the left topology associated to the natural ordering is an infinite Noe-

therian space such that Gold(X)=X.

(i) Since F = {1/n | n ∈ N∗} has no smallest element, X is not partially

well ordered.

(ii) We remark also that the G-topology is the discrete topology and since

X is infinite, the G-topology on X is not quasicompact.

(iii) We notice that (F,≥) is not inductive.

(iv) F is a G-closed irreducible subset of X without generic point. Hence F
is not sober.

Note that the next examples are spaces of leaves classes. Nevertheless, we

describe them from a topological point of view.

Example 6.4 (a nonspectral topological space satisfying (∗)). Let X be the

subset of R2 defined by X = {a}∪S, where a = (−2,0) and S = {(x,y) ∈ R2 |
x2+y2 = 1}.

Consider on X the topology T such that X is the only open subset of X
containing a and such that for every b ∈ S, the family {B(b,ε)∩ S | ε > 0}
is a base of neighborhoods of b (where B(b,ε) is the open ball of center b
and ray ε). This topology is compatible with the partial ordering ≤ defined on

X as follows: b ≤ b for every b ∈ X and a ≤ b for every b ∈ X. The space

(X,T) satisfies property (∗) but is not spectral since (X,T) has no base of

quasicompact open subsets.
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Example 6.5 (a topological space showing that the total ordering hypothesis

in Proposition 3.16 is essential). (1) Let R be an integral domain with finite

dimension andX = Spec(R). Assume thatR is not aG-domain. Then the second

statement of Proposition 3.16 holds while the first statement fails.

(2) Let X = {(0,1)}∪{(0,0)}∪{(1/n,0) | n ∈ Z∗} and set a = (0,1), aω =
(0,0), and an = (1/n,0) if n �= 0. We equip X with the partial ordering x ≤ x
and x ≤ a for each x ∈X.

The family � = {] ↓ x]}x∈X∼aω ∪ (∪n∈Z∗{aω}∪{ap | |p| ≥ |n|}) is a base

for a topology T compatible with the partial ordering ≤. We have Gold(X)=X,

but the topology T is not the left topology.
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