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We study the compactness of bounded subsets in a Wiener amalgam whose local
and global components are solid Banach function (BF) spaces on a locally compact
group. Our main theorem provides a generalization of the corresponding results
of Feichtinger. This paper paves the way for the study of compact multiplier op-
erators on general Wiener amalgams on the lines of Feichtinger.
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1. Introduction. The concept of Wiener amalgams on a locally compact

group was introduced by Feichtinger [4] in 1977. In a series of brilliant papers

[4, 5, 7, 8], Feichtinger has explored the vital role of Wiener amalgams in general

harmonic analysis and its various applications. These spaces, in fact, describe

the global and local behaviours of functions or distributions independently

and provide very convenient generalizations of the classical function and se-

quence spaces. Initially, in 1926, Wiener [21] studied a special case of amal-

gam spaces on the real line in the form of mixed normed spaces. Feichtinger,

therefore, in the above-mentioned papers, named them “Wiener-type spaces.”

But in subsequent papers (cf. [11, 12]) he has used the nomenclature “Wiener

Amalgams” and made a distinction from ordinary amalgam spaces (cf. [10,

page 395]). Fournier and Stewart [16], in a survey article, have given in detail

the construction of ordinary amalgams using Lp-spaces as local and Lq-spaces

as global components and pointed out a number of applications in classical

analysis.

In order to define Wiener amalgams W(B,Y)(Rm) over m-dimensional Eu-

clidean spaces, Feichtinger has used the spaces S(Rm) of tempered distribu-

tions as a reservoir to define the Bloc(Rm) space. Since the notion of deriva-

tion is not defined on locally compact groups, we cannot use the direct gen-

eralization of the space of tempered distributions S(Rm). On the other hand

the concept of Schwartz-Bruhat spaces (cf. [1]) of rapidly decreasing smooth

functions imposes too stringent conditions on test functions, while their topo-

logical dual spaces of tempered distributions, involving Frechet-type spaces,

are too general for use in the real situations. Therefore, we follow the well-

known Feichtinger algebra track (cf. [6]) to develop a Banach space �
p
w(�)

http://dx.doi.org/10.1155/S0161171203212205
http://dx.doi.org/10.1155/S0161171203212205
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


3504 S. S. PANDEY

of test functions and the space of its antifunctionals �
p∼
w (�), with � being a

locally compact group and 1≤ p <∞, on the lines of Feichtinger and Gröchenig

[15]. Moreover, by virtue of the inclusion relations

�
p
w ⊆�1

w ⊆
(
�1
w
)¬ ⊆�

p∼
w (�), (1.1)

our reservoir spaces �
p∼
w (�) are larger than that of Feichtinger and Gröchenig

[15]. We define the Wiener amalgam W(B,Y)(�) on the lines of Feichtinger

using the space �
p∼
w (�) in place of S(Rm).

The problem of compactness in Lp-spaces on locally compact groups was

studied by Weil [20]. The corresponding results for Orlicz spaces have been

discussed by Bund [2]. More general results on compactness in Köthe spaces

have been obtained by Goes and Welland [17]. The compactness problems for

various spaces of differentiable functions on the Euclidean spaces have been

studied by Nikol’skĭı [18].

Feichtinger [9] has studied in detail the problem of compactness in trans-

lation-invariant Banach spaces of distributions on locally compact groups. His

theorems are more general than earlier results in this line of work and hold

true even for the space of ultra distributions on locally compact groups. He

has pointed out that compactness criteria hold for a family of much more

general Banach spaces of distributions defined by decomposition methods,

including the usual Besov spaces (cf. [13]). Feichtinger has also discussed in

[13] the applications of his results for the study of compact multipliers on

translation-invariant Banach spaces of functions or distributions on locally

compact groups.

The purpose of this paper is to study the compactness of bounded subsets

of a general Wiener amalgam W(B,Y)(�), where the local and global compo-

nents B and Y are both solid Banach function (BF) spaces and satisfy some

other suitable conditions. In Section 2, we give the necessary definitions and

concepts for use in Section 3 which deals with the weighted Banach spaces, and

in Section 4, we describe the partition of unity on �. In Section 5, we define the

Wiener amalgams W(B,Y)(�) and in Proposition 5.2, we mention some useful

properties of these spaces. In Section 6, we define spline quasi-interpolation

operators and state two useful lemmas. Section 7 is devoted to the study of

tightness and equicontinuity of a bounded subset in a Wiener amalgam space.

Theorem 8.1 is the main result of this paper, which provide a generalization of

the corresponding results of Feichtinger (cf. [9, Theorem 2.2] and [12, Propo-

sition 5, page 131]).

2. Preliminaries. We suppose that � is a locally compact group and Γ its

dual group consisting of all continuous characters on �. We denote by dx and

dγ the normalized Haar measures on � and Γ , respectively. We also assume

that � is a σ -compact group so that all sums, coverings, and index sets on �
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are countable. We define the left- and right- translation operators on � by

Lxf(y)= f(y−x) ∀x,y ∈ �,

Rxf(y)= f
(
xy−1)∆−1(y),

(2.1)

and the involution functions f̆ and f∇ by

f̆ (x)= f(−x), f∇(x)= f(−x), (2.2)

where ∇ denotes the Haar modular function on �.

We denote the Fourier transform of f on � by f̂ such that

f̂ (γ)=
∫

�
(−x,γ)f(x)dx. (2.3)

We denote by C0(�) the space of all continuous functions on � vanishing

at infinity and by Cc(�) the topological vector space of all continuous func-

tions on � with compact support. The space Cc(�) is endowed with its natural

inductive limit topology and its topological dual can be identified with R(�),
the space of all Radon measures on �. Also, the closure of Cc(�) in L∞(�) is

identified with C0(�). The space L1
loc(�) of all locally integrable functions on �

is considered as a closed subspace of R(�), that is, two measurable functions

which coincide locally almost everywhere (l.a.e) are identical as usual. This im-

plies that the topology on L1
loc(�) is generated by the system of seminorms

{sK} given by

sK(f )=
∫
K

∣∣f(x)∣∣dx, (2.4)

where K varies over the family of all compact subsets of �.

3. Weighted Banach spaces on �. We assume thatm : �→R+ is a submul-

tiplicative weight function on �. It is well known that every submultiplicative

weight function is locally bounded.

A locally integrable function w : � → R+ is called a right moderate weight

function provided that there exists a submultiplicative weight function m on

� such that

w(x+y)≤w(x)m(y) ∀x,y ∈ �. (3.1)

We also assume that all weight functions are symmetric and satisfy the non-

quasianalyticity Beurling-Domer condition (BD condition) (cf. [19, Chapter VI,

Section 3]). It can easily be seen that every moderate weight function is locally

bounded.
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We denote by Lpw(�), 1 ≤ p < ∞, the Banach space of functions on � with

respect to the norm

‖f‖p,w ≡
∥∥f | Lpw∥∥=

(∫
�

∣∣f(x)∣∣pwp(x)dx
)1/p

<∞. (3.2)

In case p = ∞, we denote by L∞w(�) the Banach space of all measurable

functions f on � under the norm

∥∥f | L∞w∥∥= esssup
{∣∣f(x)∣∣w(x) : x ∈ �

}
<∞. (3.3)

The conjugate space of Lpw(�) is the space Lp
′
w′(�), wherew′ =wp/(1−p) and

1/p+1/p′ = 1. It can easily be seen that Lpw(�), 1<p <∞, is a reflexive Banach

space and L1
w(�) is a Banach algebra under convolution, which is known as

Beurling algebra,

Lpw∗L1
w ⊆ Lpw,∥∥(g∗f) | Lpw∥∥≤ ∥∥g | L1

w
∥∥∥∥f | Lpw∥∥ (3.4)

for all g ∈ L1
w(�) and f ∈ Lpw(�).

Also, it can be verified that the space Lpw(�) is invariant under left- and right-

translation operators Lx and Rx , respectively, and the operator norms satisfy

the condition

m(x)≥ {∥∥∣∣Lx | Lpw∣∣∥∥,∥∥∣∣Rx | Lpw∣∣∥∥}. (3.5)

Let (B,‖·‖B) be a Banach space of measurable function on �. The space B
is called a BF space provided that it is continuously embedded into L1

loc(�).
The space B is known as a solid BF space if it satisfies the following solidity

condition: f ∈ B, g ∈ L1
loc(�) with |g(x)| ≤ |f(x)| l.a.e. ⇒ g ∈ B, ‖g‖B ≤ ‖f‖B .

The Lp-spaces are simple examples of solid BF spaces.

We write

u(x)= ∥∥∣∣Lx | B∣∣∥∥,
v(x)=∆(x−1)∥∥∣∣Rx−1 | B∣∣∥∥,

w(x)≥ cmax
{
u(x),u

(
x−1),v(x),v(x−1)∆(x−1)}, 1≤w(x) <∞,
w(x)=w(x−1)∆(x−1).

(3.6)

By virtue of the closed graph theorem, the operators Lx and Rx are bounded

on B for each x in �. Thus the maps w : x→ ‖|Lx | B|‖ and w : x→ ‖|Rx | B|‖
are well defined and submultiplicative on �.

4. Partition of unity on �. It is well known that the partition of unity pro-

vides a very useful tool for discrete descriptions on a locally compact group.
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We suppose that U is a compact neighbourhood of the identity e in �. A

family X = (xi)i∈I ∈ � is called U -dense provided that (xiU)i∈I covers �, that

is, ∪i∈IxiU = �.

The family X is called separated if the sets (xiU)i∈I are pairwise disjoint,

that is, xiU∩xjU =φ for i≠ j.
The family X is called relatively separated provided that it is a finite union

of separated sets.

A family Ψ = (ψi)i∈I in C0(�) is called a bounded uniform partition of unity

subordinate to U or of size U(U -BUPU) provided that the following conditions

hold:

(i) X = (xi)i∈I is a relatively separated family in �;

(ii) 0≤ψi(x)≤ 1 for all i∈ I, x ∈ �;

(iii) suppψi ∈ xiU for all i∈ I;
(iv)

∑
i∈I ψi(x)= 1.

As a consequence of condition (iv), we have

∪i∈IxiU = �, (4.1)

which implies that the family X = (xi)i∈I is U -dense.

5. Wiener amalgams on �. Let (π,�) be an irreducible continuous unitary

representation of a locally compact group � on a Hilbert space �. If f ,g ∈�,

the wavelet transform of f with respect to g is given by

Vgf : x �→ 〈π(x)g,f〉. (5.1)

The representation π is called integrable provided that Vgg ∈ L1(�) for all

g ∈�.

On the lines of Feichtinger and Gröchenig [15], we define the set of analyzing

vectors hpw(�) by

hpw(�)=
{
g : g ∈�, Vgg ∈ Lpw(�)

}
, 1≤ p <∞. (5.2)

Now, for a fixed g ∈ hpw(�), we define

�
p
w(�)=

{
f : f ∈�, Vgf ∈ Lpw(�)

}
(5.3)

and equip it with the norm

∥∥f |�
p
w
∥∥= ∥∥Vgf | Lpw∥∥, 1≤ p <∞. (5.4)

Following Feichtinger and Gröchenig (cf. [14, Lemma 4.2]), it can be verified

that �
p
w(�) is a Banach space of distributions which are dense in �, and the

embeddings

�
p
w(�)↩�↩�

p
w
∼
(�) (5.5)
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are continuous, where �
p
w
∼
(�) is the space of all continuous conjugate-linear

functionals on �
p
w(�). Also, the definitions of �

p
w(�) and �p

w
∼(�) are inde-

pendent of the choice of g in hpw(�). Since the inner product on �×� extends

to a sesquilinear form on �
p
w×�

p
w
∼

, the extended wavelet transforms

Vgf(x)=
〈
π(x)g,f

〉
(5.6)

are well defined for all g ∈�
p
w(�) and �

p
w
∼
(�).

Now, on the lines of Feichtinger [12, page 124], we introduce the concept of

uniformly localizable Banach space on �.

Definition 5.1. A Banach space (B,‖ · ‖B) on � is said to be uniformly

localizable if the following conditions hold:

(i) the embeddings �
p
w(�)↩ B↩�

p
w
∼
(�) are continuous;

(ii) for every g ∈�
p
w(�),

(a) g ·f ∈ B for all f ∈ B,

(b) ‖Lxg ·f‖B ≤ C‖f‖B for all x ∈ � and f ∈ B, where C is a positive

constant depending on g.

The Banach space (B,‖ ·‖B) is also assumed to be isometrically left trans-

lation invariant and L1
w(�)-module in the algebraic sense, that is,

∥∥Lxf∥∥B = ‖f‖B ∀f ∈ B,
L1
w∗B ⊆ B,

‖g∗f‖B ≤
∥∥g | L1

w
∥∥‖f‖B.

(5.7)

The space (B,‖·‖B) is called a local component.

Next, a global component (Y ,‖·‖Y ) on � is defined such that

(i) Y is a solid BF space;

(ii) Y is left and right translation invariant in the sense of

∥∥Lxf∥∥Y ≤ C ·w‖f‖Y (5.8)

and a similar inequality for the right translation;

(iii) Y is a Banach convolution module with respect to the Beurling algebra

L1
w(�).

Using B and Y as above,

W(B,Y)(�)= {f : f ∈ Bloc(�), K(φ,f)∈ Y
}

(5.9)

is said to be a Wiener amalgam space, where

Bloc(�)=
{
f : f ∈�

p
w(�), φf ∈ B, ∀φ∈�

p
w(�)

}
(5.10)

and the control function K(φ,f) is given by

K(φ,f)(x)= ∥∥Lxφ·f∥∥B. (5.11)
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The space W(B,Y)(�) is endowed with the norm

∥∥f |W(B,Y)∥∥= ∥∥K(φ,f)∥∥Y . (5.12)

Since B and Y are solid Banach spaces, it can easily be seen that the space

W(B,Y) is solid.

The following proposition gives some useful properties of Wiener amalgam

spaces.

Proposition 5.2. (i) The space W(B,Y)(�) is continuously embedded in

Bloc(�).
(ii) The space W(B,Y)(�) is a Banach space under the norm (5.12).

(iii) The spaceW(B,Y)(�) is a Banach convolution module with respect to the

Beurling algebra L1
w(�).

The proof follows on the lines of Feichtinger [7] (see also [3, Section 5]).

6. Spline quasi-interpolation operators. If X = (xi)i∈I is a countable dis-

crete set of sampling points in � and U is a compact neighbourhood of the

identity e in �, then the U -oscillation of a function f ∈ B is defined by

f #
U(x)= sup

x∈U

∣∣f(x+u)−f(x)∣∣, (6.1)

where f #(x) denotes the local maximal of a function f such that

f #(x)= sup
x∈U

∣∣f(x)∣∣. (6.2)

If f ∈ B, then it is obvious that f # and f #
U both belong to B and we have

(f ∗g)# ≤ |f |∗g#(x), (6.3)

(f ∗g)#U ≤ |f |∗g#
U(x). (6.4)

Now, on the lines of Feichtinger [12, page 127], we define a spline quasi-

interpolant for any continuous function f on � with respect to aU -BUPU family

Ψ = (ψi(x))i∈I in the form

SpΨ f =
∑
i∈I
f
(
xi
)
ψi(x), (6.5)

which may be regarded as an irregular spline approximation of f . Since

∣∣SpΨ f
∣∣≤ f #, (6.6)

we have

∥∥SpΨ f | B
∥∥≤ ∥∥f # | B∥∥. (6.7)
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We also define a discretization operator mapping locally integrable func-

tions into discrete measures by

DΨf =
∑
i∈I

〈
f ,ψi

〉
δxi ∀f ∈ L1

loc(�). (6.8)

We give the following two results on the properties of spline quasi-inter-

polant corresponding to those of Feichtinger [12] on any n-dimensional Eu-

clidean space.

Lemma 6.1. If C0(�) is the space of all continuous functions vanishing at

infinity, then

∥∥SpΨ f |W
(
C0,Y

)∥∥≤ CU∥∥f |W(C0,Y
)∥∥ (6.9)

with CU being a constant depending on U .

Lemma 6.2. If f ∈W(C0,Y )(�), then f #
U ∈W(C0,Y ) and

∥∥(SpΨ f −f
) |W(C0,Y

)∥∥ �→ 0 as U �→ e, (6.10)

provided that Cc(�) is a dense subspace of Y .

The proof of these lemmas follows on the lines of Feichtinger [12].

7. Tightness and equicontinuity in Wiener amalgam spaces on �. On the

lines of Feichtinger (cf. [12, page 129]), we say that a bounded setM in a Banach

space (B,‖·‖B) is (uniformly) tight with respect to �
p
w(�) provided that, for

any given ε > 0, there exists h∈�
p
w(�) satisfying the following conditions:

(a) ‖h·f | B‖ ≤ C‖f | B‖ for all f ∈ B;

(b) ‖h·f −f | B‖ ≤ ε‖f | B‖ for all f ∈M .

A bounded subset M in B is called equicontinuous if, for any given ε > 0,

there exists a compact neighbourhood U of the identity e in � such that

∥∥Lxf −f | B∥∥≤ ε ∀f ∈M, x ∈U. (7.1)

Now, in order to characterize equicontinuity in the Wiener amalgam space

W(C0,Y ), we prove a result which corresponds to that of Feichtinger [12, page

129] over Euclidean spaces.

Precisely, we prove the following theorem.

Theorem 7.1. If M is a bounded subset of W(C0,Y )(�), then the following

statements are equivalent:

(i) M is left equicontinuous in W(C0,Y );
(ii) for any given ε > 0, there exists φ∈�

p
w(�) such that

∥∥φ∗f −f |W(C0,Y
)∥∥≤ ε ∀f ∈M ; (7.2)
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(iii) for every ε > 0, there exists a neighbourhood U0 of e such that

∥∥f #
U | Y

∥∥≤ ε ∀f ∈M, U ⊆U0; (7.3)

(iv) for any given ε > 0, there exists a neighbourhood U1 of e such that

∥∥f #
U |W

(
C0,Y

)∥∥≤ ε ∀f ∈M, U ⊆U1; (7.4)

(v) the family of spline quasi-interpolants {SpΨ f} is uniformly convergent

to f in the norm topology of W(C0,Y ).

Proof. (i)⇒(ii). Let M be an equicontinuous subset of W(C0,Y )(�). We

choose a neighbourhood U of the identity e in � such that

∥∥Lxf −f |W(C0,Y
)∥∥≤ ε ∀f ∈M, x ∈U. (7.5)

We assume that φ is a nonnegative function in Cc(�) such that
∫

�
φ(x)dx = 1, suppφ⊆U �⇒φ∈�

p
w(�). (7.6)

Then we have
∥∥∥∥
(
φ∗f −f ·

∫
�
φ(y)dy

)
|W(C0,Y

)∥∥∥∥≤
∫

�

∥∥Lyf −f |W(C0,Y
)∥∥φ(y)dy

�⇒ ∥∥φ∗f −f |W(C0,Y
)∥∥≤ ε ∀f ∈M (

by (7.5)
)
.

(7.7)

(ii)⇒(iii). We assume that (ii) holds. Then, by (6.4), we obtain

(φ∗f)#U ≤φ#
U ∗|f |, (7.8)

which implies that

f #
U(x)≤ (φ∗f)#U(x)+(f −f ∗φ)#U(x)
�⇒ ∥∥f #

U | Y
∥∥≤ ∥∥(φ∗f)#U | Y∥∥+∥∥(f −f ∗φ)#U | Y∥∥

≤ ∥∥φ#
U | L1

w
∥∥‖f | Y‖+ ε

2

<
ε
2
+ ε

2
∀f ∈m, U ⊆U0.

(7.9)

(iii)⇒(iv). We have

∥∥f #
U |W

(
C0,Y

)∥∥≤ ∥∥(φ∗f)#UW(C0,Y
)∥∥+∥∥(f −φ∗f)#U |W(C0,Y

)∥∥. (7.10)

But we see that
∥∥(φ∗f)#U |W(C0,Y

)∥∥≤ sup
u∈U

∣∣φ#
U(u)

∣∣·∥∥f |W(C0,Y
)∥∥

<
ε
2

by (6.4).
(7.11)
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Also, we have

∥∥(f −φ∗f) |W(C0,Y
)∥∥≤ 2

∥∥K(1−φ,f) |W(C0,Y
)∥∥< ε

2
. (7.12)

Thus we infer that (7.4) holds.

(iv)⇒(v). By (6.1) and Lemma 6.2, we have |SpΨ f −f | ≤ f #
U for any U -BUPU

family Ψ , which implies that
∣∣∣∣∣∣
∑
i∈I

(
f
(
xi
)
ψi(x)−f(x)ψi(x)

)
∣∣∣∣∣∣≤

∑
i∈I
f #
U ·ψi(x) ∀x ∈ �, (7.13)

that is,

∥∥SpΨ f −f |W
(
C0,Y

)∥∥ �→ 0 as U �→ e. (7.14)

(v)⇒(i). We assume that Ψ is U -BUPU such that (xiU)i∈I is a covering of � and

the functions (ψi)i∈I form an equicontinuous subfamily in C0(�).
Now, we choose a nonnegative function φ such that

suppφ⊆U3, φ(t)= 1 on U2, (7.15)

where U1 ⊂U2 ⊂U3 (Ui, i= 1,2,3) are compact neighbourhoods of the identity

e∈ �.

Thus we see that

ψi(x−y)=ψi(x−y)Lxiφ(x) for supp
(
Lyψi

)⊆U2. (7.16)

Hence we obtain
(
SpΨ f

)#
U(x)= sup

y∈U

∣∣SpΨ f(x−y)−SpΨ f(x)
∣∣

≤
∑
i∈I

∣∣f (xi)∣∣sup
y∈U

∣∣ψi(x−y)−ψi(x)∣∣·∣∣Lxiφ(x)
∣∣

≤
∑
i∈I

∣∣f (xi)∣∣∥∥(ψi)#
U
∥∥∞ ·Lxiφ(x).

(7.17)

Since the family (ψi)i∈I is equicontinuous, for any given η > 0, there exists

a neighbourhood U of the identity e∈ � such that

∥∥(ψi)#
U
∥∥∞ ≤ η. (7.18)

Next, since the discrete measure
∑
i∈I δxi belongs to W(M,L∞)(�), we have

∥∥(SpΨ f
)#
U |W

(
C0,Y

)∥∥
≤ sup

i∈I

∥∥(ψi)#
U
∥∥∞ ·

∥∥∣∣f (xi) | δxi∗φ
∣∣W(C0,Y

)∥∥

≤ η·C
∥∥∥∥∥∥
∑
i∈I
δxi |W

(
M,L∞

)
∥∥∥∥∥∥·
∥∥f |W(C0,Y

)∥∥·∥∥φ |W(C0,L1)∥∥.
(7.19)
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Finally, since M is bounded in W(C0,Y ), we may choose η such that

∥∥(SpΨ f
)#
U |W

(
C0,Y

)∥∥≤ ε �⇒ ∥∥f #
U |W

(
C0,Y

)∥∥≤ ε ∀f ∈M, (7.20)

which implies that M is equicontinuous in W(C0,Y ).
This completes the proof of the theorem.

8. Compactness in Wiener amalgams. Feichtinger [12, page 131] has ob-

tained some suitable conditions which ensure the compactness of M ⊆ W(B,
Y) when B and Y are defined over m-dimensional Euclidean spaces. In this

section, we study the compactness of a subset of the Wiener amalgam space

W(B,Y)(�) defined on a locally compact group �. Our theorem provides a

generalization of the corresponding result of Feichtinger [12, page 131].

Precisely, we prove the following theorem.

Theorem 8.1. If �
p
w(�) is dense in both B and Y , then a closed bounded set

M ⊆W(B,Y)(�) is compact if and only if it is uniformly tight and equicontinuous

under the W(B,Y)-norm.

We will use the following lemma in the proof of our theorem.

Lemma 8.2. If Cc(�) is dense in Y and the map y → Lyf is continuous in B
for all f ∈ B, then y → Lyf is continuous in W(B,Y)(�) for all f ∈W(B,Y).

Proof. The proof follows on the lines of Feichtinger [7, pages 514–515]. As

our parameters are different, it is necessary to give a proof.

Since Cc(�) is dense in Y , there exists a compact set K0 ∈ � such that

∥∥(1−χK0

)·K(φ,f) | Y∥∥≤ ε, (8.1)

where χK0 is the characteristic function of K0.

Next, since the left translation Ly is continuous, and so locally bounded, and

since U is relatively compact, we have

∥∥∣∣Ly∣∣∥∥B ·
∥∥∣∣Ly∣∣∥∥Y ≤ C ∀y ∈U, (8.2)

with C being a positive constant. Thus, for all y ∈U , we have

∥∥(1−χUK0

)·K(φ,Lyf )(z)∥∥Y =
∥∥∥(1−χUK0

)∥∥(Lzφ)·(Lyf )∥∥B
∥∥∥
Y

≤ C ·∥∥∣∣Ly∣∣∥∥Y ·
∥∥(1−χK0

)·K(φ,f)∥∥Y
< Cε

(8.3)

because K0 ⊆y−1UK0 for all y ∈U and so (1−χy−1UK0
)≤ (1−χK0).



3514 S. S. PANDEY

Hence we infer that, for any given ε > 0 and any open neighbourhood U ⊆ �

with compact closure, we can find K ⊆ � such that

∥∥(1−χK)·K(φ,Lyf )∥∥Y ≤ ε ∀y ∈U, (8.4)

which implies that ‖(1−χK)·K(φ,f)‖Y ≤ ε.
We now choose h in �

p
w(�) such that h= 1 on U−1K(suppφ). Thus we see

that

Lzφ·
(
Lyf −f

)= Lzφ[Ly(hf)−(hf)]. (8.5)

Next, we choose U0 ⊆U such that

∥∥Ly(hf)−(hf)∥∥B < ε ∀y ∈U0. (8.6)

Hence, on account of the above relations, we obtain

∥∥K(φ,Lyf −f )∥∥Y ≤
∥∥(1−χK)·K(φ,Lyf )∥∥Y
+∥∥(1−χK)K(φ,f)∥∥Y+

∥∥(1−χK)·K(φ,Lyf−f )∥∥Y
≤ 2ε+∥∥χK∥∥Y ·

∥∥Ly(h·f)−(h·f)∥∥B �→ 0 as ε �→ 0.

(8.7)

Hence the map y → Lyf is continuous from � into the norm topology of

W(B,Y)(�).
Thus the lemma holds true.

Proof of Theorem 8.1. We suppose that M is uniformly tight and equi-

continuous under the W(B,Y)-norm. Hence, by virtue of Lemma 8.2, the left

translation is continuous in W(B,Y)(�).
At first we will show that M is relatively compact in �

p
w
∼
(�). Since the em-

beddings

�
p
w(�)↩W(B,Y)(�)↩�

p
w
∼
(�) (8.8)

are continuous (the proof follows on the lines of Feichtinger [7, Theorem 1]),

hence, for any compact set K ⊆ �, there exist positive constants CK and C′K
such that

‖h‖W(B,Y) ≤ CK‖h‖�
p
w

(8.9)

and, by closed graph theorem,

∣∣〈h,f 〉∣∣≤ C′K‖f‖W(B,Y) ·∥∥h |�
p
w
∥∥ (8.10)

for all h∈�
p
w(�) with supph⊆K and f ∈W(B,Y).



COMPACTNESS IN WIENER AMALGAMS ON LOCALLY . . . 3515

Now let k0 be a function in �
p
w(�) such that suppk0 ⊆K and ε > 0 are given.

Then, there exists a set V such that

V =
{
k : k∈�

p
w(�), suppk⊆K, ∥∥k−k0

∥∥
�
p
w
< ε
(
C′K ·C

)−1
}
. (8.11)

Thus we see that

∣∣〈k−k0,f
〉∣∣< ε ∀k∈ V, ∀f ∈M. (8.12)

This implies thatM is relatively compact in �
p
w
∼
(�)with respect to the weak

topology σ(�p
w
∼
,�p

w) (cf. [9, pages 301–302]).

Hence, for any given net in M , we can find a subnet (fα)α∈I in M and σ ∈
�
p
w
∼
(�) such that

lim
α→∞

∫
�
fα(x)h(x)dx =

∫
�
σ(x)h(x)dx ∀h∈�

p
w�. (8.13)

We now claim that {fα}α∈I is a Cauchy net under the norm of W(B,Y)(�).
Let ε > 0 be given. Then there exists k∈�

p
w(�) such that

‖k∗f −f‖W(B,Y) < ε ∀f ∈M. (8.14)

Hence we can find h∈�
p
w(�) such that

‖hf −f‖W(B,Y) ≤ ε ∀f ∈M. (8.15)

Combining (8.14) and (8.15), we get

‖k∗hf −f‖W(B,Y) ≤ ‖k∗hf −k∗f‖W(B,Y)+‖k∗f −f‖W(B,Y)
< 2ε ∀f ∈M. (8.16)

Since �
p
w(�)∩W(B,Y) is dense in �

p
w(�), which in turn is dense in L1

w(�),
we can find k1 ∈�

p
w(�)∩W(B,Y) such that

∥∥k1∗k−k
∥∥

1,w < ε. (8.17)

Thus, on account of the relation

‖hf‖W(B,Y) ≤ ‖f‖W(B,Y)+ε≤ 2C, (8.18)

we see that

∥∥f −k1∗k∗hf
∥∥
W(B,Y) ≤ 4ε ∀f ∈M. (8.19)
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Now, since {hfα}α∈I is a convergent net of function with compact support,

we can find α0 in I such that

∥∥k∗hfα−k∗hfβ∥∥1,w ≤
ε∥∥k1

∥∥
W(B,Y)

∀α,β≥α0, (8.20)

because (k∗hfα) is uniformly convergent on compact sets.

Thus we see that

∥∥k1∗k∗hfα−k1∗k∗hfβ
∥∥
W(B,Y) < ε ∀α,β≥α0. (8.21)

Hence, using (8.19), we obtain

∥∥fα−fβ∥∥W(B,Y) ≥ Cε ∀α,β≥α0, (8.22)

where C is a suitably chosen positive constant.

Conversely, letM be compact inW(B,Y)(�) and ε > 0 be given. Since �
p
w(�)

is dense in W(B,Y), there exists a finite sequence (fi)ni=1 in �
p
w(�) such that

∥∥f −fi∥∥W(B,Y) < Cε. (8.23)

Hence we can find h and k in �
p
w(�) such that

‖k‖p,w ≤ Cw,
‖hf‖W(B,Y) ≤ Cw‖f‖W(B,Y),∥∥h∗fi−fi∥∥W(B,Y) < ε,∥∥k∗fi−fi∥∥W(B,Y) < ε, ∀1≤ i≤n.

(8.24)

Thus we see that

‖k∗f −f‖W(B,Y) =
∥∥k∗f −k∗fi∥∥W(B,Y)+

∥∥k∗fi−fi∥∥W(B,Y)
+∥∥fi−f∥∥W(B,Y) = Cε ∀f ∈M. (8.25)

Hence we infer that M is uniformly tight and equicontinuous in the norm

topology of W(B,Y)(�). Thus the conditions are necessary.

This completes the proof of the theorem.
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