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A nonassociative algebra endowed with a Lie bracket, called a torsion algebra, is
viewed as an algebraic analog of a manifold with an affine connection. Its elements
are interpreted as vector fields and its multiplication is interpreted as a connec-
tion. This provides a framework for differential geometry on a formal manifold
with a formal connection. A torsion algebra is a natural generalization of pre-Lie
algebras which appear as the “torsionless” case. The starting point is the observa-
tion that the associator of a nonassociative algebra is essentially the curvature of
the corresponding Hochschild quasicomplex. It is a cocycle, and the correspond-
ing equation is interpreted as Bianchi identity. The curvature-associator-monoidal
structure relationships are discussed. Conditions on torsion algebras allowing to
construct an algebra of functions, whose algebra of derivations is the initial Lie
algebra, are considered. The main example of a torsion algebra is provided by the
pre-Lie algebra of Hochschild cochains of a k-module, with Lie bracket induced by
Gerstenhaber composition.

2000 Mathematics Subject Classification: 58A12, 14A22, 17A75.

1. Introduction. The differential calculus on a noncommutative algebra is

by now a classical topic (see [3, 5, 7, 11, 34] and the references therein). It is a

generalization of the differential calculus on a commutative algebra [26].

Replacing C∗-algebras of functions by noncommutative algebras [6, 16, 27,

28] was essentially the birth of noncommutative geometry [33, page 4]. Al-

though Connes approach “. . . has had a considerable impact on mathematics

. . .” [29, Section 1.1, page 150], physicists rather adopted a cohomological point

of view (BRST-formalism, BV-theory, and so forth) towards what Stasheff calls

“cohomological physics” [31, 32].

The corresponding modern mathematical approach to noncommutative ge-

ometry [2, 25] is based on differential graded algebras (and more generally, on

A∞-algebras) as an algebraic model for a formal manifold (see [25, page 10]).

The main difference (in our opinion), in a rough stated form, is that the motto

is not to generalize functions, but rather vector fields, as it will be explained

below.

Classical differential geometry is built on the notion of space: differential

manifolds. A rough hierarchy is space, functions, and vector fields and differ-

ential forms, connections, and so forth.
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Algebraic geometry starts at the second level (functions) by considering an

arbitrary commutative algebra and then constructing the first level, the sub-

stitute for a spaceis its spectrum. A space (affine variety) is roughly a pair

consisting of a topological space and its algebra of functions.

A natural question arises: “what can be derived starting from the third

level—vector fields—and to what extent is it profitable?” [17].

A somewhat similar approach to algebraization of the basic concepts in dif-

ferential geometry and mechanics, focusing on Hamiltonian formalism of the

calculus of variations, has also been investigated in [13]. The idea of replacing

the ring of functions used for constructing such a scheme, with a Lie algebra

and a complex of Lie modules with a differential, is considered not only suit-

able for a calculus of variations, but has far reaching applications (see [13,

page 241] for details).

Another related direction of research that we should mention involves loops

and quasigroups (relaxing associativity) [22, 30]. For connections with web ge-

ometry (families of smooth foliations), see [1].

In this paper, we consider a (possibly) nonassociative algebra endowed with

an additional Lie algebra structure (A,µ,[·,·]), called a torsion algebra (Defini-

tion 4.1), and a covariant calculus is defined. A torsion algebra is based on

the interpretation of its elements as vector fields with its multiplication inter-

preted as a connection. The above algebra generalizes pre-Lie algebras which

occur as the torsionless case (Proposition 4.2).

The main motivation for the above interpretation, at a formal level, is pro-

vided by the properties of the associator of a nonassociative algebra. The as-

sociator is the curvature of the Hochschild quasicomplex (Section 2) and has

the properties of the curvature of a linear connection (Theorem 3.11; see also

[10, 24]).

As a motivation for the emphasis on vector fields, at a semantic level, we

mention two sources. Physical understanding evolved from considering phase

spaces (Poisson manifolds) rather than configuration spaces. Moreover, the ac-

tual goal is to model the space of evolutions of a system. The second motivation

is the correspondence between Poisson-Lie group structures and Lie bialgebra

structures of a Lie algebra. After quantizing its universal enveloping algebra,

one has deformed vector fields, and it would be convenient to have a procedure

allowing to recover an algebra of functions from it.

In deformation quantization of Poisson manifolds, one keeps the classical

observables and deforms the laws of mechanics to account for the Heisenberg

bracket. We consider this approach as slightly conservative since the basic con-

ceptual level of quantum physics is rooted in the concepts of states (vectors)

and their evolution (operators), which does not need a concrete configuration

space. Our reconstructed functions are naturally operators on the given alge-

bra of vector fields.
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We investigate conditions on a given torsion algebra, allowing to construct

an algebra of functions (Definition 4.5), whose derivations form the Lie algebra

(A,[·,·]) (Theorem 4.12).

The reconstruction of the function algebra is immediate for the simple ex-

ample of the real line (Example 4.4).

In the associative case, it is pleasing to be able to represent in this way the

original associative algebra as an algebra of functions in our sense (Theorem

5.1), and to support the classical approach to noncommutative geometry: to

adopt a (possibly) noncommutative algebra as an algebra of functions on a

noncommutative space.

The main source of examples of torsion algebras is provided by the pre-Lie

algebra of Hochschild cochains associated to a k-module, with Gerstenhaber

composition (C•(V), ◦̄) and its associated Lie bracket (Theorem 5.2).

The paper is organized as follows. In Section 3, some well-known facts about

the Lie algebra structure on the Hochschild complex are generalized to the case

of a nonassociative algebra. Motivated by this generic example, we consider a

Lie algebra, with elements thought of as vector fields, with a multiplication (not

necessarily associative) thought of as a linear connection. In Section 4, the al-

gebra of functions is defined (second level). Conditions when the original Lie al-

gebra is obtained as a Lie algebra of derivations are considered (Theorem 4.12).

Section 5 includes some basic examples of torsion algebras.

2. The associator: an algebraic or a geometric concept? The question is

purely rhetoric since both points of view are needed to unravel this funda-

mental concept. The associator (from the algebraic point of view) may be in-

terpreted as a curvature (from the geometric point of view) or as a monoidal

structure through categorification (failure to be a morphism).

From the geometric side, the main reason for attempting to interpret an

algebra (A,µ) as an algebraic model for a manifold with a connection is the

following. The associator of an algebra

α(x,y,z)= µ(µ(x,y),z)−µ(x,µ(y,z)), x,y,z ∈A, (2.1)

also denoted as (xy)z−x(yz) for short, is formally the curvature of the left

regular quasirepresentation L : (A,µ)→ (Endk(A),◦):

α(x,y,z)=−(L(x)L(y)−L(xy))(z). (2.2)

Indeed, at the infinitesimal (Lie algebra) level, the same map L, interpreted as

a quasi-Lie representation L : (A,[·,·]A) → (Endk(A),[·,·]), defines a formal

curvature K:

L
(
[x,y]

) Kx,y
�������������������������������������������������������������������������������������������������������������→ [L(x),L(y)],

K(x,y)= [L(x),L(y)]−L([x,y]).
(2.3)
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Moreover, in the Hochschild quasicomplex (C•(A),dµ) (Section 3), the differ-

ential dµ has the properties of covariant derivative, for example, d2
µf = [α,f ].

Also α= (1/2)[µ,µ] (the curvature) is closed, that is, a Bianchi identity holds.

(see Theorem 3.11.)

As a general rule, in the context of nonassociativity, it is natural to relax the

action requirement as well.

Now, an action (representation) of A on M is a morphism ρ : A→ End(M),
and an associative multiplication is an action (regular left representation) A→
End(A). In the nonassociative case, we will need the following definition.

Definition 2.1. A quasiaction (quasirepresentation) of A on M , in the cat-

egory of k-modules, is a k-linear map L :A→ Endk(M).

A quasi-action/representation is the natural relaxation of the usual concept

since it amounts to considering the morphisms of the underlying category,

not necessarily preserving the additional structure, (e.g., commuting with the

monoidal operation).

This approach models the local aspects of differential geometry. The global

(cohomological) point of view should look at the associator, that is, the fail-

ure of a quasirepresentation to preserve the structure, as a 2-cocycle. In this

way, quasirepresentations are a natural generalization of projective represen-

tations.

More general still, via categorification, such a 2-cocycle may be interpreted

as a nonstrict monoidal structure:

L(xy)
σx,y
�������������������������������������������������������������������������������������������������������������→ L(x)L(y), σ(x,y)(z)=−α(x,y,z). (2.4)

This interpretation of the associator should be understood from the perspec-

tive of the relation between non-abelian cohomology and cohomology of mono-

idal categories [18, 19, 20]. To further justify this point of view, and at the same

time stress the geometric interpretation, recall that the associator may be used

to model the monodromy of a connection [12, page 5], allowing to encode the

behavior of solutions of the KZ-equations (or of its associated flat connection)

in a modular category (see [12]).

3. The Hochschild quasicomplex. We begin by generalizing Hochschild co-

homology [14, 15] to the case of a possibly nonassociative algebra.

Although some of the simple statements and computations carry on without

modifications from the associative case (see, e.g., [23]), they were included for

the reader’s convenience.

Throughout this section, A will denote a module over a commutative ring R.

We will assume that 2 and 3 do not annihilate nonzero elements in A.

3.1. Pre-Lie algebra of a module. Consider the bigraded object C•,•(A,A)=
⊕p,q≥0Cp,q, where
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Cp,q(A,A)= {f :A⊗
p
�→A⊗q | fR-linear

}
, p,q ≥ 0, (3.1)

with total degree deg(fp,q) = q−p. As usual, C0,q is identified with A⊗q . We

will be interested in the first column C•(A) = ⊕p∈NCp,1. The grading induced

by the total degree is Cp−1(A)= Cp,1(A,A) with p ≥ 0.

We recall briefly the Gerstenhaber comp operation and the Lie algebra struc-

ture it defines on the graded module of Hochschild cochains, as initially intro-

duced in [14].

For simplicity, we will not use the language of operads (or PROPs).

If fp ∈ Cp(A) and gq ∈ Cq(A), define the composition into the ith place,

where i= 1, . . . ,p+1, by

fp ◦i gq
(
a1, . . . ,ap+q−1

)

= fp(a1, . . . ,ai−1,gq
(
ai, . . . ,ai+q−1

)
,ai+q, . . . ,ap+q−1

)
,

(3.2)

and the comp operation

fp ◦gq =
p+1∑

i=1

(−1)(i−1)qfp ◦i gq ∈ Cp+q. (3.3)

It is assumed that the composition is zero whenever p = −1. Note that the

(nonassociative) composition respects the grading. Denote by α(f ,g,h)= (f ◦
g)◦h−f ◦(g◦h) the associator of ◦. It is a measure of the nonassociativity of

the comp operation.

The graded commutator is defined by

[
fp,gq

]= fp ◦gq−(−1)pqgq ◦fp. (3.4)

It is graded commutative:

[
fp,gq

]=−(−1)pq
[
gq,fp

]
(3.5)

and the graded Jacobi identity holds:

(−1)FH
[
f ,[g,h]

]+(−1)GF
[
g,[h,f ]

]+(−1)HG
[
h,[f ,g]

]= 0, (3.6)

where F , G, and H denote the degrees of f , g, and h, respectively. It is equiv-

alent to ad being a representation of graded Lie algebras

[
f ,[g,h]

]= [[f ,g],h]+(−1)pq
[
g,[f ,h]

]
,

adf
(
[g,h]

)= [adf (g),h
]+(−1)pq

[
g,adf (h)

]
.

(3.7)

In order to give a short proof of the main properties of the comp operation, it

is convenient to introduce the following notation.
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Notation 3.1. We denote by f◦(i,j)(g,h) the simultaneous insertion of two

functions g and h in the ith and jth arguments of f , respectively.

Lemma 3.2. If f , g, and h have degrees p, q, and r , respectively, then

(i) f ◦i (g◦j h)= (f ◦i g)◦i−1+j h for 1≤ i≤ p+1 and 1≤ j ≤ q+1;

(ii) (f ◦g)◦h−f ◦(g ◦h) =∑i≠j ε(i,j)(−1)(i−1)q+(j−1)r f◦(i,j)(g,h), where

ε(i,j)= 1 if 1≤ j < i≤ p+1 and ε(i,j)= (−1)qr if 1≤ i < j ≤ p+1;

(iii) α(f ,g,h)= (−1)qrα(f ,h,g) (Gerstenhaber identity).

Proof. First two statements (i) and (ii) follow from a straightforward in-

spection of trees and signs. The key in (ii) is that the only trees which survive

in the associator α, built out of f , g, and h, are of the type f◦(i,j)(g,h). The

supercommutativity sign (−1)qr appears when i passes over j and the order

of insertion (g before h) changes.

To introduce pre-Lie algebras, we prefer an intrinsic definition (compatible

with [23, page 8]) to the generators and relations definition from [4]. In view

of the Gerstenhaber identity (pre-Jacobi [23, page 8]), our main example, the

Hochschild pre-Lie algebra, will satisfy both definitions (see Lemma 3.2 and

Corollary 3.6).

Notation 3.3. Let µ ∈ C1(A) and let µ = µ−+µ+ be the natural decompo-

sition, with

µ−(a,b)= µ(a,b)−(−1)pqµ(b,a), (3.8)

µ+(a,b)= µ(a,b)+(−1)pqµ(b,a) (3.9)

the graded skew and symmetric parts of µ, respectively. Alternatively, µ− will

be denoted by [·,·]µ or just [·,·] if no confusion is expected. The associator

of µ will be denoted by αµ .

Definition 3.4. A (possibly) nonassociative algebra (A,µ) is called a pre-

Lie algebra if (A,µ−) is a Lie algebra.

Lemma 3.5. Let (A,µ) be an algebra and α its associator,

(i) Alt(αµ+)= 0,

(ii) Alt(αµ−)= 4Alt(α),
(iii) (A,µ) is a pre-Lie algebra if and only if Alt(α)= 0.

If A is graded, then a graded alternation Alt is assumed in (i), (ii), and (iii).

Proof. The proof is concluded by a direct computation.

As previously announced, from Lemmas 3.2 and 3.5, the well-known fact

that the comp operation on Hochschild cochains defines a Lie bracket follows

immediately.

Corollary 3.6. (C•,◦) is a (graded) pre-Lie algebra.
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Proof. Since α(f ,g,h)= (−1)qrα(f ,h,g), we have

Alt(α)(f ,g,h)=
∑

cycl

ε(f ,g,h)
(
α(f ,g,h)−(−1)qrα(f ,h,g)

)= 0, (3.10)

where ε(f ,g,h), in the graded case, is not necessarily 1. For example, ε(g,h,f )
= (−1)(q+r)p .

3.2. Quasi-DGLA of a nonassociative algebra. In this section, the differen-

tial structure is added and the special case of a coboundary quasidifferential

graded Lie algebra (qDGLA) is defined.

Definition 3.7. A quasicomplex is a sequence of objects and morphisms

in a category �:

C• = {··· �→ C−1 d−1

�������������������������������������������������������������������������������������������→ C0 d0

����������������������������������������������������������������→ C1 �→ ···}. (3.11)

The family of morphisms d• is called a quasidifferential.

Now assume that an element µ : A⊗A → A of degree −1 is fixed so that

(A,µ) is a (possibly) nonassociative R-algebra.

Definition-Theorem 3.8. Define the following quasidifferential as the ad-

joint action corresponding to the algebra’s (A,µ) multiplication map:

dµ
(
fp
)= [µ,f ]. (3.12)

Then (C•(A),dµ,[·,·]) is qDGLA, called the Hochschild quasicomplex corre-

sponding to the algebra (A,µ).

Note the difference of sign when compared with [14, 15]:

dGe =−[f ,µ]= (−1)p[µ,f ]= (−1)pdµf . (3.13)

As an example, for p = 1, with d= dµ and µ(x,y)= xy ,

df(x,y,z)= µ◦f(x,y,z)+f ◦µ(x,y,z)
= µ(f(x,y),z)−µ(x,f(y,z))+f (µ(x,y),z)−f (x,µ(y,z))

=−{xf(y,z)−f(xy,z)+f(x,yz)−f(x,y)z},
(3.14)

which is the usual Hochschild differential (excepting sign):

dHoch = (−1)deg ·dµ = dGe. (3.15)

Note that dµ : Cp → Cp+1 has degree one and [·,·] : Cp⊗Cq → Cp+q is of degree

zero. Also note that dHoch is not a graded derivation since it does not satisfy

the Leibniz identity (3.7).
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We state the following fact about graded Lie algebras, which is an immediate

consequence of the graded Jacobi identity.

Lemma 3.9. Let (g,[·,·]) be a graded Lie algebra over a commutative ring

R. Then, if x is an even-degree element, [x,x] = 0. If x is odd, [x,[x,x]] = 0

and ad[x,x] = 2(adx)2.

If the multiplication µ is associative, then (3.14) implies that

dµ(x,y,z)= 2
{
(xy)z−x(yz)}= 0 (3.16)

and [µ,µ] = 0. By the previous lemma, 2[µ,[µ,f ]] = d[µ,µ](f ) = 0, and thus

(C•(A),dµ) is a complex of R-modules.

The above particular context is captured in the following definition.

Definition 3.10. A qDGLA (C•,d,[·,·]) is called coboundary if there is a

degree-zero element I which determines a degree-one element µ = dI, which

in turn determines the differential via the adjoint action d= adµ .

3.3. The geometric interpretation. In the case of a coboundary qDGLA, in

the absence of a genuine multiplication, the element of degree one µ may be

interpreted as the torsion and the associator α as the curvature of a formal

connection on a formal manifold (Section 2).

The motivation for the above geometric terminology comes from a formal

analogy with the corresponding notions in the context of a derivation law in

an A-module, where A is an R-algebra (see [26]), or from the context of a linear

connection ∇ on a vector bundle, where the torsion T and the curvature F of

the total covariant derivative d∇ are defined as usual:

T = d∇I, T(X,Y)=∇XY −∇YX−[X,Y], (3.17)

F(X,Y)= [∇X,∇Y
]−∇[X,Y],

(
d∇
)2s = [F,s]. (3.18)

Here I denotes the identity tensor.

This geometric interpretation is captured in the following theorem and will

be developed in Section 4.

Theorem 3.11. Let (A,µ) be an R-algebra. Then (C•(A),dµ) is a cobound-

ary quasidifferential algebra. Under the adjoint representation, its unit I corre-

sponds to the grading character

adI(f )=−deg(f )f , (3.19)

and the associator is a 3-cocycle:

dµαµ = 0. (3.20)
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Moreover, the associator is formally a curvature:

d2
µs = [α,s], (3.21)

and Bianchi’s identity (3.20) holds.

Proof. Note first that the identity map I : A → A has degree zero. If f ∈
Cp(A), then

adI(f )= I ◦f −(−1)p·0f ◦I = f −(p+1)f =−deg(f )f . (3.22)

Since [I,f ]=−[f ,I], the right adjoint action of the unit is a scalar multiplica-

tion by the degree map.

Obviously, dµI = [µ,I] = deg(µ)µ = µ, thus I is a unit. Now, by the Jacobi

identity, the associator is a cocycle dµα= 0:

dµ[µ,µ]=
[
µ,[µ,µ]

]= 0, (3.23)

where the assumption that 2 and 3 do not annihilate nonzero elements in A is

used. The second equality follows from Lemma 3.9. A comparison with (3.18)

suggests interpreting the associator as a curvature. Then (3.20) states that the

curvature is closed (Bianchi’s identity).

3.4. Relation with cohomology of nonassociative algebras. At this point,

we would like to note that quasicomplexes have been considered by other

authors, notably by Kapranov, who generalized the homology of complexes in

[21] (see also [8, 9]). This allows to define the cohomology of certain classes of

nonassociative algebras.

Definition 3.12. An algebra (A,µ) is called N-coherent if dNµ = 0.

Note that an algebra is associative if and only if it is a 2-coherent algebra,

and a 1-coherent algebra is just the trivial one µ = 0.

Of course, an algebra (A,µ) is N-coherent if and only if adµ is a nilpotent

element of order N.

For an N-coherent algebra, the qDGLA (C•,dµ) is an N-complex, as defined

in [21], and its homology may be considered as a generalization of Hochschild

cohomology (see [21]). The specialization of the present approach to such cases

is postponed to a separate paper.

4. Torsion algebras. The Hochschild differential complex is defined for an

associative algebra with coefficients in a symmetricA-bimoduleM . When relax-

ing both conditions, associativity and action requirement, one obtains formu-

las which are familiar in differential geometry, corresponding to a manifold

with an affine connection. This algebraic framework may be thought of as a

geometry of vector fields without starting from a function algebra.
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Definition 4.1. A torsion algebra � = (C,D,[·,·]C) is a k-algebra (C,µ)
together with a Lie bracket [·,·]C . Its torsion is T =D−−[·,·]C ,

T(X,Y)=D(X,Y)−D(Y ,X)−[X,Y]C, X,Y ∈ C, (4.1)

whereD =D++D− is the decomposition ofD into its symmetric (quasi-Jordan)

and skew-symmetric (quasi-Lie) parts. A morphism of torsion algebras is a k-

linear map preserving both algebra operations.

The notion of a torsion algebra is a natural generalization of the notion of

a pre-Lie algebra (Definition 3.4).

Proposition 4.2. The torsionless algebras are precisely the pre-Lie alge-

bras.

Proof. If T = 0, the Lie bracket is given by D−, and therefore, according to

Definition 3.4, (A,D) is a pre-Lie algebra.

This generalization includes the most important classes of algebras.

Associative algebras, with the usual Lie bracket [x,y] = xy−yx, are pre-

Lie algebras, and therefore torsion algebras, with T = 0. Lie algebras (C,[·,·]),
with D = (1/2)[·,·], are again torsion algebras with zero torsion.

Poisson algebras (with compatibility between D and [·,·]) and Gerstenhaber

algebras (noncommutative Poisson algebras) can be interpreted as torsion al-

gebras in several ways (see Section 5).

We think of the Lie algebra part (C,[·,·]) of a torsion algebra as a Lie algebra

of vector fields on a formal manifold, with the multiplication D interpreted as

a formal connection. The main issue (addressed later on) is the possibility

of constructing an algebra of functions supporting this algebraic model of a

manifold endowed with a connection.

Example 4.3. Obviously, any manifold V with a connection∇ defines a tor-

sion algebra. Take C as the Lie algebra of vector fields on V and interpret the

connection as a nonassociative multiplication D(X,Y)=∇XY . In this geomet-

ric example, the torsion tensor (3.17) agrees with the torsion in the sense of

Definition 4.1.

To reconstruct the algebra of functions from the torsion algebra is an easy

matter when the topology is trivial.

Example 4.4. If V is the real line, then the Lie algebra of vector fields Xf =
f∂t can be identified with (C∞(V),[·,·]), where [f ,g] = fg′ −gf ′. Also any

connection D has a canonical Christoffel symbol Γ and

Dfg = f(g′ +gΓ) (D = d+Γ). (4.2)

4.1. A meta-notation. Denote by (C,µ) a possibly nonassociative k-algebra,

where k is a ring. We will write DXY = D(X,Y) in order to emphasize the
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geometric interpretation. Basic definitions for the usual algebraic model are

assumed following [26]. The prefix � will be used with notions referring to the

formal context (noncommutative space), and the prefix � will be used to refer

to the usual notions in the context of a geometric example, for example, on a

manifold V .

In the geometric world, functions can be identified as k-endomorphisms

(multiplication of vector fields by functions) for which the connection is linear

in the first argument.

4.2. The algebra of functions. We define functions in such a way to ensure

that our connection is linear with respect to function multiplication in one

argument as the annihilator of the left commutator of the multiplication.

Definition 4.5. Let (C,D,[·,·]C) be a torsion algebra. Its elements are

called �-vector fields. The set of �-functions is

A= {φ∈ Endk(C) |Dφ(X)Y =φ
(
DXY

)}
. (4.3)

The multiplication of �-functions is the natural composition of k-endomor-

phisms in Endk(C).

Note that the multiplication of �-functions is an internal operation

D(φ◦ψ)x =Dφ(ψx) =φDψx =φψDx (4.4)

and that the set of �-vector fields C is a left A-module.

The multiplication D defines a k-linear map

D̃ : C �→ Endk(C), (4.5)

called the left regular quasirepresentation of (C,D), as a nonassociative alge-

bra.

We will test the notions just introduced against the simplest geometric ex-

ample: the real line.

Example 4.6. In the context of Example 4.4, multiplication of vector fields

C � C∞(V) by functions is just the regular left representation L : C∞(V) →
End(C∞(V)) of C∞(V) (in the usual sense):

(
fXg

)= f (g∂t
)= (fg)∂t =Xfg. (4.6)

Moreover, the �-functions A are naturally identified as �-functions C∞(V).
Indeed, if φ∈ Endk(C) left commutes with D:

Dφ(f)g =φ
(
Dfg

)
, (4.7)

then by (4.2),

φ(f)(g′ +gΓ)=φ(f(g′ +gΓ)). (4.8)
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But it is clear that g′+gΓ = h has a solution for any h∈ C∞(V). Thusφ(fh)=
φ(f)h, so φ(h)=φ(1)h and φ corresponds to left multiplication by φ(1).

We note that φ is a function if and only if D̃◦φ= Lφ◦D̃, where

L : Endk(C) �→ Endk
(
Endk(C)

)
(4.9)

is the regular representation of the associative algebra (Endk(C),◦). In other

words, D̃ intertwines φ and Lφ:

D̃◦φ= Lφ◦D̃. (4.10)

To interpret �-vector fields as derivations on the algebra of functions A, an

action must be defined appropriately.

Lemma 4.7. Let X ∈ C and φ∈A. Then any two of the following conditions

imply the third:

(i) the action of C on functions is defined by

(X ·φ)(Y)= [X,φ(Y)]C−φ
(
[X,Y]C

)
, Y ∈ C ; (4.11)

(ii) D is a derivation law:

DX(φY)= (X ·φ)Y +φDXY , X ·φ= [DX,φ
]
; (4.12)

(iii) the torsion is A-bilinear.

Proof. Note that the torsion T is skew-symmetric and

T(X,φY)=DX(φY)−DφYX−[X,φY]
= {DX(φY)−φDXY −(X ·φ)Y

}+φT(X,Y)
+{(X ·φ)Y +φ[X,Y]−[X,φY]}.

(4.13)

Now it is clear that any two conditions imply the third:

T(X,φY)−φT(X,Y)= {DX(φY)−φDXY −(X ·φ)Y
}

+{(X ·φ)Y +φ[X,Y]−[X,φY]}. (4.14)

We will adopt the second condition in Lemma 4.7 as a definition for the

action of an �-vector field on an �-function.

Definition 4.8. An �-vector field X ∈ C acts on an �-function φ∈A by

X ·φ= [DX,φ
]
. (4.15)

Note that, defined in this way, the action measures the failure of D to be

right A-linear. Any X ∈ C is a candidate to the status of “vector field,” that is, a

derivation on the algebra of functions, except that X ·φ need not be a function

at this point.
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Proposition 4.9. The �-vector fields act as external derivations on A:

X ·(φ◦ψ)= (X ·φ)◦ψ+ψ◦(X ·ψ), X ∈ C, φ,ψ∈A. (4.16)

Proof. If φ and ψ are �-functions, then
(
X ·(φ◦ψ))Y =DX

(
φ
(
ψ(Y)

))−(φ◦ψ)DXY ,
(X ·φ)◦ψ(Y)+φ◦(X ·ψ)(Y)=DX

(
φ
(
ψ(Y)

))−φ(ψ(DXY
))
.

(4.17)

For X ·φ to be again a function, so that elements of C act as derivations,

note the following alternative.

Lemma 4.10. The following conditions are equivalent:

(i) for any X ∈ C and φ∈A, X ·φ is an �-function;

(ii) the associator α of D is A-linear in the first two variables.

Proof. Recall that the associator is

α(X,Y ,Z)= (XY)Z−X(YZ)=DDXYZ−DXDYZ, (4.18)

where multiplicative notation was alternatively used. The following are equiv-

alent:

D(X·φ)YZ = (X ·φ)DYZ,
DDXφYZ−φDDXYZ =DX

(
φDYZ

)−φDXDYZ,
(
X ◦φ(Y))◦Z−Xφ(Y ◦Z)=φ(α(X,Y ,Z)),

(
X ◦φ(Y))◦Z−X ◦(φ(Y)◦Z)+X ◦[φ(Y)◦Z−φ(Y ◦Z)]=φ(α(X,Y ,Z)),

α
(
X,φ(Y),Z

)+X ◦[Dφ(Y)Z−φ
(
DYZ

)]=φ(α(X,Y ,Z)).
(4.19)

Since

DDφXYZ =DφDXYZ =φ
(
DDXYZ

)
, (4.20)

the linearity of the associator in the first variable is clear:

α(φX,Y ,Z)=DDφXYZ−φ
(
DXDYZ

)=φα(X,Y ,Z). (4.21)

A direct computation proves the A-linearity in the second variable:

α(X,φY ,Z)=DDXφYZ−DXDφYZ
=DDXφYZ−DX

(
φDYZ

)

=D((X·φ)Y+φDXY)Z−
(
(X ·φ)DYZ+φDXDYZ

)

=φ(DDXYZ−DXDYZ
)

=φα(X,Y ,Z).

(4.22)
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In order for the reconstruction of the first level (function algebra) to be

complete, an additional assumption is needed. With the above lemma in mind,

we suggest the following definition.

Definition 4.11. A torsion algebra � = (C,D,[·,·]C) is called regular if

the torsion and the associator are A-bilinear in the first two variables.

Since Lemma 4.7(ii) holds by definition in a torsion algebra, any of the other

two imply the third. Now we can easily prove the following theorem.

Theorem 4.12. Let � = (C,D,[·,·]C) be a regular torsion algebra and A its

algebra of functions. Then, for all X,Y ∈ C and φ∈A an �-function,

(1) X ·φ is an �-function;

(2) X acts as a derivation on �-functions;

(3) the associator of D is A-linear in the first two variables;

(4) [X,φY]C =φ[X,Y]C+(X ·φ)Y ;

(5) D is a connection on �: DX(φY)= (X ·φ)Y +φDXY ;

(6) the torsion T is A-bilinear.

Proof. Since Lemma 4.10(ii) holds by definition, (1) follows.

Again from the definition, Lemma 4.7(ii) and (iii) hold, so (2) follows.

The other statements are clear from Lemmas 4.7 and 4.10.

4.3. Differential forms. The exterior derivative will be defined as the differ-

ential of the Chevalley-Eilenberg quasicomplex.

Let M be a left A-module with a derivation law DM : C → Endk(M).

Definition 4.13. The M-valued �-differential forms are defined as usual:

Ωn(�,M)= {ω : C×···×C �→M |ω alternating and A-multilinear}.
(4.23)

ThenΩ•(�,M) is just the alternate part of the Hochschild cochains C•(C ;M)
with coefficients in M (Chevalley cochains).

To define first the Hochschild quasicomplex, consider the following C-quasi-

bimodule structure on M :

λ : C×M �→M, λ(X,u)=DMX u, C×M
−σ(12)

λ=DM

ρ :M×C �→M, ρ(u,X)=−DMX u, M×C
ρ=λop

C,

(4.24)

where λop is the opposite quasiaction using the signed braiding. In the asso-

ciative case with M = A, the use of the signed braiding gives M a structure of

(A,Aop) supersymmetric bimodule structure: am=−ma.

Instead of the Hochschild quasicomplex derived from the associated graded

Lie algebra (C•(C),[·,·]), with dω= [µ,ω]= µ◦ω−(−1)pω◦µ, consider the
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Hochschild quasicomplex Cp(C ;M)=HomA(Cp,M), p ≥−1, of the Lie algebra

(C,[·,·]C) as a nonassociative algebra, with coefficients C-quasi-bimodule M :

dω= (−1)p
(
(λ,ρ)◦ω−(−1)pω◦[·,·]C

)
,

dω
(
a1, . . . ,ap+2

)= λ(a1,ω
(
a2, . . . ,ap+2

))−ω([a1,a2
]
C, . . . ,ap+2

)

+···+(−1)pρ
(
ω
(
a1, . . . ,ap+1

)
,ap+2

)
.

(4.25)

Then, for u∈ C−1 =M and ω∈ C0,

du(X)= λ(X,u)−ρ(u,X)= 2DXu,

dω(X,Y)=DXω(Y)−DYω(X)−ω
(
[X,Y]C

)
,

ddu(X,Y)=DXdu(Y)−DYdu(X)−du
(
[·,·]C

)

= 2
(
DXDYu−DYDXu−D[X,Y]C

)
u

=K(X,Y)u.

(4.26)

To obtain the usual formulas in geometry, consider the alternating part Λ•(A;

M) of the above complex and project the differential dCh = Alt◦d. A quasi-

complex is obtained, (Λ•(A;M),dCh), called the associated Chevalley-Eilenberg

quasicomplex of C with coefficients in M .

4.4. The Lie derivative. Let � = (C,D,[·,·]C) be a regular torsion algebra.

Consider theA-moduleM =A and the corresponding differential formsΩ•(�).
The canonical derivation law on A is

DXφ=X ·φ. (4.27)

As usual, extend the Lie derivative defined on functions and vector fields as

a derivation on the tensor algebra commuting with contractions. It is easy to

see that it is an internal operation. For example, if ω : C →A is a 1-form, then

(�Xω)(Z)=DXω(Z)−ω([X,Z]) is A-linear.

An exterior differential on forms Ω•(A;�) is defined by the homotopy for-

mula �X = diX+iXd. The usual explicit formula holds for d. It coincides with

dCh defined above.

5. Examples. We will consider for the moment only torsion algebras for

which T = 0, that is, the pre-Lie algebras (Proposition 4.2).

5.1. Associative algebras. Let (C,D) be a unital associative algebra. Con-

sider the corresponding Lie algebra structure [X,Y]C =DXY −DYX. Then the

torsion is T = 0. The associator is zero and (C,D,[·,·]) is a regular torsion

algebra. If φ∈ Endk(C) is a function, then Dφ(X)Y =φ(DXY) in multiplicative

notation is just φ(X)Y =φ(XY). Thus, �-functions are left multiplication by

elements of C and the algebra of �-functions is isomorphic to the initial alge-

bra. The morphism C → Der(A), realizing C as derivations of A, is the usual

Lie algebra representation.
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Theorem 5.1. Any associative algebra (C,µ) has a natural structure of a

torsion algebra, which is regular. The algebra C is isomorphic with the algebra

of �-functions.

It follows that our point of view allows to represent an associative algebra

as an algebra of functions, substantiating the classical point of view of non-

commutative geometry: to generalize the commutative case of the classical

algebraic geometry by assuming that a noncommutative algebra is an algebra

of functions on a noncommutative space.

5.2. Hochschild pre-Lie algebras. Let V be a k-module and C = (C•(V),◦)
the corresponding Hochschild pre-Lie algebra (see Section 3.1). Then C is a

torsion algebra with D = ◦ and T =D−−c = 0.

A k-endomorphism φ∈ Endk(C) is an �-function if and only if

Dφxy =φ
(
Dxy

)
(5.1)

and an argument similar to the case of associative algebras gives φ = Lφ(1),
where 1= idV and L : C → (Endk(C), ◦̃) is the regular quasirepresentation. Note

that ◦ is not associative and LidV is only a projector on the even part of C .

Denote φ(1) by f . Then (5.1) holds if and only if

Df◦xy = f◦
(
Dxy

)
, (5.2)

that is, (f◦x)◦y = f◦(x◦y) for any x,y ∈ C•. It is easy to see that this is true

if and only if f ∈ C0(V), and thus the set of functions is A= C0(V).
The composition of functions is a composition of k-endomorphisms:

Lf ◦̃Lg = Lf◦g, f ,g ∈A, (5.3)

since ◦ reduces to the usual composition ◦ of k-endomorphisms of C0(V) =
Endk(V). Thus we have the following theorem.

Theorem 5.2. Let V be a k-module and (C•(V),◦) the corresponding pre-Lie

algebra. Then

(i) C = (C•(V),D,[·,·]) is a zero torsion algebra, where D = ◦ is called the

canonical connection;

(ii) the algebra of functions of C is A= (C0(V),◦), that is, (Endk(V),◦);
(iii) C acts through exterior derivations on A:

(
x ·Lf

)
(y)=Dx

(
Lf (y)

)−Lf
(
Dxy

)
, x,y,f ∈ C, (5.4)

where L : C → Endk(C) is the regular left quasirepresentation of C .
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We note that the failure to be a regular torsion algebra comes from the A-non-

linearity of the associator. Recall that the associator is graded skew-symmetric

in the last two variables (Lemma 3.2). Thus, being a regular torsion algebra is

equivalent to α being an A-multilinear form.

5.3. Poisson algebras. Let (C,·,{·,·}) be a Poisson algebra, with D = · com-

mutative and associative, and Lie bracket [·,·] being the Poisson bracket {·,·}.
Then (C,D,[·,·]) is a torsion algebra with torsion T =−[·,·]. Since D is asso-

ciative, its algebra of �-functions A is isomorphic to C , in a manner similar

to the associative algebra case. In this way, a Poisson algebra is not a regular

torsion algebra.

If D = [·,·] = {·,·}, then it becomes a zero torsion algebra, but it is not

clear what the algebra (A,◦) of �-functions is, and what the relation with the

multiplication of functions is.

6. Conclusions and further developments. The potential applications of

an algebraic point of view of what a manifold is include the Hamiltonian for-

malism of the calculus of variations, classical Yang-Baxter equation, and co-

homology and deformations of Lie algebras [13]. To be of interest for gauge

theory, a connection should be included in this framework.

In the present paper, we sketched such a framework and pondered on the

relation with classical noncommutative geometry, an approach based on func-

tions (observables), addressing the representation and reconstruction prob-

lem.

The implementation of the suggested approach and the investigation of its

relation to other approaches (formal pointed manifolds [25], Fuchsian differ-

ential equation and CFT [12], and so forth) are deferred to another place (and

time), possibly leading to applications suitable for the Wilsonian approach to

QFT.
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