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In terms of functional dependence, the description of observable functions in
nonlinear dynamical systems, which are analytic with respect to phase variables,
is obtained. For processing of measurements, integral operators are used, which
provide certain noise stability of operation of phase state reconstruction. The ana-
logue of the duality theory known for linear problems of observation and control
is developed. Computing schemes for nonlinear observability problem are pro-
posed.
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1. Introduction. In the domain U ⊆Rn consider the observation system

ẋ = f(x), y = g(x), f :U �→Rn, g :U �→Rm, (1.1)

which models the law of motion and the available information about the phase

state. We assume that the vector functions f and g are smooth and, for the

main results of the paper, real analytic in U . We are given the observation

time interval [0,T ] and the domain of all possible states UT = {x(T)} ⊆ U ,

for which the solutions x(·;x,T) of the vector differential equation in (1.1)

(where x(T ;x,T)=x ∈ UT ) can be extended to [0,T ]. The observation prob-

lem is to determine the phase vector x = x(T) for the realization y(·;x,T)=
g(x(·;x,T)) : [0,T ]→Rm. The notation y(·;x,T)means that the known vector

function y(·) at [0,T ] is identically determined by the unknown state x at

time T . We assume that this problem is to be solved systematically. Thus we

are interested in calculation for any possible realization y(·) of appropriate

x from the domain UT . It is possible to formulate the problem also in terms

of unknown initial data x0 = x(0) ∈ U0. But usually the most interesting is a

phase state at the end of the observation time. In case only the values y(t),
t ∈ Θ (Θ = [0,ϑ], ϑ < T ), are used, then it is the prediction problem. Once we

know x(T) (or x0), the motion can be reconstructed uniquely.

It is rather difficult to determine observability of the pair (f ,g) directly

by the conformity x � y(·;x,T) as inversion of the mapping to the space

of vector functions is needed. Thus, here it is usually better to study the so-

called observability mappingH : x�y(·;x,T)� z ∈Rp , calculating the values

http://dx.doi.org/10.1155/S0161171203203252
http://dx.doi.org/10.1155/S0161171203203252
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


3520 YURY V. ZAIKA

of p functionals on y(·). If H is injective on the set V ⊆ UT (H(x) ↔ x ∈
V), then (f ,g) is observable in V and the vector x = x(T) ∈ V is uniquely

identified by z = H(x). The values of z are obtained from the processing of

the measurementsy(·). By definition, observability of the pair (f ,g) in V ⊆UT
on [0,T ] means that one-to-one correspondence holds: y(·;x,T)↔x ∈ V . The

most frequently used methods of constructing H are the following:

(a) x� (y ′(t1), . . . ,y ′(t�))′, ti ∈ [0,T ], �m= p;

(b) x� (y ′(T),ẏ ′(T), . . . ,y(�−1)′(T))′;
(c) x� (〈k1,y〉, . . . ,〈kp,y〉)′, 〈k,y〉 =

∫ T
0 k′(τ)y(τ)dτ .

Some sufficient conditions of mapping injectivity in finite-dimensional spaces

can be found, for instance, in [11, 12]. The following question is essential: in

what class of pairs (f ,g) the observability problem can be reduced to the

problem of solvability of finite system of equations with unknown x = x(T),
obtained using (a), (b), and (c)?

To simplify the notation assume, without loss of generality, that m= 1.

Analytic observation theory was, in particular, developed in Starkov’s work

(see [13], which contains further bibliography). While determining x(T) for

a polynomial system (1.1) (a pair (f ,g)), it is sufficient to calculate a finite

number of derivatives y(i)(t∗), t∗ ∈ [0,T ] (see [6]). But a necessary number

of them may become arbitrarily large. For a stationary observable real-analytic

pair (f ,g), without loss of information about unknown x(T), it suffices to have

2n+1 measurements y(tj) instead of y(·) (see [8]). Times tj are fixed and do

not depend on the realizationy(·). But in the general case, a set of “successful”

observation programs {t1, . . . , t2n+1} is not open in [0,T ]2n+1. Errors in fixing

tj can imply a loss of observability. Discrete observation programs that are

stable to perturbations are considered in [14].

In case the measurements are considerably influenced by noises, it is prefer-

able to use integral processing of y(t). The fundamentals of the appropriate

mathematics for linear case can be found, for instance, in [9]. Let f = Fx and

g =Gx. Here F and G are n×n andm×nmatrices, respectively. If in the dual

system

V̇ (t)=−F ′V(t)+G′k(t), V(0)= 0, (1.2)

a control k(·) is built according to the condition V(T) = h, then according to

the informationy(·) it is possible to calculate a projection of unknownx(T) to

vector h : h′x(T)= 〈k,y〉L2 for all x(T)∈Rn. A set of all h∈Rn for which, ac-

cording to any possible vector function y(·), h′x(T) is uniquely reconstructed

is described by a set of attainability �T = {V(T)}. This approach, known as a

duality principle, is extended to a nonlinear case in [7]. Construction of an oper-

ator for reconstruction of values of the given functionϕ :UT →R1 in the form

ϕ
(
x(T)

)= ∫ T
0
k
(
τ,y(τ)

)
dτ ∀x(T)∈UT , (1.3)
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is reduced to the control problem: choose k(·,·) in the duality system

vt(t,x)+vx(t,x)·f(x)= k
(
t,g(x)

)
, v(0,x)= 0, (1.4)

for which v(T ,x) = ϕ(x), x ∈ UT . The details will be specified later. In case

(f ,g) = (F,G) and k(t,y) = k′(t)y , we obtain v(t,x) = V ′(t)x. Here V(t)
meets (1.2). Appearance of the partial differential equation is natural since the

nonlinear observability problem for the domain of phase space is, in essence,

distributed. The most important here is the fact that (1.4) is linear with re-

spect to the pair (k,v) and it is possible to use control theory and numerical

methods for solving a linear boundary value problems.

2. Observability by a finite number of projections. Firstly, we consider

the linear integral operators (1.3): ϕ(x(T)) = 〈k,y〉L2 , L2 = L2[0,T ], m = 1.

In applications, admissible weight functions k(·) for processing y(·) are con-

sidered piecewise continuous. Functionals y(·)� 〈k,y〉 and values 〈k,y〉 will

be called projections. Here some questions arise. From the numerical point

of view, it is important to have a finite-dimensional presentation of y(·). Is

it possible to find k1(·), . . . ,kp(·) such that reducing the amount of informa-

tion y(·) to values of a finite number of functionals Ji(y(·))= 〈ki,y〉L2 does

not imply loss of information about the unknown x(T) in the sense of one-

to-one correspondence y(·)↔ (J1(y(·)), . . . ,Jp(y(·))), x(T) ∈ UT ? In case of

the positive answer, the problem of “memorizing” y(·) is reduced to inte-

gration in real time while measurements y(t) are obtained, which is rather

easily technically implemented. Another form of the question: is it possible

that the pair (f ,g) is observable (a mapping x(T)�y(·) is injective) while it

is impossible to reconstruct uniquely x(T) according to the finite number of

projections 〈ki,y〉? Here ki(·) are fixed, where 1 ≤ i ≤ p, the same is for all

possible y(·) (x(T)∈ UT). If these sets ki(·) exist, then how should minimal

p be possibly chosen? A sequence x(T) � y(·) � 〈k,y〉 defines a function

ϕ(x(T))= 〈k,y〉. How should analytic description of ϕ(·) be given? In a cer-

tain sense a vice-versa question is important. Usually only some of the phase

coordinates are measured and it is necessary to reconstruct the others or, more

generally, the values of given functions ϕ(x(T)). How should k(·,·) be cho-

sen for givenϕ(·) to satisfy (1.3), at least to some necessary precision? In this

paper, we give some results in the case of analyticity with respect to phase

variables.

Definition 2.1. A function ϕ : UT → R1 is said to be observable in a set

M ⊆UT if there exists a functional Λ such that ϕ(x)=Λ(y(·;x,T)), x ∈M .

Given y(·), the observability of ϕ in M implies that values of ϕ(x) on an a

priori unknown x = x(T) can be uniquely reconstructed if an additional inclu-

sion x ∈M is sure. The observability of (f ,g) is the same as the observability

of all coordinates ϕ(x) = xi in UT . If the observability of ϕ in M is studied
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andϕ is given only on the subset M̃ (M ⊆ M̃ ⊆UT), then it is defined on UT \M̃
arbitrarily. Let Φ(M) be the set of all functions ϕ observable in M . Obviously,

Φ(M̃)⊆ Φ(M) when M ⊆ M̃ .

Definition 2.2. A basis of the setΦ(M) of all functions observable inM is a

finite set of elementsϕi ∈ Φ(M), 1≤ i≤ p, such that a functional dependence

holds:

ϕ(x)= Fϕ
(
ϕ1(x), . . . ,ϕp(x)

) ∀ϕ ∈ Φ(M), ∀x ∈M. (2.1)

The set Φ(M) is a nonlinear (functional) hull of the basis observable func-

tions. After calculating the values ϕ1(x), . . . ,ϕp(x), it becomes impossible to

obtain more information about the unknownx = x(T) fromy(·;x,T) (x ∈M).
Observability of (f ,g) in M ⊆ UT means one-to-one correspondence (ϕ1(x),
. . . ,ϕp(x)) ↔ x ∈ M . If one of the bases has the last property, then all the

others do (in case they exist).

Indeed, let Λi be the functionals corresponding to basis functions ϕi ∈
Φ(M), and {ki, i ≥ 1} is a full system in L2[0,T ], that is, {〈φ, ki〉, i ≥ 1} ↔
φ(·)∈ L2. Then

ψi ∈ Φ
(
UT
)⊆ Φ(M), ψi(x)=

〈
ki,y(·;x,T)

〉
, x ∈UT . (2.2)

By the definition of a basis, ψi(x) = Fi(ϕ1(x), . . . ,ϕp(x)) for all i ≥ 1 and

for all x ∈M . Thus, from ϕi(x) = Λi(y(·;x,T)), 1 ≤ i ≤ p, the values ψi(x),
i≥ 1, are defined uniquely. The fullness of the system {ki, i≥ 1} in L2 implies

(ϕ1(x), . . . ,ϕp(x)) ↔ y(·;x,T) and instead of functions y(·;x,T) on [0,T ]
it is possible to use p-dimensional vectors (ϕ1(x), . . . ,ϕp(x)), x ∈M . These

ϕi(x) form a basis Φ(M̃) for all M̃ ⊆ M . Obviously, the functions ψ(x) =
〈k,y(·;x,T)〉 are observable in any subsetUT , that is,ψ∈ Φ(M) for allM ⊆UT .

If necessary, it is possible to extend a class of possible k(·) to L2.

Theorem 2.3. Let the pair (f ,g) be real analytic in U , that is, f ,g ∈ Cω(U,
Rn). Then for any set M with compact closure in UT from any full system in

L2 of admissible weight functions {ki, i ≥ 1}, it is possible to choose kiν (·)
such that ϕν : UT → R1 (where ϕν(x) = 〈kiν ,y(·;x,T)〉, 1 ≤ ν ≤ p) form a

finite basis Φ(M).

Proof. In the domain UT ×UT consider the analytic functions

∆ψi
(
x1,x2)=ψi(x1)−ψi(x2)

= 〈ki,y(·;x1,T
)−y(·;x2,T

)〉
, xj ∈UT .

(2.3)

One can assume that∆ψi are defined and analytic inW =UcT×UcT ⊆ C2n, where

the domain UcT is a sufficiently small neighborhood of UT in Cn. This extension
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can be given by the formula

∆ψi
(
z1,z2)= 〈ki,y(·;z1,T

)−y(·;z2,T
)〉
, zj ∈UcT . (2.4)

The sense of notationy(·;z,T), z ∈UcT , is preserved for the solutions ẋ = f(x)
can be considered with complex Cauchy conditions x(T)= z ∈UcT ⊆ Cn. Such

solutions can be extended to [0,T ] for a sufficiently small neighborhood of

UT .

Let Zi be a set of zeros of the function ∆ψi in the domainW . Then common

zeros of ∆ψi form an analytic subset Z = ∩∞j=1Zj of W and numbers i1, . . . , ip
exist such that

Z∩(M×M)= (∩pν=1Ziν
)∩(M×M). (2.5)

Here we use the terminology and the statement of [3, page 53]. Let Ω be a

domain in Cn. The set A ⊂ Ω is called a (complex) analytic subset of Ω if for

any point a ∈ Ω, there exist its neighborhood U and holomorphic (analytic)

functions f1, . . . ,fN such that A∩U = {z ∈ U | f1(z) = ··· = fN(z) = 0}. In

other words, A is locally a set of common zeros of finite sets of holomorphic

functions. If {Aα}α∈I is any set of analytic subsets Ω, then A=∩α∈IAα is also

an analytic subset in Ω, and for any K with compact closure in Ω (i.e., K is

bounded and its closure clK ⊂ Ω), there exists a finite subset J ⊂ I such that

A∩K = (∩α∈JAα)∩K.

From ∆ψiν (x1,x2)= 0 for 1≤ν≤p, xj ∈M , it follows that ∆ψi(x1,x2)=0,

i≥ 1, and due to the fullness of {ki, i≥ 1} we obtain y(·;x1,T )= y(·;x2,T ).
This implies that, for all x ∈M ,(

ϕ1(x), . . . ,ϕp(x)
)= (〈ki1 ,y〉, . . . ,〈kip ,y〉)←→y(·;x,T),

ϕ(x)=Λ(y(·;x,T))= Fϕ(ϕ1(x), . . . ,ϕp(x)
) ∀ϕ ∈ Φ(M). (2.6)

According to Definition 2.2, functions ϕi form a finite basis of Φ(M).

Remark 2.4. The demand of fullness of {ki} in L2 can be weakened by

demanding that {〈ki, y(·;x,T)〉, i ≥ 1} ↔ y(·;x,T), x ∈ UT (i.e., fullness on

Y = {y(·)}). It is possible to take into consideration also the limitations of re-

alization ki(·) (e.g., |ki(t)| ≤ k̄, . . .). The number of basis projections p depends

not only on f , g, and M , but also on a choice of the system {ki}.
The problem of searching a basis can be posed in algebraic terms. In the

ring Cω(W) of analytic functions in the domain W consider the ideal gener-

ated by the set {∆ψi, i ≥ 1}. Its elements are finite linear combinations of

functions ∆ψi with coefficients from Cω(W). The finite basis of this ideal, if

it exists, defines a number of basis projections 〈ki,y〉 for M = UT (and thus

for all M ⊆ UT ). In particular, from the fact that a ring of germs of analytic

functions in a point is Noether, it follows (see [5, page 50]) that for a family

of holomorphic functions � in a neighborhood � of a point a, it is possible



3524 YURY V. ZAIKA

to choose a neighborhood �̃ ⊆ � (a ∈ �̃) and a set f1, . . . ,fN ∈ � such that

for any f ∈ �, there exist holomorphic functions h1, . . . ,hN in �̃ such that

f = h1f1+···+hNfN in �̃. Thus, for all x̄ ∈UT , there exist a neighborhood

Pε =
{
z ∈Cn | ‖z− x̄‖ =max

i

∣∣zi− x̄i∣∣< ε}⊆UcT (
Pε∩Rn ⊆UT

)
(2.7)

and a finite number of functions ∆ψi1 , . . . ,∆ψiq such that

∆ψj
(
z1,z2)= q∑

ν=1

αjν
(
z1,z2)∆ψiν (z1,z2), j ≥ 1, (2.8)

when (z1,z2)∈ Pε×Pε and αjν ∈ Cω(Pε×Pε). Then

[
∆ψiν

(
x1,x2)= 0, 1≤ ν ≤ q, xj ∈M = Pε∩UT

]
�⇒ [∆ψi(x1,x2)= 0, i≥ 1

]
�⇒y(·;x1,T

)=y(·;x2,T
)
.

(2.9)

The basis Φ(M) is formed by functions ϕν(x)=ψiν (x)= 〈kiν ,y(·;x,T)〉:

(
ϕ1(x), . . . ,ϕq(x)

)←→y(·;x,T), x ∈M = Pε∩UT . (2.10)

If there are no a priori limitations on the structure of the weight functions

(k(·)∈ {ki}), then Theorem 2.3 can be strengthened as follows (M = UT , p =
2n+1).

Theorem 2.5. Let {ki, i≥1} be any full system of continuous functions on

[0,T ] in L2. There exists a family of sets of 2n+1 functions {ri(·)}, for which

ϕi(x) = 〈ri,y(·;x,T)〉, 0 ≤ i ≤ 2n, form a basis Φ(UT ). Each rj(·) is repre-

sented by a uniformly convergent series on elements {ki} on [0,T ].

Proof. The following result from the theory of analytic sets (see [3, page

54]) will be used. Let {fα}α∈I be any family of functions that is holomorphic

in a given domain Ω ⊆ Cn. Then a set of their common zeros Z is an analytic

subset inΩ, and sets ofn+1 functions gi ∈ Cω(Ω) exist such that the common

zeros of gi also coincide with Z .

Here is a modification of this fact according to the concerned problem.

Firstly, we will show how gn should be built. Let Ωi be connected compo-

nents of Ω which do not belong to Z , and let ai ∈ Ωi \Z be arbitrarily cho-

sen points. For any i there exists a function fαi such that fαi(ai) �= 0. We

present Ω as a countable union
⋃
Kj of the compact sets (where Kj ⊆Kj+1 and

for any compact set K there exists s such that K ⊂Ks ). Induction on j can help
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to choose numbers cj such that

∣∣cjfαj (z)∣∣< 2−j ∀z ∈Kj,∣∣∣∣∣
j∑
k=1

ckfαk
(
ai
)∣∣∣∣∣> 2−1

∣∣cifαi(ai)∣∣ ∀i≤ j.
(2.11)

A series
∑
cifαi converges uniformly on compacts on Ω to a holomorphic

function, which will be named gn. By construction, gn(ai) �= 0 for all i, thus

dim(Zgn ∩Ωi) < n. Here Zgn are the zeros of gn in Ω. Other gn−1, . . . ,g0 have

been constructed in [3] by induction in a similar way: gs|Z ≡ 0 and all irre-

ducible components of dimension greater than or equal to s of analytic subset

Zgn∩···∩Zgs in Ω belong to Z . The set of common zeros g0, . . . ,gn coincides

with Z .

This result should be applied to the set of analytic functions ∆ψi : W → C
in the domain Ω = W = UcT ×UcT ⊆ C2n, obtained using analytic extension of

ψi(x) from UT to a sufficiently small neighborhood UcT ⊃ UT in Cn: ψi(z) =
〈ki,y(·;z,T)〉, z = x(T) ∈ UcT . The only difference is that the coefficients cj
will be chosen from the following condition: for all (z1,z2)∈Kj ,∣∣cj∆ψαj (z1,z2)∣∣= ∣∣〈cjkαj ,y(·;z1,T

)−y(·;z2,T
)〉∣∣

≤ ∥∥cjkαj∥∥C ·∥∥y(·;z1,T
)−y(·;z2,T

)∥∥
L1
≤ 2−j .

(2.12)

By doing this, we preserve the second inequality in (2.11) defining cj . This

correction provides convergence of not only the series
∑
ci∆ψαi in W to an

analytic function, but also the series
∑
cikαi in C[0,T ]. We use such construc-

tions inductively and denote the sums of the series in C[0,T ] by r2n, . . . ,r0. By

construction, the set of common zeros of the functions

qi
(
z1,z2)= 〈ri,y(·;z1,T

)−y(·;z2,T
)〉
, 0≤ i≤ 2n, (2.13)

in W coincides with Z =∩∞j=1Zj (where Zj are zeros of ∆ψj in W ). Due to full-

ness of {ki, i ≥ 1}, any unequal, on [0,T ], functions y(·;x1,T ) �= y(·;x2,T ),
xj ∈UT , have a different set of projections:

{〈
ri,y

(·;x1,T
)〉} �= {〈ri,y(·;x2,T

)〉}
, 0≤ i≤ 2n. (2.14)

From y(·;x,T)↔ (ϕ0(x), . . . ,ϕ2n(x)), x ∈ UT , ϕi(x) = 〈ri,y(·;x,T)〉, it fol-

lows that the set ϕi is the basis of Φ(UT ). There are infinitely many good sets

of {rj} as {ki} and coefficients for rj can be chosen rather arbitrarily. Discon-

tinuous ki are also possible if convergence of series rj is studied in L2.

Observability of the pair (f ,g) inM ⊆UT (i.e.,y(·;x,T)↔ x ∈M) means that

for a full system {ki, i≥ 1} in L2 (or Y = {y(·)}), the set of common zeros of the

functions ∆ψi(x1,x2) in M×M coincides with the diagonal {(x,x) | x ∈M}.
For the basis rj(·), the vector x(T) ∈M is uniquely determined by the set of
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2n+1 projections µi = 〈ri,y〉. But even if (f ,g) is not observable, to find a

basis Φ(M) for given subdomain M ⊆ UT is important for applied purposes.

For instance, to form a control u(x(t)) in control systems by the history of

measurements on [t−T ,t], there is no need to reconstruct a full phase vector

x(t), but it is sufficient to observe directly the function u(x). If any of the

basis weight functions k(·) does not satisfy given limitations of realization

|k(t)| ≤ k= const, then it is possible to replace it with αk(·) with sufficiently

small multiplier α. Such operations do not influence a basis, important here

are “projections to directions.”

We discuss some generalizations. In case of multidimensional measure-

ments g : U → Rm, m ≥ 1, Theorems 2.3 and 2.5 remain mostly unchanged.

They can be reformulated in terms of the predicting problem: given y(·) (t ∈
Θ), find x = x(T)∈UT (or ϕ(x(T))). In stationary systems due to the unique-

ness theorem for analytic functions y|[0,ϑ]↔y|[0,T ], predictability is the same

as observability (calculation details are not considered). In the nonstationary

case f = f(t,x), g = g(t,x), when smoothness demands with respect to t
can be significantly weakened, predictability implies observability, but not

vice versa. For possible weight functions in the integral operators (1.3), one

must define k(t,y)= 0, t > ϑ. In the proofs of Theorems 2.3 and 2.5, actually,

only real analyticity of the functions 〈k,y(·;x,T)〉 with respect to Cauchy data

x = x(T)∈UT was used. For convenience, let ϑ ≤ T , and then observability is

a special case of predictability (ϑ = T ).

Now we consider the nonstationary observability system

ẋ = f(t,x), y = g(t,x), (2.15)

posed in the domain Ω = (t1, t2)×U , [0,T ] ⊂ (t1, t2). Vector functions f and

g are continuous in Ω and real analytic with respect to x in U for all fixed

t ∈ (t1, t2). Moreover, the following conditions hold:

f = f c∣∣Ω, g = gc∣∣Ω, f c(t,·)∈ Cω(Uc), gc(t,·)∈ Cω(Uc),
f c ∈ C((t1, t2)×Uc,Cn), gc ∈ C((t1, t2)×Uc,Cm). (2.16)

A domain Uc is a neighborhood of U in Cn. It guarantees existence and unique-

ness of a Cauchy problem and analyticity with respect to initial data [4]. Sup-

pose that for the subdomain UT ⊆ U , the solutions x(·;x,T), x = x(T) ∈ UT ,

can be extended to [0,T ]. Then, for all k(·) ∈ Lm2 = Lm2 [0,T ], the function

ψ(x) = 〈k,y(·;x,T)〉 is real analytic in UT (and analytic in the domain UcT—a

sufficiently small neighborhood of UT in Cn). The last property can serve as

the initial assumption.

Let Φ∗(M) be a set of predictable functions in M ⊆UT :

ϕ ∈ Φ∗(M)⇐⇒ϕ(x)=Λ
(
y
(·;x,T)), x ∈M, y :Θ �→Rm. (2.17)



INTEGRAL OBSERVABILITY OPERATORS 3527

Definition 2.2 of a basis remains unchanged. In the argumentation after it let

y(·) ∈ Y∗ = {y : Θ → Rm | x(T) ∈ UT }. A class of possible weight functions

k(·) is piecewise continuous and equals zero on (ϑ,T].

Theorem 2.6. For the nonstationary pair (f ,g) and any M with compact

closure in UT , it is possible to choose kiν (·) from any full system of admissible

vector functions {ki, i ≥ 1} in Lm2 (Θ) (on Y∗) such that the functions ϕν(x) =
〈kiν ,y(·;x,T)〉 (where x ∈ UT , 1 ≤ ν ≤ p) form the basis of the set Φ∗(M).
Without the restriction k(·)∈ {ki}, it is possible to make M =UT , p = 2n+1.

In Theorems 2.3, 2.5, and 2.6 it is possible to assume that M = UT if the

domain UT is known to be bounded and the solutions with x(T) ∈ Û can be

extended to the time interval [0,T ]. Subdomain Û ⊆ U contains the closure

clUT .

These results can be interpreted as a finite-dimensional presentation of Y
(Y∗) in Rp . Here one should note that the embedding operator has a special

form (projections of y(·) to Lm2 ), and local nonsingularity is not demanded

(local observability in UT by linear approximation). In other words, “Jacobian

may be singular.” In case (2.15), the output y(·) can be a nondifferentiable

function of t.

3. Duality control problem. The results of Section 2 ensure that the inte-

gral operators (1.3) provide complete information. Instead of operator links

ϕ(·) and k(·,·) a convenient constructive equation is necessary. Here are some

well-known results of a linear theory. They are presented to make the technique

used later more easily understood.

3.1. Necessary results of the linear theory. Let ẋ(t)= F(t)x(t) andy(t)=
G(t)x(t). The elements of the matrices F and G are continuous on [0,T ]. The

determination of x(T) is the same as the calculation of projections h′x(T)
on a basis Rn. Besides, the complete phase vector is not always necessary; for

instance, some elements of it are measured. Thus, for a fixed vector h∈Rn, we

consider a problem of constructing an operator for reconstructing a projection:

h′xT = I(y(·;T ,xT )). If the operator I exists, then a projection ϕ(x)= h′x is

called observable or predictable (when y(t) is known on Θ= [0,ϑ], ϑ < T ). We

denote by �= {y(·;T ,xT ) | xT ∈Rn} a set of possible measurements:

y(t)= Ψ(t)xT =G(t)Φ(t)Φ−1(T)xT , �⊂ Lm2 [0,T ], dim�≤n. (3.1)

Here Φ̇ = FΦ andΦ(0)= En. A canonical basisRn is linearly mapped by L : xT �
y(·) to the columns of a matrix Ψ(·). If these columns are linearly independent

on [0,T ] (on Θ), then dim� = dim�(Ψ(·)) = n and a linear mapping L is

invertible—a full observability (predictability) holds. A symbol � means a linear

span of columns. A vector is uniquely defined by the projections on basis
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elements:

γ ←→y(·), γ =
∫ T

0
Ψ ′(τ)y(τ)dτ = ΓxT , Γ = 〈Ψ ,Ψ〉. (3.2)

A functional which reconstructs a projection h′xT by y(·) exists only if h ∈
�(Γ). If h′xT = I(y(·)) holds for all xT ∈ Rn, then I is linear on � and it can

be represented as a scalar product 〈k,y〉L2 . All what can be obtained about

xT from y(·) are functions of projections h′xT to columns of Gram matrix

Γ . In particular, it is possible to replace a numerically ill-posed operation of

differentiation ẏ(s) by integral operator on �. If the operatorϕ(xT )= h′xT =
I(y(·)) exists, then it is better from the calculating point of view to construct

it in the form

h′xT =
∫ T

0
k′(τ)y(τ)dτ ∀xT ∈Rn,

�⇒ h= Φ−1′(T)
∫ T
o
Φ′(τ)G′(τ)k(τ)dτ.

(3.3)

Equation (3.3) is functional with respect to k(·). We reduce the problem to

studying a “pointwise” equation. For that we define a vector function

V(t)= Φ−1′(t)
∫ t

0
Φ′(τ)G′(τ)k(τ)dτ, ϑ < T,

�⇒ k(τ)= 0, τ ∈ (ϑ,T].
(3.4)

The boundary conditions are

V(0)= 0, V(T)= h. (3.5)

To obtain an equation, we differentiate (3.4) noting that Φ−1Φ = En and thus

dΦ−1/dt =−Φ−1A:

V̇ (t)=−F ′(t)V(t)+G′(t)k(t). (3.6)

Equation (3.6) is understood as a duality control system. It is necessary to trans-

fer a phase state V from zero to h by time T . In case of a predicting problem

k(τ) = 0, τ > ϑ. In terms of control theory, a set of all h, for which the pro-

jections h′xT are observable (predictable), coincides with a set of attainability

�T = {V(T)}.
Remark 3.1. Define an operator � :Rn→� as

�xT =y
(·;T ,xT ) �⇒ 〈k,y〉L2

= 〈k,�xT 〉L2
= 〈h,xT 〉Rn , h= V(T). (3.7)
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As embedding y(·) ∈ � holds, it is sufficient to consider only k(·) ∈ �. By

definition, V(T) = �∗k. Here �∗ : � → Rn is an adjoint operator. It can be

said that � :Rn → Lm2 and �∗ : Lm2 →Rn. To determine �∗k, it is necessary to

integrate a dual system (3.6) on [0,T ] or use the integral representation (3.3).

Image �∗Lm2 =�∗� coincides with �(Γ) (with a linear span of the columns of

matrix Γ = 〈Ψ ,Ψ〉). The matrix γ is a matrix of the operator �∗� : Rn → Rn :

h=�∗�xT = ΓxT .

3.2. Nonlinear case. In the domain Ω = (t1, t2)×U we consider the control

system (2.15) and firstly weaken demands: f ,g,fx , gx ∈ C(Ω). As the interval

[0,T ] and UT = {x(T)} are fixed, all further constructions can be made on

sheafs

W = {(t,x) | t ∈ [0,T ], x ∈ x(t;UT ,T)},
Wg =

{(
t,y(t)

) | t ∈ [0,T ]}. (3.8)

In the domain Q ⊃Wg we choose a weight function for measurements pro-

cessing k(·,·): Q=Q(k)⊂Rm+1, k,ky ∈ C(Q). Then the function

v(t,x)=
∫ t

0
k
(
τ,y(τ ;x,t)

)
dτ (3.9)

will be in classC1(W) because the solutions of differential equations are smooth

with respect to the initial data (t0,x0)= (t,x)∈W .

The notation v ∈ C1(W)means that v(·,·) can be extended to some domain

W̃ ⊃W and v ∈ C1(W̃). It is possible to choose W̃ as a union of integral curves

(t,x(t)) corresponding to nonextendable solutions x(·;x(T),T) (x(T)∈UT),
while (t,y(t)) are in Q. Thus even if somewhere below the values of t are

limited by the observation interval [0,T ], derivative symbols vt in the points

(0,x), (T ,x) should not cause problems. They could be considered as one-side

derivatives.

Theorem 3.2. The function v is a unique smooth solution of the linear equa-

tion

vt(t,x)+vx(t,x)·f(t,x)= k
(
t,g(t,x)

)
, (t,x)∈W, (3.10)

with zero initial conditions v(0,x)= 0, x ∈U0 = x(0;UT ,T).

Proof. Consider any point (t,x) ∈ W and the solution x(τ) with initial

data x(t)= x (τ ∈ (−ε,t+ε), ε = ε(t,x) > 0). Calculate a time derivative of v
on the solution (here D is a derivative symbol)

Lfv(t,x)=Dτv
(
τ,x(τ)

)∣∣
τ=t = vt(t,x)+vx(t,x)·f(t,x). (3.11)
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On the other hand (having in mind a specific representation of (3.9)),

v
(
τ,x(τ)

)= ∫ τ
0
k
(
s,y

(
s;x(τ),τ

))
ds

=
∫ τ

0
k
(
s,y

(
s;x(0),0

))
ds

=
∫ τ

0
k
(
s,y

(
s;x(t),t

))
ds,

Dτv
(
τ,x(τ)

)∣∣
τ=t = k

(
t,y(t;x,t)

)= k(t,g(t,x)).

(3.12)

Uniqueness. For the difference v̄ of two solutions, we obtain equation

(3.10) with zero right-hand side (first integral equation). Therefore, v̄(t,x(t))≡
const. The setW consists of integral curves on [0,T ], v̄(0,·)= 0. Thus v̄(t,x)=
0, (t,x)∈W .

The meaning of the function (3.9) and equation (3.10) is the following. If

t = T in definition (3.9), then the integral operator is obtained in the right-

hand side of (1.3). If the values of ϕ(x(T)) should be reconstructed, then a

condition v(T ,x) =ϕ(x), x ∈ UT , is added to the zero initial data for (3.10).

Thus (3.10) can be understood as an equation of phase state transfer v(t,·)
from zero to ϕ by time T . If k(·,·) (where k,ky ∈ C(Q)) brings solution to

problem (1.3), then for v(·,·), equation (3.10) holds together with boundary

conditionsv(0,x)= 0,x ∈U0 = x(0;UT ,T), v(T ,x)=ϕ(x),x ∈UT . Inversely,

if a choice of the function k(·,·) brings the solution of boundary value prob-

lem, then, substituting x by any solution x(t;x(T),T), x(T) ∈ UT , in (3.10)

and integrating the obtained identity on t on [0,T ] (at the left-hand side there

is v̇(t,x(t))), we obtain (1.3). Thus, the problem of constructing integral oper-

ators (1.3) for reconstructing the values ofϕ(x(T)) is the same as a boundary

value problem v(0,·) = 0, v(T ,·) = ϕ. Equation (3.10) is linear with respect

to a pair (k,v). Here, an analogy is appropriate with methods of Lyapunov

functions and Bellman’s dynamical programming.

Remark 3.3. Equation (3.10) can be sufficiently considered only on the set

W , consisting of a union of all possible integral curves (x(T) ∈ UT). But with

rather adequate modeling the extension problems occur rarely; the solutions

x(·;x,t) with initial data (t,x) ∈ [0,T ]× Ũ (UT ⊆ Ũ ⊆ U) are extendable to

[0, t] and possible phase curves with x(T)∈UT do not leave a known domain

Ũ . Then due to definition (3.9), v ∈ C1([0,T ]×Ũ) and (3.10) can be considered

on a set of the form of direct product [0,T ]×Ũ , which is more convenient. The

definitional domain Q of k(·,·) must contain {(t,g(t,x)) | t ∈ [0,T ], x ∈ Ũ}.
For the predicting problem k(·,·) (where k,ky ∈ C(Q)), we reduce k(t,·) = 0,

t > ϑ. Moreover, for linear k(t,y)= k′(t)y , a finite number of discontinuities

of the first kind of the vector function k(t) are possible. Continuity of v(·,·)
in (3.9) will remain, and (3.10) can be sufficiently considered outside the finite

number of sections t = ϑ, t = tj . Similar specifications for possible k(·,·) will

be omitted.
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We consider in more detail an interpretation of (3.10) as the linear control

system. For that, it is convenient to consider the operator form

V̇ (t)=−A(t)V(t)+B(t)K(t), V(0)= 0, (3.13)

V(t)= v(t,·) : x
(
t;UT ,T

)
�→R1, V̇ (t)= vt(t,·), (3.14)

A(t)V(t)= vx(t,·)f (t,·), K(t)= k(t,·), B(t)K(t)= k(t,g(t,·)). (3.15)

If there are no extension problems (see Remark 3.3), then (3.13) is a linear

control system in a “standard form” in a phase state C1(Ũ). Otherwise, the def-

initional domain of a phase vector v(t,·) (as a function of x) can be changed

when t ∈ [0,T ]. To satisfy (1.3) choosing K(·), one should solve the problem

V(T) = ϕ (x ∈ UT , x ∈ Ũ). Thus, we are interested in finding a set of at-

tainability from zero point �T = {V(T) = v(T ,·)} ⊆ C1(UT ). By construction,

�T ⊂ Φ(UT ). The restriction |k(t,y)| ≤ k is not considered. In applications,

the phase orbits are usually situated in a limited domain and, if necessary, it is

possible to use αk with a small constant α, dividing later the obtained result

of integration in (1.3) by α.

The control of systems with infinite-dimensional phase space is a popular

subject in general system theory and functional analysis. In this particular case

there is the following specificity. It is unnecessary to study full controllabil-

ity (or ε-controllability) of the infinite-dimensional system (3.13). To observe

a pair (f ,g), it is sufficient to have wi : UT → R1 in the set of attainability

�T such that (w1(x), . . . ,wp(x)) ↔ x ∈ UT , x = H(w1(x), . . . ,wp(x)). If it is

necessary to determine only the values of the given function ϕ : UT → R1

(where ϕ(x)= Λ(y(·;x,T))), then it is sufficient to ascertain either inclusion

ϕ ∈�T or dependenceϕ =Hϕ(w1, . . . ,wp) in a domain UT and use the opera-

tor ϕ(x(T))=Hϕ(µ1, . . . ,µp). Here µi are calculated as integrals of functions

ki(τ,y(τ)) on τ ∈ [0,T ].
In a linear case f = F(t)x, y = G(t)x, and k = k′(t)y , the observable pro-

jections h′x(T) (where UT = Rn) are described by the set {h = V(T)} due to

(3.6), that is, the linear span � of basis Vi(T), 1 ≤ i ≤ p, p ≤ n. Controlla-

bility (3.6) means that � = Rn, that is, {V ′i (T)x, 1 ≤ i ≤ n} ↔ x ∈ UT(Rn),
p = n. For (3.13) as a dual system to (f ,g), we are interested in “nonlinear

projections” ϕ(x(T)) = v(T ,x(T)) and a “fullness” of not linear, but func-

tional hull of sets of elements of the attainability set. As a linear space, the

set �T is infinite dimension-al with the exception of singular cases (e.g., if f
is linear, g is polynomial). It can be proved that even if linear k(t,y)= k′(t)y
are considered, �T is finite dimensional only in the case when the linear hull

�{y(·;x,T) | x ∈ UT } is finite dimensional (and then dim�T = dim�). These

facts approve using a functional hull for a nonlinear observation problem (yet

linear control problem (3.13)) instead of a linear one.

Definition 3.4. A basis in M ⊆ UT of the set of attainability of the dual

control system �T = {V(T)= v(T ,·) :UT →R} is a finite setwi ∈�T for which
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w(x) = Hw(w1(x), . . . ,wp(x)) for all x ∈ M and for all w ∈ �T . The system

(3.10) (or (3.13)) is considered controllable in a subset M ⊆ UT if a basis wi
in M exists and (w1(x), . . . ,wp(x))↔ x ∈M (i.e., a functional hull of basis wi
coincides with a whole space of functions of x ∈M).

Controllability in M ⊆ UT does not depend on a basis �T in M . For the full

system {ki, i ≥ 1} in Lm2 [0,T ] of piecewise continuous vector functions, we

define elements vi(T ,·)∈�T , vi(T ,x)= 〈ki,y(·;x,T)〉. “Fourier coefficients”

〈ki,y〉 are uniquely determined on wν(x) in M : vi(T ,x) = Hi(w1(x), . . . ,
wp(x)). Thus, (w1(x), . . . ,wp(x))↔y(·;x,T), x ∈M .

Thus we come to generalization of duality in control and observation the-

ory to a nonlinear case. We consider at once a nonstationary case (2.15) and

a predicting problem (observation problem is corresponded by ϑ = T ). Con-

sider the suggestions pointed out above about real analyticity with respect to

phase variables in (2.15). Then, for all M with a compact closure in UT , it is

possible to select elements kiν (·), 1 ≤ ν ≤ p, from any full system in Lm2 (Θ)
of piecewise continuous vector functions {ki, i ≥ 1} such that the functions

wν(x)= 〈kiν ,y(·;x,T)〉 = viν (T ,x), x ∈UT , form a basis in M of attainability

set �T . Provided that the conditions mentioned after Theorem 2.6 hold, this

is also true for M = UT . If ϑ < T , then kiν (t) = 0, k(t,·) = 0, t > ϑ is always

assumed. Without an a priori restriction k(·)∈ {ki, i≥ 1} on the time interval

Θ = [0,ϑ], it is possible to choose a family of sets {kj(·)} (where 1 ≤ j ≤ p,

p = 2n+1) from admissible k(·) such that the corresponding wj = vj(T ,·)
form a basis of �T in M =UT . In a brief form, the following result is obtained.

Theorem 3.5. The set Φ∗(M) of predictable functions in M is described as

a functional hull �(M) = {H(w1, . . . ,wp)} of some basis wi in M of the attain-

ability set �T . In particular, only linear weight functions k(t,y) = k′(t)y can

be considered and assume that M = UT , p = 2n+1. Contraction of elements

�(UT ) to M form Φ∗(M). A pair (f ,g) is predictable (observable when ϑ = T )

in M ⊆UT if and only if a dual system (3.10) is controllable in M .

In a stationary linear case, the set of attainability �T is conveniently de-

scribed as a linear hull of columns of the controllability matrix � = (G′, . . . ,
F ′n−1G′). For the infinite-dimensional dual system (3.13), things are more com-

plex. Let, for simplicity, f = f(x), g = g(x), m = 1, ϑ = T , k(t,y) = k(t)y .

Consider consistent derivatives L0
fg(x) = g(x), Li+1

f g(x) = (Lifg(x))x ·f(x),
x ∈ UT (x ∈ U). Derivatives of the output y(i)(t) equal Lifg(x(t)). Theoret-

ically, it is convenient to study the system of n equations Lifg(x) = y(i)(T)
from the point of view of solvability with respect to x ∈ UT . Use of injection

criteria for mappings fromM ⊆Rn to Rn gives sufficient conditions of observ-

ability in M . But consequent differentiation is hardly possible in practice. In

this sense, operators (1.3) are correct; each integration is done independently

of another and the measurements are smoothed. In applications, usually the
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components of the vector functions f and g are superpositions of elemen-

tary functions—then Lifg are as well. In operator terms (3.13) the derivatives

Lifg = AiB (where A = Dx(·)f , B = g, BK(t) = k(t)g) are analogues of the

columns of controllability matrix.

Remark 3.6. Using Taylor’s formula, with sufficiently small T , we obtain

the representation of the elements of �T as a series: Li = Lifg, v(T ,x) =
c0+c1L1(x)+c2L2(x)+··· , ci = 〈k,(τ−T)i〉/i!. Here arises a moment power

problem. Thus in a general case, basis elementsAiB = Lifg (columns of control-

lability matrix) do not themselves belong to �T . Differentiation of the output

cannot be replaced by integral operators. The finite decomposition v(T ,x) on

Li(x) is possible, but coefficients will be functions of x. A set �T depends on

T , and a restriction k(t)= 0, t > ϑ, for predicting problem, reduces �T (unlike

the linear model).

3.3. Ideal observability. We briefly cover the observability problem of the

perturbed systems. Consider a dual system (3.10) on the set [0,T ]× Ũ . The

solutions x(·;x,t) with initial data (t,x)∈ [0,T ]×Ũ can be extended to [0, t],
and possible phase curves (x(T) ∈ UT ⊆ Ũ) do not leave the known domain

Ũ (Remark 3.3). Now let the movement equations in the model (2.15) be per-

turbed:

ẋ = f(t,x)+
r∑
i=1

ξi(t)hi(t,x), hi,hix ∈ C(Ω). (3.16)

Functions ξi(t) are unknown and piecewise continuous, |ξi(t)| ≤ ξ̄ = const.

Assume, choosing a possible function k(·,·) in (3.10), that problem (1.3) is

solved (v(T ,x)=ϕ(x), x ∈UT(Ũ)) and additionally that the following holds:

vx(t,x)·hi(t,x)= 0, (t,x)∈ [0,T ]×Ũ , 1≤ i≤ r . (3.17)

Then in the right-hand side of the dual system (3.10), it is possible to re-

place f by the right-hand side of (3.16). The formal result obtained will be

named (3.10)ξ . Consider any perturbed solution x(·;x(T),T ,ξ) with initial

data x(T) ∈ UT , defined on [0,T ] and with a phase orbit in the set Ũ . Substi-

tute it instead of x in (3.10)ξ and integrate this identity on t ∈ [0,T ]:

ϕ
(
x(T)

)= ∫ T
0
k
(
τ,y

(
τ ;x(T),T ,ξ

))
dτ, x(T)∈UT , x(τ)∈ Ũ . (3.18)

In analogy with a linear case, such operator will be called an ideal observabil-

ity operator; a weight function k(·,·) does not depend on the realization of

perturbations ξ = (ξ1, . . . ,ξr )′. They are taken into consideration indirectly by
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means of measurements y(t) = g(t,x(t)). It is possible to estimate the com-

ponentϕ(x(T)) of the phase state when perturbations are unknown and with

given uncertainty x(T) ∈ UT . In the conditions of extendability on t this can

be done periodically.

In the operator form (3.13), condition (3.17) has a form of linear phase re-

strictions: P(t)V(t)= 0 : vx(t,·)H(t,·)= 0, H = (h1, . . . ,hr ).
In case the directions of perturbations hi are fixed, we obtain the problem

of controlling not only a finite state v(T ,·) = ϕ but also a gradient vx(t,·).
Provided that PV is small in the appropriate norm, one obtains integral ob-

servability operator that is stable to perturbations. Conversely, it is possible

to solve unperturbed problem and then condition (3.17) gives the description

of all invariant directions hi, which is an important property of the pair (ϕ,k).

4. Approximation schemes. Firstly, we consider a power series technique.

In the domainΩ = (t1, t2)×U consider the observation model (2.15) with posed

suppositions of analyticity on phase variables. Series will be constructed with

respect to deviations from some basis movement, which is considered zero

(this can be obtained by change of variables): f(t,0)= 0, g(t,0)= 0, 0∈ UT ⊆
U . Firstly, consider only linear admissible weight functions k(t,y)= k′(t)y . In

some neighborhood Q of zero when t ∈ [0,T ], the functions v(t,x), f(t,x),
and g(t,x) are expanded in power series of x. The coefficients are continu-

ous on [0,T ], smoothness of coefficients for v(t,x) may vanish only in dis-

continuities of the first kind of k(t). Convergence is uniform with respect to

t ∈ [0,T ]. Equating homogeneous polynomials of x of the same degree (upper

index p ≥ 1) at both parts in the dual system (3.10), we get

v(p)t (t,x)+
p∑
i=1

v(i)x (t,x)·f (p−i+1)(t,x)= k′(t)g(p)(t,x), (4.1)

where v(p)(0,x) = 0, x ∈ Q, t ∈ [0,T ]. Homogeneous polynomial w(p)(·) of

degree p is corresponded by a unique symmetrical p-linear form w(p)(·, . . . ,·)
from the condition w(p)(x)≡w(p)(x, . . . ,x), x ∈Rn [1, 2]. For instance, poly-

nomial v(2)(x) = x′Px is corresponded by the bilinear form v(2)(x,z) =
v(2)(z,x)= x′(P+P ′)z/2. In terms of symmetrical polylinear forms (t is con-

sidered as a parameter),

v(p)t (t,x, . . . ,x)+
p∑
i=1

i∑
j=1

v(i)
(
t,x, . . . ,f (p−i+1)(t,x, . . . ,x), . . . ,x

)
= k′(t)g(p)(t,x, . . . ,x).

(4.2)

Due to symmetry, it is possible to equate the coefficients at the same lexico-

graphically ordered monomials xi1 ·····xip :
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V̇ (p)+
p∑
i=1


 i∑
j=1

E⊗···⊗F(p−i+1)′ ⊗···⊗E

·V(i) =G(p)′k. (4.3)

The index j means an ordinal of F(p−i+1)′(t) in a sequence of i products ⊗.

A symbol ⊗ means direct (tensor) matrix product [10]. In A⊗ B, instead of

elementsaij of a matrixA there are blocksaijB. The set of indexes (i1, . . . , ip) is

lexicographically before (j1, . . . ,jp) if the first difference of nonzero differences

j1 − i1, . . . ,jp − ip is greater than zero. The name E is for unit matrix n×n,

X(1) = x, X(s) = x⊗···⊗x,

V(s)
′
(t)X(s) = v(s)(t,x, . . . ,x)= v(s)(t,x),

G(s)(t)X(s) = g(s)(t,x, . . . ,x)= g(s)(t,x),
F(s)(t)X(s) = f (s)(t,x, . . . ,x)= f (s)(t,x).

(4.4)

For a united vector V = (V(1)′ , . . . ,V (p)′ , . . .)′, one obtains

V̇ (t)=−�′(t)V(t)+	′(t)k(t), V(0)= 0. (4.5)

Here 	 = (G(1),G(2), . . .), the first n rows of upper block-triangular matrix �(t)
are equal to (F(1),F(2), . . .) and next n2 rows are equal to

(
0,F(1)⊗E+E⊗F(1), . . . ,F(p)⊗E+E⊗F(p), . . .) (4.6)

and so on.

Note that in such notation (f ,g) will be written as

Ẋ =�(t)X, y = 	(t)X, X = (x′,X(2)′ , . . .)′. (4.7)

Multiplying (4.5) by X in a scalar sense, we obtain a dual control system:

v(t,x)= V ′(t)X. Here is a complete analogy with (1.1), (1.2) in the linear case,

but in the obtained “coordinate” representation (4.5), (4.7), the matrices � and

	 are infinite. In a stationary case (when observing in a neighborhood of equi-

librium), blocks �
′i	′ of a controllability matrix are the coefficients of the con-

sequent derivatives Lifg(x)= 	�iX.

Nonlinear functions k(·,·)will be limited to being real analytic, k(t,0)= 0. It

is sufficient to be continuous and analytic with respect to y in a neighborhood

of zero (where continuity with respect to (t,y) is preserved in (t1, t2)×P for

(t1, t2)⊃ [0,T ] and in a neighborhood P of a zero in Cm). Then after equating
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homogeneous polynomials and transfering to symmetrical forms, one obtains

V̇ (p)(t)+

 p∑
j=1

E⊗···⊗F(1)′(t)⊗···⊗E

·V(p)(t)

+
p−1∑
q=1


 q∑
j=1

E⊗···⊗F(p−q+1)′ ⊗···⊗E

·V(q)(t)

−G(p)′ ·k(1)(t)−(G(2)′ ⊗G(1)′ +G(1)′ ⊗G(2)′)·K(2)(t)−···
−
∑
G(i1)

′ ⊗···⊗G(ip−1)′ ·K(p−1)

=G(1)′ ⊗···⊗G(1)′ ·K(p).

(4.8)

Here K(s)′(t)Y (s) = k(s)(t,y), Y(s) = y ⊗ ··· ⊗y , i1+···+ip−1 = p. Thus in

(4.5), there will be a vector K(t)= (k(1)′ ,K(2)′ , . . .)′ instead of k(t). The firstm
rows of 	 are equal to (G(1),G(2), . . .), next m2 rows are equal to

(
0,G(1)⊗G(1),G(2)⊗G(1)+G(1)⊗G(2), . . .), . . . ,V ′(t)X = v(t,x). (4.9)

For approximate calculations, it is possible to approximate ϕ(x) (ϕ(0) = 0)

by the polynomialϕ(x)≈ϕ(1)(x)+···+ϕ(r)(x)=W ′rXr , Xr = (x′, . . . ,X(r)′)′,
and solve a finite-dimensional linear problem Vr (T) = (V(1)′ , . . . ,V (r)′)′ ≈ Wr
choosing Kr (t) = (k(1)′ , . . . ,K(r)′)′. Block-triangular structure of matrices in a

dual system simplifies the problem and allows writing a subsystem for Vr (t),
which will not include V(i), K(i), i > r . This property consequently allows solv-

ing control problems in the form V(j)(T)≈W(j). Finally,

ϕ
(
x(T)

)≈ ∫ T
0
kr
(
t,y(t)

)
dt, kr (t,y)=K′r (t)Yr , (4.10)

kr is a polynomial of degree r ofy . Due to the growth of dimension, large r are

not used. In applications, when linear approximation is singular, it is possible

to consider r = 2. In the problem of ideal observability, there will be additional

restrictions H′jV(t)= 0, where Hj are constructed using hj in the same way as

a matrix � is using f .

Instead of power functions, it is possible to use other functions, taking into

consideration specificity of nonlinearity of f and g. Analyticity is not neces-

sary. Choose basis ψ1(x), . . . ,ψN(x) (where x ∈ Ũ , see Remark 3.3). Choose

functions hj , 1 ≤ j ≤ r , such that ϕ(x) and hj(t,g(t,x)) are rather precisely

approximated in a basis when x ∈ Ũ :

ϕ(x)≈
N∑
ν=1

dνψν(x), hj
(
t,g(t,x)

)≈ N∑
ν=1

bjν(t)ψν(x). (4.11)
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In the same way, approximate

�ψν =ψνx(x)·f(t,x)≈
N∑
ν=1

aνµ(t)ψµ(x). (4.12)

Construct the functions k, v in the form

k(t,y)≈
r∑
j=1

kj(t)hj(y), v(t,x)≈
N∑
ν=1

vν(t)ψν(x). (4.13)

After substituting the above expressions in the dual system (3.10) and equating

the coefficients at ψν , we obtain a finite-dimensional two-point problem

V̇ (t)=−A′V(t)+B′k(t), V(0)= 0, V(T)≈ d,
d= {dj}, V = {vj}, k= {kj}, A= {aij}, B = {bij}. (4.14)

Finally,

ϕ
(
x(T)

)≈ ∫ T
0

r∑
j=1

kj(t)hj
(
t,y(t)

)
dt. (4.15)

For the predicting problem kj(t)= 0, t > ϑ should be considered.

The problem can be understood from the point of view of the theory of

approximate solving of linear boundary value problems. Select any smooth

function

v(t,x) : v(0,x)= 0, v(T ,x)=ϕ(x), x ∈ Ũ (v(t,x)= tϕ(x)/T).
(4.16)

Add a sumα1v1(t,x)+···+αNvN(t,x), vi(0,x)= vi(T ,x)= 0 (e.g., vi(t,x)=
t(t−T)ϑi(t)ηi(x)). In the same way, k(t,y) = β1k1(t,y)+···+βMkM(t,y).
Substituting these expressions in the distributed dual equation (3.10), we ob-

tain a discrepancy R(t,x;α1, . . . ,βM). It should be minimized on parameters

in the appropriate norm in [0,T ]× Ũ . In the ideal observation problem, it is

necessary to consider also a discrepancy in phase restrictions. Linearity with

respect to a pair (k,v) allows using a large amount of direct methods which

are developed for the problems of mathematical physics.

Usually, only a part of phase variables is measured: yi = xi, i≤m. Formally,

this can be achieved by changing or adding variables. Even for weaker suppo-

sitions of smoothness, in the right-hand side of the dual system (3.10) there is

a function of t, x1, . . . ,xm, and it is possible to consider the problem

�v = 0, v(0,·)= 0, v(T ,·)=ϕ, �v =
{(
vt+vx ·f

)
xi

}n
i=m+1

.
(4.17)
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As a weight function k(t,y1, . . . ,ym) in the integral observation operator (1.3)

there will be an expression Lfv .

Note that the initial problem is nonlinear inverse, but finally we used di-

rect methods of solving a linear equation though being distributed (due to

constructing observation operators for the domain of a phase space).
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[9] N. N. Krasovskĭı, Theory of Control of Motion: Linear Systems, Izdat. Nauka,

Moscow, 1968 (Russian).
[10] P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.
[11] H. Nikaidô, Convex Structures and Economic Theory, Mathematics in Science and

Engineering, vol. 51, Academic Press, New York, 1968.
[12] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in

Several Variables, Academic Press, New York, 1970.
[13] K. E. Starkov, Number characteristics of observability for nonlinear continuous-

time control systems, IMA J. Math. Control Inform. 17 (2000), no. 4, 425–
437.

[14] Yu. V. Zaika, Stable discrete observation programs in analytic dynamical systems,
Math. Notes 66 (1999), no. 2, 153–159.

Yury V. Zaika: Institute of Applied Mathematical Research, Karelian Research Center,
Russian Academy of Sciences, Petrozavodsk 185610, Russia

E-mail address: zaika@krc.karelia.ru

mailto:zaika@krc.karelia.ru

