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A correspondence between quartic étale algebras over a field and quadratic étale
extensions of cubic étale algebras is set up and investigated. The basic construc-
tions are laid out in general for sets with a profinite group action and for torsors,
and translated in terms of étale algebras and Galois algebras. A parametrization
of cyclic quartic algebras is given.
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1. Introduction. It is known since the sixteenth century that the solution

of quartic equations can be obtained by means of auxiliary equations of de-

gree 3, called cubic resolvents. The situation is easily understood in terms of

Galois theory. For any integer n ≥ 1, let Sn denote the symmetric group on

{1, . . . ,n}. The symmetric group S4 contains a normal subgroup of order 4,

Klein’s Vierergruppe

V= {I,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}, (1.1)

which is the kernel of the action of S4 on its three Sylow 2-subgroups. Num-

bering from 1 to 3 these Sylow subgroups, we get an exact sequence of groups:

1 �→ V �→ S4
ρ
������������������������→ S3 �→ 1. (1.2)

Let F be an arbitrary field and P ∈ F[X] a separable polynomial of degree 4.

Let also Fs be a separable closure of F and Q ⊂ Fs the subfield generated by

the roots of P . The Galois group Gal(Q/F) can be viewed as a subgroup of S4

through its action on the roots of P . The subfield L ofQ fixed under Gal(Q/F)∩
V is generated by the roots of a cubic resolvent, as was shown by Lagrange. For

a given quartic polynomial P , there are actually many polynomials of degree 3

which qualify as cubic resolvents; only the extension L/F is an invariant of P
(or of Q).

Galois cohomology provides another viewpoint on this construction. Since

Sn is the automorphism group of the étale F -algebra Fn = F×···×F , it is well

known that the Galois cohomology set H1(F,Sn) is in canonical one-to-one

correspondence with the isomorphism classes of étale F -algebras of degree n,
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see [3, (29.9)]. The map ρ in (1.2) induces a map

ρ1 :H1(F,S4
)
�→H1(F,S3

)
(1.3)

which associates to every quartic étale F -algebraQ a cubic étale F -algebra �(Q)
uniquely determined up to isomorphism. If P ∈ F[X] is a separable polynomial

of degree 4 with cubic resolvent R, and if Q is the factor algebra Q= F[X]/P ,

then �(Q)� F[X]/R, see Section 5.3.

Our first aim is to make the construction of �(Q) from Q explicit. But this

construction can be further extended. Each of the three Sylow 2-subgroups of

S4 contains two transpositions, and each transposition is in one and only one

Sylow subgroup. Hence the set of transpositions can be viewed as a double

covering of the set of Sylow 2-subgroups. Therefore, the conjugation action of

S4 on its six transpositions defines a map

λ : S4 �→ S2 �S3, (1.4)

where the wreath product S2�S3 is viewed as the group of automorphisms of a

double covering of a set of three elements (see Section 4.1). The map λ extends

to an isomorphism of groups

λ̂ : S2×S4
∼
�������������������������������������→ S2 �S3, (1.5)

see Section 5.2. The set H1(F,S2 �S3) classifies the quadratic étale extensions

of cubic étale F -algebras (see Section 4.2), and the induced bijection

λ̂1 :H1(F,S2
)×H1(F,S4

) ∼
�������������������������������������→H1(F,S2 �S3

)
(1.6)

associates to every pair consisting of a quartic étale F -algebra Q and a qua-

dratic étale F -algebra a quadratic étale extension of the cubic resolvent �(Q).
In Section 5.3, we give an explicit construction of this quadratic extension, and

we describe in Section 5.4 the inverse of λ̂1, attaching a quartic étale F -algebra

and a quadratic étale F -algebra to any quadratic étale extension of a cubic étale

F -algebra.

In the final sections, we classify quartic étale algebras and their associated

quadratic extensions of cubic algebras according to their decomposition into

direct products of fields (see Section 6.3) and we parametrize cyclic quartic

extensions.

We conclude by quoting Weil [13]:

La recherche des extensions d’un corps k dont le groupe de Ga-

lois sur k est S4 ou A4 n’est pas autre chose, du point de vue des

algébristes du XIXe siècle, que la théorie de l’équation du 4e de-

gré. C’est un problème pour lequel ces algébristes n’avaient que du

mépris.
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2. Γ -sets and coverings

2.1. Basic constructions on Γ -sets. Let Γ be a profinite group, which will

be fixed throughout this section. Finite sets with a continuous action of Γ are

called Γ -sets. We let |X| denote the number of elements in a Γ -set X. If X is a

Γ -set with n elements, and k is a positive integer, k ≤ n, we let Σk(X) denote

the set of k-tuples of pairwise distinct elements of X and Λk(X) the set of

k-element subsets of X. Thus

Σk(X)=
{(
ξ1, . . . ,ξk

)∈Xk | ξi ≠ ξj for i≠ j
}
,

Λk(X)=
{{
ξ1, . . . ,ξk

}⊂X | ξi ≠ ξj for i≠ j
}
.

(2.1)

The action of Γ on X induces actions on Σk(X) and Λk(X). Hence Σk(X) and

Λk(X) are Γ -sets, and we have

∣∣Σk(X)∣∣= k!

(
n
k

)
,

∣∣Λk(X)∣∣=
(
n
k

)
. (2.2)

The symmetric group Sk acts on Σk(X) by permutation of the entries, and we

may consider Λk(X) as the set of orbits of Σk(X) under this action, that is, as

the quotient Γ -set

Λk(X)= Σk(X)/Sk. (2.3)

For k = n, we may also consider the action of the alternating group An on

Σn(X). The quotient is called the discriminant of X and is denoted by ∆(X),

∆(X)= Σn(X)/An, (2.4)

see [3, page 291]. This is a Γ -set with |∆(X)| = 2 if n≥ 2.

If n is even, n= 2m, let

γX :Λm(X) �→Λm(X) (2.5)

be the map which associates to every m-element subset of X its complemen-

tary subset. Since γ2
X = Id, this map defines an action of S2 on Λm(X). The map

γX is Γ -equivariant (i.e., compatible with the action of Γ ), hence the quotient

�(X)=Λm(X)/S2 (2.6)

is a Γ -set. It is the set of partitions of X into m-element subsets.

Example 2.1. If X = {1,2,3,4}, then

Λ2(X)=
{{1,2},{3,4},{1,3},{2,4},{1,4},{2,3}},

�(X)= {{{1,2},{3,4}},{{1,3},{2,4}},{{1,4},{2,3}}}. (2.7)
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If |X| = 2, the map

γX :X =Λ1(X) �→Λ1(X)=X (2.8)

interchanges the two elements of X. For X and X′ being two Γ -sets with |X| =
|X′| = 2, the map

γX×γX′ :X×X′ �→X×X′ (2.9)

defines an action of S2 compatible with the Γ -action. Let

X∗X′ = (X×X′)/S2, (2.10)

a Γ -set with |X∗X′| = 2. Thus, if X = {x1,x2} and X′ = {x′1,x′2}, then

X∗X′ = {{(x1,x′1
)
,
(
x2,x′2

)}
,
{(
x1,x′2

)
,
(
x2,x′1

)}}
. (2.11)

The following observations are clear.

Proposition 2.2. Let X and X′ be Γ -sets of two elements.

(a) The Γ -action on X∗X is trivial.

(b) If the Γ -action on X′ is trivial, then X∗X′ �X. (Note that the isomorphism

is not canonical.)

(c) The operation∗ defines a group structure on the set of isomorphism classes

of Γ -sets of two elements.

See Section 4.2 for a cohomological interpretation of the group structure

induced by ∗.

2.2. Coverings. A morphism Y π←�������������� Z of Γ -sets (i.e., a Γ -equivariant map) is

called a covering if the number of elements in each fiber π−1(η)⊂ Z does not

depend on η∈ Y . This number is called the degree of the covering. Coverings

of degree 2 are called double coverings. A morphism of coverings

(
Y1

π1←��������������������������������� Z1
)
�→ (Y2

π2←��������������������������������� Z2
)

(2.12)

is a pair (σ : Y1→ Y2,τ : Z1→ Z2) of morphisms such that σ ◦π1 =π2◦τ . Given

two coverings Y
π1←��������������������������������� Z1 and Y

π2←��������������������������������� Z2 of the same Γ -set Y , an isomorphism over

Y is an isomorphism τ : Z1→ Z2 such that π1 =π2 ◦τ .

For any covering Y π←�������������� Z of degree d with |Y | = n, let Ω(Z/Y) be the set of

sections of π :

Ω(Z/Y)= {{ζ1, . . . ,ζn
}⊂ Z | {π(ζ1

)
, . . . ,π

(
ζn
)}= Y}⊂Λn(Z). (2.13)

This is a Γ -set with |Ω(Z/Y)| = dn. If d= 2, the morphism

γZ :Λn(Z) �→Λn(Z) (2.14)

preserves Ω(Z/Y) and induces a S2-action compatible with the action of Γ .
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Define

�(Z/Y)=Ω(Z/Y)/S2. (2.15)

Note that every double covering Y π←�������������� Z has an involutive automorphism

γZ/Y which is the identity on Y and interchanges the two elements in each

fiber of π . Thus, for {ζ1, . . . ,ζn} ∈Ω(Z/Y),

γZ
({
ζ1, . . . ,ζm

})= {γZ/Y (ζ1
)
, . . . ,γZ/Y

(
ζn
)}
. (2.16)

Example 2.3. Let Z = {z1,z′1,z2,z′2,z3,z′3}, Y = {1,2,3}, and Y π←�������������� Z the map

which carries zi and z′i to i for i= 1,2,3. Then

Ω(Z/Y)= {{z1,z2,z3
}
,
{
z1,z′2,z

′
3

}
,
{
z′1,z2,z′3

}
,
{
z′1,z

′
2,z3

}
,{

z′1,z
′
2,z

′
3

}
,
{
z′1,z2,z3

}
,
{
z1,z′2,z3

}
,
{
z1,z2,z′3

}}
,

�(Z/Y)= {{{z1,z2,z3
}
,
{
z′1,z

′
2,z

′
3

}}
,
{{
z1,z′2,z

′
3

}
,
{
z′1,z2,z3

}}
,{{

z′1,z2,z′3
}
,
{
z1,z′2,z3

}}
,
{{
z′1,z

′
2,z3

}
,
{
z1,z2,z′3

}}}
.

(2.17)

Let Y π←�������������� Z be an arbitrary double covering of a Γ -set Y of n elements, so that

|Z| = 2n, and let {ζ1, . . . ,ζn} ∈ Ω(Z/Y). Even though the n-tuple (ζ1, . . . ,ζn)
is not uniquely determined by the set {ζ1, . . . ,ζn}, it turns out that the orbit

(
ζ1, . . . ,ζn,γZ/Y

(
ζ1
)
, . . . ,γZ/Y

(
ζn
))A2n (2.18)

is well defined since every permutation of ζ1, . . . ,ζn induces a corresponding

permutation of γZ/Y (ζ1), . . . ,γZ/Y (ζn), and the resulting permutation of the

2n elements ζ1, . . . ,γZ/Y (ζn) is necessarily even. Therefore, we may define

δ
({
ζ1, . . . ,ζn

})= (ζ1, . . . ,ζn,γZ/Y
(
ζ1
)
, . . . ,γZ/Y

(
ζn
))A2n ∈ Σ2n(Z)/A2n =∆(Z),

(2.19)

and thus obtain a morphism of Γ -sets

δ= δZ :Ω(Z/Y) �→∆(Z). (2.20)

On the other hand, since �(Z/Y) is a quotient of Ω(Z/Y), there is a canonical

map

ε :Ω(Z/Y) �→�(Z/Y). (2.21)

Proposition 2.4. For a double covering Y π←�������������� Z with |Y | =n odd, the map

(δ,ε) :Ω(Z/Y) �→∆(Z)×�(Z/Y) (2.22)

is an isomorphism of Γ -sets.
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Proof. Since the map (δ,ε) is clearly Γ -equivariant, and since both sets

Ω(Z/Y) and ∆(Z)×�(Z/Y) have 2n elements, it suffices to show that (δ,ε)
is injective. Suppose {ζ1, . . . ,ζn},{ζ′1, . . . ,ζ′n} ∈ Ω(Z/Y) are distinct elements

such that ε({ζ1, . . . ,ζn}) = ε({ζ′1, . . . ,ζ′n}) then {ζ′1, . . . ,ζ′n} = γZ({ζ1, . . . ,ζn})
and we may assume that the elements are numbered in such a way thatπ(ζ′i )=
π(ζi) (i.e., ζ′i = γZ/Y (ζi)) for i = 1, . . . ,n. Since the permutation which inter-

changes ζi and ζ′i for i= 1, . . . ,n is odd, we have

(
ζ1, . . . ,ζn,ζ′1, . . . ,ζ

′
n
)A2n ≠

(
ζ′1, . . . ,ζ

′
n,ζ1, . . . ,ζn

)A2n , (2.23)

hence δ({ζ1, . . . ,ζn})≠ δ({ζ′1, . . . ,ζ′n}).
If Y π←�������������� Z and Y π ′←������������������������������� Z′ are two double coverings of the same Γ -set Y with n

elements, consider the fiber product

Z×Y Z′ =
{(
ζ,ζ′

)∈ Z×Z′ |π(ζ)=π ′(ζ′)}⊂ Z×Z′. (2.24)

The group S2 acts on Z×Y Z′ by mapping (ζ,ζ′) to (γZ/Y (ζ),γZ′/Y (ζ′)). Let

Z∗Y Z′ =
(
Z×Y Z′

)
/S2. (2.25)

The canonical map Y π×π ′←���������������������������������������������������������������������������������������������������������� Z×Y Z′ induces a map

Y π∗π ′←���������������������������������������������������������������������������������������������������������� Z∗Y Z′ (2.26)

which is a double covering. In particular, for any Γ -set X of two elements and

any covering Y π←�������������� Z of degree 2, we may consider

Y
π2∗π←��������������������������������������������������������������������������������������������������������������������� (X×Y)∗Y Z, (2.27)

where Y
π2←��������������������������������� X×Y is the projection map. Abusing notation, we simply write

Y π←���������������������������������������� X∗Z (2.28)

for this double covering. The proof of the following easy proposition is omit-

ted.

Proposition 2.5. Let X be a set of two elements with trivial Γ -action and let

Y π←�������������� Z be a double covering.

(a) The covering Y π∗π←�������������������������������������������������������������������������������� Z∗Y Z is isomorphic to Y
π2←��������������������������������� X×Y .

(b) The covering Y π←�������������� X∗Z is (noncanonically) isomorphic to Y π←�������������� Z .

(c) The operation ∗Y defines a group structure on the set of isomorphism

classes over Y of double coverings of Y . The neutral element is the isomorphism

class of Y
π2←��������������������������������� X×Y .

Proposition 2.6. Let Y π←�������������� Z and Y π←�������������� Z′ be two double coverings. There is

a canonical isomorphism ∆(Z∗Y Z′)�∆(Z)∗∆(Z′).
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Proof. Recall from (2.20) the map

δZ :Ω(Z/Y) �→∆(Z) (2.29)

defined for any double covering Y π←�������������� Z of a Γ -set Y with |Y | = n. In the se-

quel, we simply write δZ(z1, . . . ,zn) for δZ({z1, . . . ,zn}). For ω,ω′ ∈ Ω(Z/Y),
we have δZ(ω) = δZ(ω′) if and only if |ω∩ω′| ≡ nmod2. In particular, the

map δZ is onto. Let Y π←�������������� Z and Y π ′←������������������������������� Z′ be two double coverings of Y . We

simply denote by the canonical automorphisms γZ/Y and γZ′/Y and also the

canonical automorphisms of ∆(Z) and ∆(Z′). For {z1, . . . ,zn} ∈Ω(Z/Y) and

{z′1, . . . ,z′n} ∈Ω(Z′/Y), we have

δZ
(
z1,z2, . . . ,zn

)= δZ(z1,z2, . . . ,zn
)

(2.30)

and, similarly,

δZ′
(
z′1,z

′
2, . . . ,z

′
n
)= δZ′(z′1,z′2, . . . ,z′n). (2.31)

Therefore, the element

{(
δZ
(
z1, . . . ,zn

)
,δZ′

(
z′1, . . . ,z

′
n
))
,
(
δZ
(
z1, . . . ,zn

)
,δZ′

(
z′1, . . . ,z

′
n
))}

∈∆(Z)∗∆(Z′) (2.32)

depends only on

ω=
{{(
z1,z′1

)
,
(
z1,z′1

)}
, . . . ,

{(
zn,z′n

)
,
(
zn,z′n

)}}∈Ω(Z∗Y Z′/Y ). (2.33)

We thus have a canonical map

ψ :Ω
(
Z∗Y Z′/Y

)
�→∆(Z)∗∆(Z′). (2.34)

Ifω′ ∈Ω(Z∗Y Z′/Y) is obtained fromω by substituting {(z1,z′1),(z1,z′1)} for

{(z1,z′1),(z1,z′1)}, then ψ(ω)≠ψ(ω′), hence ψ is onto. On the other hand, if

ω′ is obtained from ω by an even number of changes as above, then ψ(ω)=
ψ(ω′). Therefore, ψ(ω)=ψ(ω′) if |ω∩ω′| ≡ nmod2, and it follows that ψ
factors through the map

δZ∗Y Z′ :Ω
(
Z∗Y Z′/Y

)
�→∆(Z∗Y Z′). (2.35)

This completes the proof.

For later use, we record another case where the map δ of (2.20) can be used

in the computation of a discriminant. Let X be a Γ -set of two elements. For

any Γ -set Y , we may consider the double covering Y
π2←��������������������������������� X ×Y given by the

projection.
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Proposition 2.7. If |X| = 2 and |Y | is odd, the composition of the Γ -equiv-

ariant map

ι :X �→Ω(X×Y/Y), ι(x)= {(x,y) |y ∈ Y},
δX×Y :Ω(X×Y/Y) �→∆(X×Y) (2.36)

defines an isomorphism

δ◦ι :X ∼
����������������������������→∆(X×Y). (2.37)

Proof. Since |Y | is odd, we have

δ◦ι(γX(x))= γ∆(X×Y)(δ◦ι(x)) for x ∈X. (2.38)

Therefore, δ◦ι is surjective, hence bijective.

Proposition 2.8. LetX be a Γ -set of two elements and let Y π←�������������� Z be a double

covering. There is a canonical isomorphism

�(Z/Y)��(X∗Z/Y). (2.39)

Proof. For simplicity of notation, letX = {+,−} and denote by the canon-

ical automorphism γZ/Y . We may then identify X ∗Z with the set of formal

polynomials ζ−ζ, for ζ ∈ Z . Note however that the Γ -action on these polyno-

mials is not linear since Γ may act nontrivially on {+,−}. The structure map

Y ←X∗Z carries ζ−ζ to π(ζ)=π(ζ). Therefore,

Ω(X∗Z/Y)= {{ζ1−ζ1, . . . ,ζn−ζn
} | {π(ζ1

)
, . . . ,π

(
ζn
)}= Y},

�(X∗Z/Y)= {{{ζ1−ζ1, . . . ,ζn−ζn
}
,{

ζ1−ζ1, . . . ,ζn−ζn
}} | {π(ζ1

)
, . . . ,π

(
ζn
)}= Y}.

(2.40)

On the other hand,

�(Z/Y)= {{{ζ1, . . . ,ζn
}
,
{
ζ1, . . . ,ζn

}} | {π(ζ1
)
, . . . ,π

(
ζn
)}= Y}. (2.41)

The map

{{
ζ1, . . . ,ζn

}
,
{
ζ1, . . . ,ζn

}} � �→ {{ζ1−ζ1, . . . ,ζn−ζn
}
,
{
ζ1−ζ1, . . . ,ζn−ζn

}}
(2.42)

is a Γ -isomorphism �(Z/Y) ∼����������→�(X∗Z/Y), whatever the action of Γ on {+,−} is.
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3. Étale algebras and extensions. In this section, F is an arbitrary field.

We denote by Fs a separable closure of F and let Γ = Gal(Fs/F). A finite-

dimensional F -algebra E is called étale if E⊗F Fs is isomorphic to a split Fs -
algebra Fs ×···×Fs . For any étale F -algebra E of dimension n, the set of F -

algebra homomorphisms

X(E)=HomF -alg
(
E,Fs

)
(3.1)

is a Γ -set of n elements since Γ acts on Fs .
Conversely, starting from a Γ -set X with |X| =n, we may let Γ act by semilin-

ear automorphisms on the Fs -algebra of maps Map(X,Fs). The fixed F -algebra

M(X)=Map
(
X,Fs

)Γ = {f :X �→ Fs | γf(ξ)= f
(γξ) for γ ∈ Γ , ξ ∈X} (3.2)

is étale of dimension n. Moreover, there are canonical isomorphisms

M
(
X(E)

)� E, X
(
M(X)

)�X (3.3)

(see [3, (18.19)]), so that the functors M and X define an antiequivalence be-

tween the category ÉtF of étale F -algebras (with F -algebra homomorphisms)

and the category SetΓ of Γ -sets. Under this antiequivalence, the direct product

(resp., tensor product) of F -algebras corresponds to the disjoint union (resp.,

direct product) of Γ -sets; for étale F -algebras E1 and E2, there are obvious iden-

tifications

X
(
E1⊗E2

)= X
(
E1
)×X

(
E2
)
, X

(
E1×E2

)= X
(
E1
)∐

X
(
E2
)
. (3.4)

Moreover, if G is a group acting on an étale F -algebra E by F -automorphisms,

then, for the fixed subalgebra EG, we have

X
(
EG
)= X(E)/G (3.5)

since EG is the equalizer of the automorphisms σ : E → E for σ ∈ G, and

X(E)/G is the coequalizer of the corresponding automorphisms of X(E). There-

fore through the antiequivalence ÉtF ≡ SetΓ , the constructions on Γ -sets defined

in Section 2.1 have counterparts in the category of étale F -algebras. The aim

of this section is to make them explicit.

3.1. Basic constructions on étale algebras. Let E be an étale F -algebra of

dimension n. Under the canonical isomorphism E �M(X(E)), the idempotents

of E correspond to the characteristic functions of Γ -subsets of X(E). If e ∈ E
is the characteristic function of a subset Y ⊂ X(E), then multiplication by e
defines an isomorphism E/(1− e)E ∼

����������→ eE. Moreover, X(eE) = Y , and under

the antiequivalence ÉtF ≡ SetΓ , the map E → eE corresponds to the inclusion

X(E)← Y .
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Example 3.1. If E is the split étale F -algebra E = Fn, then X(E) is in duality

with the set e1, . . . ,en of minimal idempotents of E, namely, X(E)= {ξ1, . . . ,ξn},
where

ξi
(
ej
)=


0 if i≠ j,

1 if i= j. (3.6)

The idempotent corresponding to a subset Y = {ξi | i∈ I} ⊂ X(E) is
∑
i∈I ei.

Let E be an arbitrary étale F -algebra of dimension n. For any integer k with

1≤ k≤n, we let sk ∈ E⊗k be the idempotent corresponding to the characteris-

tic function of the subset

Σk
(
X(E)

)= {(ξ1, . . . ,ξk
) | ξi ≠ ξj for i≠ j

}⊂ X(E)k = X
(
E⊗k

)
. (3.7)

Therefore, letting Σk(E)= skE⊗k, we have

X
(
Σk(E)

)= Σk(X(E)). (3.8)

In particular, for k = 2, the idempotent 1−s2 is the characteristic function

of the diagonal of X(E)×X(E) = X(E⊗E). It is the separability idempotent of

E, see [3, page 285]. For k≥ 3, the idempotent sk can also be defined in terms

of the separability idempotent of E, see [8, page 42] and [3, page 320].

The symmetric group Sk acts on E⊗k by permutation of the factors, and the

idempotent sk is fixed under this action, so Sk also acts on Σk(E). We consider

the fixed subalgebra

Λk(E)= Σk(E)Sk = sk
(
E⊗k

)Sk . (3.9)

We have

X
(
Λk(E)

)=Λk(X(E)) (3.10)

since under the antiequivalence ÉtF ≡ SetΓ the fixed algebra under Sk corre-

sponds to the factor set under the Sk-action.

The discriminant of E is defined by

∆(E)= Σn(E)An , (3.11)

and we have

X
(
∆(E)

)=∆(X(E)). (3.12)

Example 3.2. If E = Fn is split with minimal idempotents e1,. . . , en, then

sk =
∑

(i1,...,ik)
ei1⊗···⊗eik , (3.13)
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where (i1, . . . , ik) ranges over the k-tuples of pairwise distinct integers from

1 to n (i.e., (i1, . . . , ik) ∈ Σk({1, . . . ,n})). The algebra Σk(E) is then split, with

minimal idempotents

ei1⊗···⊗eik (3.14)

for (i1, . . . , ik) ∈ Σk({1, . . . ,n}). Similarly, the algebra Λk(E) is split, with mini-

mal idempotents

e{i1,...,ik} =
∑
σ∈Sk

eiσ(1)⊗···⊗eiσ(k) (3.15)

for {i1, . . . , ik} a subset of k elements of {1, . . . ,n}, that is, {i1, . . . , ik}∈Λk({1, . . . ,
n}).

We also have ∆(E)� F×F if n≥ 2, with minimal idempotents

∑
σ∈An

eσ(1)⊗···⊗eσ(n),
∑
σ∉An

eσ(1)⊗···⊗eσ(n). (3.16)

For an arbitrary étale F -algebra E of dimension n, the algebra Λk(E) can also

be viewed as an algebra of linear transformations of the exterior power
∧k E

(where E is just regarded as a vector space), as we now show.

Multiplication on the left defines an F -algebra homomorphism (the regular

representation)

E⊗k �→ EndF
(
E⊗k

)
. (3.17)

As pointed out by Saltman [7, Lemma 1.1], the image of (E⊗k)Sk in EndF (E⊗k)
preserves the kernel of the canonical map E⊗k → ∧k E. Therefore, there is an

induced F -algebra homomorphism

(
E⊗k

)Sk �→ EndF

( k∧
E
)
. (3.18)

Lemma 3.3. The homomorphism (3.18) maps sk to the identity map on
∧k E.

Proof. It suffices to check the assertion over an extension of F . We may

thus assume that E is split, E = Fn. Let e1, . . . , en be the minimal idempotents of

E. Then sk is as in Example 3.2 and its image in EndF (
∧k E)maps ej1∧···∧ejk

to

∑
(i1,...,ik)

ei1ej1∧···∧eikejk = ej1∧···∧ejk . (3.19)

In view of the lemma, the homomorphism (3.18) induces an F -algebra ho-

momorphism

ϕk :
(
E⊗k

)Sk/
(
1−sk

)(
E⊗k

)Sk =Λk(E) �→ EndF

( k∧
E
)
. (3.20)
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Saltman [7, Lemma 1.3] has shown that the image of this map has dimension(
n
k

)
= dimΛk(E), hence ϕk is injective.

For instance, for a, x1, . . . ,xk ∈ E,

ϕk
(
sk
(
a⊗···⊗a))(x1∧···∧xk

)= ax1∧···∧axk,
ϕk
(
sk
(
a⊗1⊗···⊗1+1⊗a⊗···⊗1+···+1⊗···⊗1⊗a))(x1∧···∧xk

)
= (ax1∧x2∧···∧xk

)+(x1∧ax2∧···∧xk
)

+···+(x1∧x2∧···∧axk
)
.

(3.21)

Now, consider the case where n is even, n= 2m. Since dim
∧nE = 1 and the

exterior product
∧mE×∧mE→∧nE is a nonsingular bilinear pairing, there is

an adjoint involution γ on EndF (
∧mE), defined by the equation

f(x)∧y = x∧γ(f)(y) for x,y ∈
m∧
E, f ∈ EndF

(m∧
E
)
. (3.22)

Proposition 3.4. The involution γ preserves the image of ϕk. Therefore,

there is an induced involutive automorphism γE on Λm(E) defined byϕm◦γE =
γ ◦ϕm.

Proof. Extending scalars to a separable closure, we may assume that E
is split. It is then spanned by its minimal idempotents e1, . . . , en, and Λm(E)
is spanned by the minimal idempotents e{i1,...,im} defined in Example 3.2 for

{i1, . . . , im} ∈Λm({1, . . . ,n}).
Computation shows that for {i1, . . . , im},{j1, . . . ,jm} ∈Λm({1, . . . ,n}),

ϕm
(
e{i1,...,im}

)(
ej1∧···∧ejm

)=

ej1∧···∧ejm if

{
i1, . . . , im

}= {j1, . . . ,jm
}
,

0 if
{
i1, . . . , im

}
≠
{
j1, . . . ,jm

}
.

(3.23)

It is then easily verified that

γ ◦ϕm
(
e{i1,...,im}

)= e{k1,...,km}, (3.24)

where {k1, . . . ,km} is the complementary subset of {i1, . . . , im} in {1, . . . ,n}.

We may now define

�(E)=Λm(E)S2 = {x ∈Λm(E) | γE(x)= x}. (3.25)

Theorem 3.5. For any étale algebra E, X(�(E))=�(X(E)).

Proof. It suffices to see that, under the antiequivalence ÉtF ≡ SetΓ , the au-

tomorphism γE of Λm(E) corresponds to the permutation γX(E) of X(Λm(E))=
Λm(X(E)). Again, we may extend scalars to a separable closure of F and as-

sume that E is split. Using the same notation as in the preceding proof, we may
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identify X(E) with the dual basis of e1, . . . ,en. Equation (3.24) shows that

γE
(
e{i1,...,im}

)= e{k1,...,km}, (3.26)

where {k1, . . . ,km} is the complementary subset of {i1, . . . , im} in {1, . . . ,n}, and

the proof is complete.

When dimE = 2, the algebra E is called a quadratic étale F -algebra. In the

notation above, we then have m = 1, so Λm(E) = E, and hence E carries a

canonical involutive automorphism γE . Let E and E′ be two quadratic étale

F -algebras, with canonical involutive automorphisms γE and γE′ . The tensor

product γE⊗γE′ defines a S2-action on E⊗F E′, and we let

E∗E′ = (E⊗F E′)S2 . (3.27)

Proposition 3.6. For quadratic étale F -algebras E, E′, X(E∗E′) = X(E)∗
X(E′).

Proof. The proof follows from

X
((
E⊗F E′

)S2
)= X

(
E⊗F E′

)
/S2 =

(
X(E)×X(E′)

)
/S2. (3.28)

Let Quad(F) be the set of isomorphism classes of quadratic étale F -algebras,

which is in bijection under the functor X with the set of isomorphism classes

of Γ -sets of two elements. The following analogue of Proposition 2.2 is easily

proved, either directly or by reduction to Proposition 2.2 under the antiequiv-

alence ÉtF ≡ SetΓ .

Proposition 3.7. Let E and E′ be two quadratic étale F -algebras.

(a) The F -algebra E∗E is split: E∗E � F×F .

(b) If the algebra E′ is split, then E∗E′ � E (not canonically).

(c) The operation ∗ defines a group structure on the set Quad(F).

3.2. Extensions of étale algebras. An étale F -algebra B containing an F -

algebra A (necessarily étale) is called an extension of degree d of A if it is a

free A-module of rank d. Equivalently, this condition means that the inclusion

A i
�→ B corresponds under the antiequivalence ÉtF ≡ SetΓ to a map X(A) i∗←�������������������������� X(B)

which is a covering of degree d. Extensions of degree 2 are called quadratic

extensions.

Suppose B/A is an extension of degree d. Let dimF A = n (hence dimF B =
nd), and let sAn ∈ (A⊗n)Sn be the idempotent defining Σn(A), see Section 3.1.

Then i⊗n(sAn) is an idempotent of (B⊗n)Sn . Define

Ω(B/A)= i⊗n(sAn)·(B⊗n)Sn . (3.29)
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Proposition 3.8. There is a canonical surjective mapΛn(B)→Ω(B/A), and

X
(
Ω(B/A)

)=Ω(X(B)/X(A)). (3.30)

Therefore, dimFΩ(B/A)= dn.

Proof. The set X(Ω(B/A)) is the set of F -algebra homomorphisms (B⊗n)Sn

→ Fs which map i⊗n(sAn) to 1. Since

X
((
B⊗n

)Sn)= X(B)n/Sn, (3.31)

every such homomorphism is the orbit of an n-tuple (ξ1, . . . ,ξn) of elements of

X(B). The condition that the homomorphism maps i⊗n(sAn) to 1 is equivalent

to the fact that the homomorphism (A⊗n)Sn → Fs associated to the n-tuple

(i∗(ξ1), . . . , i∗(ξn)) maps sAn to 1. In view of the definition of sAn , this means

that i∗(ξ1), . . . , i∗(ξn) are pairwise distinct. Hence

{
i∗
(
ξ1
)
, . . . , i∗

(
ξn
)}= X(A) (3.32)

since |X(A)| =n. Of course, this condition implies that ξ1, . . . , ξn are pairwise

distinct, hence {ξ1, . . . ,ξn} ∈Λn(X(B)). Thus,

X
(
Ω(B/A)

)= {{ξ1, . . . ,ξn
}⊂ X(B) | {i∗(ξ1

)
, . . . , i∗

(
ξn
)}= X(A)

}
=Ω(X(B)/X(A)). (3.33)

The inclusion Ω(X(B)/X(A)) ⊂ Λn(X(B)) yields the canonical surjective map

Λn(B)→Ω(B/A) under the antiequivalence ÉtF ≡ SetΓ .

Now, suppose d= 2 so that dimF B = 2n. The canonical involutive automor-

phism γX(B)/X(A) on X(B) corresponds to a canonical involutive automorphism

γB/A of B such that

A= {x ∈ B | γB/A(x)= x}. (3.34)

On the other hand, there is also a “complementary subset” map

γX(B) :Λn
(
X(B)

)
�→Λn

(
X(B)

)
. (3.35)

Since this map preserves Ω(X(B)/X(A)), the corresponding map γB :Λn(B)→
Λn(B) induces an involutive automorphism on Ω(B/A), which we also denote

by γB , and we may consider the subalgebra of fixed points

�(B/A)=Ω(B/A)S2 = {x ∈Ω(B/A) | γB(x)= x}. (3.36)

By definition, it is clear that

X
(
�(B/A)

)=�
(
X(B)/X(A)

)
, (3.37)

hence dimF �(B/A)= 2n−1.
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Example 3.9. SupposeA and B are split of dimensions 3 and 6, respectively,

with minimal idempotents e1, e2, e3, and f1, f ′1, f2, f ′2, f3, f ′3 such that

ei = fi+f ′i for i= 1,2,3. (3.38)

As observed in Example 3.2,

sA3 =
∑
σ∈S3

eσ(1)⊗eσ(2)⊗eσ(3), (3.39)

and {eσ(1)⊗eσ(2)⊗eσ(3) | σ ∈ S3} is the set of minimal idempotents of Σ3(A).
Denoting in general by

∑
u⊗v⊗w the sum of the six products obtained by

permuting the factors u, v , and w (so that

∑
u⊗v⊗w =

∑
σ∈S3

uσ(1)⊗uσ(2)⊗uσ(3), (3.40)

where u1 =u, u2 = v , u3 =w), the minimal idempotents of Ω(B/A) are

g0 =
∑
f1⊗f2⊗f3, g′0 =

∑
f ′1⊗f ′2⊗f ′3,

g1 =
∑
f1⊗f ′2⊗f ′3, g′1 =

∑
f ′1⊗f2⊗f3,

g2 =
∑
f ′1⊗f2⊗f ′3, g′2 =

∑
f1⊗f ′2⊗f3,

g3 =
∑
f ′1⊗f ′2⊗f3, g′3 =

∑
f1⊗f2⊗f ′3.

(3.41)

The involution γB interchanges gi and g′i for i = 0, . . . ,3, hence the minimal

idempotents of �(B/A) are

g0+g′0, g1+g′1, g2+g′2, g3+g′3. (3.42)

Let B and B′ be quadratic extensions of an étale F -algebra A. The canonical

map B⊗F B′ → B⊗AB′ induces an injective map

X(B)×X
(
B′
)= X

(
B⊗F B′

)←� X
(
B⊗AB′

)
(3.43)

which identifies X(B⊗A B′) to the fiber product X(B)×X(A) X(B′). The tensor

product γB/A⊗γB′/A defines an action of S2 on B⊗A B′ by A-automorphisms,

and we let

B∗AB′ =
(
B⊗AB′

)S2 . (3.44)

The following result is clear.

Proposition 3.10. For quadratic extensions B, B′ of an étale algebra A,

X(B∗AB′)= X(B)∗X(A)X(B′).

If E is an étale F -algebra of dimension 2, then E⊗F A is a quadratic extension

of A. For any quadratic extension B/A, we have E⊗F B = (E⊗F A)⊗AB and we
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simply write

E∗B for
(
E⊗F A

)∗AB. (3.45)

Let Quad(A) be the set of isomorphism classes over A of quadratic exten-

sions of A. The following proposition is the analogue of Proposition 2.5.

Proposition 3.11. Let E be a split étale F -algebra of dimension 2 (i.e., E �
F×F ), and let B/A be a quadratic extension of étale F -algebras.

(a) The extension (B∗A B)/A is isomorphic to (E⊗F A)/A (hence also to (A×
A)/A).

(b) The extension (E∗B)/A is (noncanonically) isomorphic to B/A.

(c) The operation ∗A defines a group structure on Quad(A). The neutral ele-

ment is the isomorphism class of (A×A)/A.

It is clear that Propositions 2.4, 2.6, and 2.8 have analogues for étale algebras.

We record them below.

Proposition 3.12. Let E be an étale F -algebra of dimension 2 and let B/A
and B′/A be quadratic extensions of an étale F -algebra A. There are canonical

isomorphisms

(a) ∆(B)⊗�(B/A)�Ω(B/A) (if dimA is odd),

(b) ∆(B∗AB′)�∆(B)∗∆(B′),
(c) �(E∗B/A)��(B/A).

4. Cohomology of permutation groups

4.1. Permutations. For any finite set X, let SX be the symmetric group of

X, that is, the group of all permutations of X. Thus, SX = Sn for X = {1, . . . ,n}.
Every permutation of a set X of n elements induces a permutation of the sets

Σk(X), Λk(X) (for k ≤ n), ∆(X), and �(X) (if n is even). There are therefore

canonical group homomorphisms

SX �→ SΣk(X), SX �→ SΛk(X) (for k≤n),
SX �→S∆(X), SX �→S�(X) (if n is even).

(4.1)

(If n≥ 2, the map SX
sgn
����������������������������������������������→ S∆(X) = S2 is the signature map.)

If Y π←�������������� Z is a covering of degree d of a set of n elements, let

SZ/Y =
{
(σ ,τ)∈ SY ×SZ |π ◦τ = σ ◦π

}
(4.2)

be the group of automorphisms of the covering. The map (σ ,τ)� τ identifies

SZ/Y to a subgroup of SZ . On the other hand, the map (σ ,τ) � σ defines a

surjective homomorphism

βZ/Y : SZ/Y �→ SY (4.3)
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whose kernel is isomorphic to Snd upon identifying each fiber of π with {1, . . . ,
d}. Therefore, the group SZ/Y has order (d!)nn! and can be identified to a

wreath product

SZ/Y � Sd �Sn. (4.4)

Automorphisms of the covering Y ← Z induce permutations of Ω(Z/Y), and

of �(Z/Y) if d= 2. Hence there are canonical group homomorphisms

ωZ/Y : SZ/Y �→ SΩ(Z/Y), sZ/Y : SZ/Y �→ S�(Z/Y) if d= 2. (4.5)

For later use, note that the kernel of sZ/Y is the “diagonal” subgroup S2 of SZ/Y ,

whose nontrivial element is γZ/Y . This diagonal subgroup is central in SZ/Y .

On the other hand, every permutation of a set X with n = 2m elements

induces an automorphism of the covering �(X) ε←� Λm(X). Hence there is a

canonical group homomorphism

λX : SX �→ SΛm(X)/�(X) ⊂ SΛm(X). (4.6)

Proposition 4.1. Ifm≥ 2, the image of λX is in the kernel of the signature

map

sgn : SΛm(X) �→ S∆(Λm(X)). (4.7)

Moreover, the composition of λX and the canonical homomorphism sΛm(X)/�(X)
is an injective map

SX ↩ S�(Λm(X)/�(X)). (4.8)

The proof is left to the reader.

4.2. Cohomology and Γ -sets. As in Section 2, we denote by Γ a profinite

group which will be fixed throughout this subsection. The action of Γ on a set

X with |X| =n can be viewed as a group homomorphism

Γ �→ SX � Sn. (4.9)

Since the isomorphism SX � Sn depends on the indexing of the elements in X,

the homomorphism Γ �→ Sn is defined by X up to conjugation by an element

in Sn. Therefore, there is a canonical one-to-one correspondence between iso-

morphism classes of Γ -sets of n elements and the cohomology set H1(Γ ,Sn)
(with the trivial action of Γ on Sn) by definition of this cohomology set. Under

this correspondence, the distinguished element of H1(Γ ,Sn) is mapped to the

set with trivial Γ -action.

Since the symmetric group S2 is abelian, there is an abelian group structure

on H1(Γ ,S2). We leave it to the reader to verify that the product of the isomor-

phism classes of the Γ -sets X and X′ with |X| = |X′| = 2 is the isomorphism

class of X∗X′.
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Similarly, every covering Y π←�������������� Z of degree d of a Γ -set Y with |Y | =n yields

a group homomorphism

Γ �→ SZ/Y � Sd �Sn, (4.10)

and there is a canonical one-to-one correspondence between isomorphism

classes of coverings of degree d of Γ -sets of n elements and the cohomology

set H1(Γ ,Sd �Sn), which maps the distinguished element of the cohomology

set to the covering with trivial Γ -action.

The basic constructions in Sections 2.1 and 2.2 yield canonical maps of coho-

mology sets through the induced homomorphisms of permutation groups (see

Section 4.1). For instance, if X is a Γ -set of n elements and k≤n, the canonical

homomorphism σk : SX → SΣk(X) induces a morphism of pointed sets

σ 1
k :H1(Γ ,SX) �→H1(Γ ,SΣk(X)). (4.11)

Since the Γ -action on Σk(X) is induced by the Γ -action on X through σk, the

morphism σ 1
k maps the isomorphism class of X to the isomorphism class of

Σk(X). A similar statement obviously holds for the morphisms

H1(Γ ,SX) �→H1(Γ ,SΛk(X)),
H1(Γ ,SX) �→H1(Γ ,S∆(X)),
H1(Γ ,SX) �→H1(Γ ,S�(X)

)
if n is even.

(4.12)

Similarly, if Y π←�������������� Z is a covering of degree d of Γ -sets, the canonical homo-

morphisms ωZ/Y and sZ/Y of Section 4.1 induce morphisms of pointed sets

ω1
Z/Y :H1(Γ ,SZ/Y ) �→H1(Γ ,SΩ(Z/Y)),
s1
Z/Y :H1(Γ ,SZ/Y ) �→H1(Γ ,S�(Z/Y)

)
if d= 2.

(4.13)

Since the Γ -action on Ω(Z/Y) and �(Z/Y) (if d= 2) is induced by the Γ -action

on Z/Y through ωZ/Y and σZ/Y , respectively, the morphisms ω1
Z/Y and s1

Z/Y

map the isomorphism class of the covering Z/Y to the isomorphism class of

the Γ -sets Ω(Z/Y) and �(Z/Y), respectively.

Recall also from Section 4.1 the canonical homomorphism βZ/Y : SZ/Y → SY
which maps every permutation of a covering to the induced permutation of

the base. Let TZ/Y = kerβZ/Y . This is the group of automorphisms over Y of

the covering Z/Y , hence H1(Γ ,TZ/Y ) is in one-to-one correspondence with the

set of isomorphism classes over Y of coverings of degree d of Y , where the

Γ -action on Y is trivial.

The case of nontrivial Γ -action can be taken into account by twisting, see [3,

Section 28.C]. If Z/Y is a covering of degree d, we define a nontrivial action of

Γ on SZ/Y by conjugation: the action of Γ on Z/Y is a group homomorphism

α : Γ �→ SZ/Y ; (4.14)
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and we define

γ∗f =α(γ)◦f ◦α(γ)−1 (4.15)

for γ ∈ Γ and f ∈ SZ/Y . Let S′Z/Y be the group SZ/Y with this action of Γ , and

define S′Y similarly. By [3, (28.8)], there are canonical bijections

H1(Γ ,S′Z/Y ) ∼
����������������������������→H1(Γ ,SZ/Y ), H1(Γ ,S′Y ) ∼

����������������������������→H1(Γ ,SY ) (4.16)

which map the distinguished element of H1(Γ ,S′Z/Y ) and H1(Γ ,S′Y ) to the iso-

morphism class of the covering Z/Y and to the isomorphism class of Y , re-

spectively. The map βZ/Y is also a Γ -group homomorphism βZ/Y : S′Z/Y �→ S′Y .

Let T′Z/Y ⊂ S′Z/Y be the kernel of βZ/Y . ThenH1(Γ ,T′Z/Y ) is in natural one-to-one

correspondence with the set Cd(Y) of isomorphism classes over Y of cover-

ings of degree d of Y . (The distinguished element of H1(Γ ,T′Z/Y ) corresponds

to the isomorphism class of Z/Y .)

The exact sequence of Γ -groups

1 �→T′Z/Y �→ S′Z/Y
βZ/Y
�������������������������������������������������������������������������������→ S′Y �→ 1 (4.17)

yields an exact sequence in cohomology

H0(Γ ,S′Y ) �→H1(Γ ,T′Z/Y ) �→H1(Γ ,S′Z/Y ) β
1
Z/Y
�������������������������������������������������������������������������������→H1(Γ ,S′Y ). (4.18)

The kernel of β1
Z/Y is the set of isomorphism classes of coverings of degree

d of Y . By [3, (28.4)], this kernel is in canonical bijection with the orbit space

of H1(Γ ,T′Z/Y ) under the fixed-point group H0(Γ ,S′Y ). Note that H0(Γ ,S′Y ) is

the group of permutations of Y which commute with the action of Γ ; in other

words, it is the group of automorphisms of the Γ -set Y :

H0(Γ ,S′Y )=AutΓ (Y). (4.19)

This group acts naturally on Cd(Y), and

kerβ1
Z/Y � Cd(Y)/AutΓ (Y). (4.20)

When the Γ -action on Y is transitive, let Γ0 ⊂ Γ be the stabilizer of an arbitrary

(but fixed) element of Y so that Y � Γ/Γ0. Then we may identify T′Z/Y with

Map(Γ/Γ0,Sd) and get a canonical bijection in the spirit of Shapiro’s lemma

H1(Γ ,T′Z/Y )�H1(Γ0,Sd), (4.21)

see [3, (28.20)].

Whatever the action of Γ on Y is, when d = 2, the group T′Z/Y (� Snd , where

n= |Y |) is abelian. Hence the set H1(Γ ,T′Z/Y ) is an abelian group. When Z/Y is

the projection covering ({1,2}×Y)/Y , the bijection H1(Γ ,T′Z/Y ) � C2(Y) is a
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group isomorphism for the group structure induced on C2(Y) by the operation

∗Y of Section 2.2. Note that this operation is generally not defined on the orbit

set kerβ1
Z/Y � C2(Y)/AutΓ (Y).

4.3. Torsors. As in Section 4.2, we fix a profinite group Γ . Besides the cor-

respondence between H1(Γ ,Sn) and the isomorphism classes of Γ -sets of n
elements explained in Section 4.2, there is also a one-to-one correspondence

between H1(Γ ,Sn) and isomorphism classes of Sn-torsors, that is, of Γ -sets

of n! = |Sn| elements with a free action of Sn (on the right) compatible with

the Γ -action (on the left), see [3, (28.14)]. Combining the correspondences, we

obtain a bijection between isomorphism classes of Γ -sets of n elements and

Sn-torsors. The class of Σn(X), which is clearly an Sn-torsor corresponds to

the isomorphism class of the Γ -set X with |X| =n. Conversely, we associate to

an Sn-torsor Σ the class of Σ/Sn−1. The n projections

πi : Σn(X) �→X,
(
ξ1, . . . ,ξn

) � �→ ξi for i= 1, . . . ,n (4.22)

are Γ -equivariant maps and satisfy

πi
((
ξ1, . . . ,ξn

)σ )=πσ(i)(ξ1, . . . ,ξn
)

for σ ∈ Sn. (4.23)

Definition 4.2. An Sn-Galois closure of a Γ -set X of n elements is a pair

(Σ,π), where Σ is an Sn-torsor and X π←�������������� Σ is a covering (necessarily of degree

(n−1)!) such that π(xσ)=π(x) for x ∈ Σ and σ ∈ Sn−1.

Every Sn-Galois closure of X is isomorphic to (Σn(X),πn).
A similar construction can be given for coverings, since the setH1(Γ ,Sd�Sn)

classifies Sd�Sn-torsors as well as coverings of degreed of Γ -sets ofn elements.

If Y π←�������������� Z is a covering of degree d of a Γ -set Y of n elements (so that |Z| =nd),

let Σ(Z/Y) be the set of arrays (ζij), 1 ≤ i ≤ d, 1 ≤ j ≤ n, of pairwise distinct

elements of Z such that π(ζij) depends only on j for i = 1, . . . ,n. The set

Σ(Z/Y) is a Sd � Sn-torsor. Its isomorphism class, viewed as an element of

H1(Γ ,Sd �Sn), corresponds to the isomorphism class of the covering Y π←�������������� Z .

The nd projections

πk� : Σ(Z/Y) �→ Z, (
ζij
)

1≤i≤d
1≤j≤n

� �→ ζk� (4.24)

are Γ -equivariant maps. The projection π : Z → Y induces an Sn-equivariant

projection

Σ(π) : Σ(Z/Y) �→ Σn(Y),
(
ζij
) � �→ (π(ζi1), . . . ,π(ζin)) (4.25)



QUARTIC EXERCISES 4283

and Σn(Y)
Σ(π)←����������������������������������������������������������������������������� Σ(Z/Y) is a covering of degree (d!)n. Moreover, the diagram

Σn(Y)

πj

Σ(Z/Y)
Σ(π)

πij

Y Z
π

(4.26)

is commutative. We say that Σn(Y)
Σ(π)←����������������������������������������������������������������������������� Σ(Z/Y) is an Sd �Sn-Galois closure of

Y π←�������������� Z . (We leave it to the reader to formalize the definition of an Sd�Sn-Galois

closure of Y π←�������������� Z .)

Note that the set Ω(Z/Y) of sections of Z/Y (see Section 2.2) can be identi-

fied with the set Σ(Z/Y)/(Sd−1 �Sn).

4.4. Cohomology and étale algebras. In this section, F is an arbitrary field,

Fs is a separable closure of F , and Γ = Gal(Fs/F) is the absolute Galois group

of F . The antiequivalence ÉtF ≡ SetΓ induces a canonical bijection between the

set of isomorphism classes of étale F -algebras of dimension n and the set of

isomorphism classes of Γ -sets of n elements. Since the latter set is in one-

to-one correspondence with the cohomology set H1(Γ ,Sn) (see Section 4.2),

there is also a canonical bijection between H1(Γ ,Sn) and isomorphism classes

of étale F -algebras of dimension n. This bijection can be set up directly by

identifying Sn with the group of automorphisms of the split algebra Fns . More

precisely, given an étale algebra A and an isomorphism α : Fn⊗Fs ∼����������→ A⊗Fs ,
the corresponding cocycle is (fγ)γ∈Γ , where

fγ =α−1 ◦(1⊗γ)◦α◦(1⊗γ−1)∈AutFs
(
Fn⊗Fs

)= Sn. (4.27)

Conversely, given a cocycle (fγ)γ∈Γ in Sn, the corresponding étale algebra is

Aγ =
{
x ∈ Fns | γfγ(x)= x

}
, (4.28)

where Γ acts on Fns entrywise.

As in Section 4.2, the basic constructions on étale algebras of Section 3.1

can be interpreted in terms of morphisms of cohomology sets. Details are left

to the reader, as well as the analogues for extensions of étale algebras and the

cohomology of wreath products. We simply note for later use the canonical

isomorphism

Quad(F)�H1(F,S2
)
, (4.29)

where Quad(F) is the group of isomorphism classes of quadratic étale F -

algebras (see Proposition 3.7). For any étale F -algebraA, we also have canonical

isomorphisms

Quad(A)� C2(X(A))�H1(Γ ,T′X(A×A)/X(A)), (4.30)
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see Section 4.2. The set of isomorphism classes over F of quadratic extensions

of A is Quad(A)/AutF (A). The operation ∗A is generally not defined on this

set.

4.5. Galois algebras. As in Section 4.4, F is an arbitrary field and Γ is the

absolute Galois group of F . Let G be a finite group. A G-Galois F -algebra is an

étale F -algebra of dimension |G| with an action of G by F -algebra automor-

phisms such that the algebra of fixed points is F (see [3, (18.15)]). Equivalently,

an étale F -algebra E of dimension |G| with an action of G is G-Galois if and

only if the Γ -set X(E) is a G-torsor for the induced action of G. Therefore, the

discussion of torsors in Section 4.3 has an analogue in terms of Galois alge-

bras, and the set H1(Γ ,Sn) is also in one-to-one correspondence with the set

of isomorphism classes of Sn-Galois F -algebras.

If E is an étale F -algebra of dimension n, the algebra Σn(E) has a natural

action of Sn, for which it is an Sn-Galois algebra. There are n embeddings

εi : E → Σn(E) corresponding to the projections πi : Σn(X(E)) �→ X(E). They

are defined explicitly as follows. For x ∈ E,

εi(x)= sn ·1⊗···⊗x⊗···⊗1 (x in ith position), (4.31)

where sn ∈ E⊗n is the idempotent such that Σn(E)= snE⊗n. Clearly, for σ ∈ Sn
and x ∈ E,

εσ(i)(x)= σ
(
εi(x)

)
. (4.32)

Definition 4.3. An Sn-Galois closure of an étale F -algebra E of dimensionn
is a pair (Σ,ε), where Σ is an Sn-Galois F -algebra and ε : E→ Σ is an embedding

such that σ(ε(x))= ε(x) for σ ∈ Sn and x ∈ E.

Every Sn-Galois closure of E is isomorphic to (Σn(E),εn). This construction

was suggested by Saltman, see [8, page 42].

Example 4.4. Let A be a cubic étale F -algebra, that is, dimA= 3. The choice

of any of the three canonical embeddings εi : A → Σ3(A) induces an isomor-

phism

A⊗∆(A)� Σ3(A). (4.33)

This follows from the fact that the corresponding map Σ3(X) → X×∆(X) is

bijective if |X| = 3, see [3, (18.27)].

We next sketch an analogue of the Galois closure for extensions of étale

algebras on the model of the corresponding construction for coverings in

Section 4.3.

Let B/A be an extension of degree d of an étale F -algebra A of degree n.

Viewing B as an étale A-algebra of degree d, we have an Sd-Galois closure
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ΣAd(B) of B which is étale of degree d! over A,

ΣAd(B)= sB/Ad ·B⊗Ad, (4.34)

where sB/Ad is the idempotent corresponding to the characteristic function of

the subset {(ξ1, . . . ,ξd) | ξi ≠ ξj for i≠ j, and π(ξi)=π(ξj) for i= 1, . . . ,d} in

X(B)×X(A) ···×X(A)X(B)= X
(
B⊗A ···⊗AB

)
. (4.35)

There are d canonical embeddings εAi : B → ΣAd(B) and a canonical embedding

j :A→ ΣAd(B) corresponding to the A-algebra structure on ΣAd(B). Define

Σ(B/A)= j⊗n(sAn)·ΣAd(B)⊗n. (4.36)

As for Proposition 3.8 we have the following proposition.

Proposition 4.5. For any extension B/A of étale algebras, X(Σ(B/A)) =
Σ(X(B)/X(A)).

The algebra Σ(B/A) is an extension of Σn(A) of degree (d!)n and there exist

nd canonical embeddings

εij : B �→ Σ(B/A), 1≤ i≤ d, 1≤ j ≤n (4.37)

such that the diagram

Σn(A) Σ(B/A)

A

εi

B

εij (4.38)

is commutative for all i and j. We say that the extension Σ(B/A)/Σn(A) is an

Sd �Sn-Galois closure of the extension B/A. Since ΣAd(B)Sd−1 = B, we have

Σ(B/A)Sd−1�Sn =Ω(B/A). (4.39)

If d = 2, each of the canonical embeddings εA1 ,ε
A
2 : B → ΣA2 (B) is an isomor-

phism (where εA2 = εA1 ◦γB/A), and j :A→ ΣA2 (B)= B is the inclusion. The algebra

Σ(B/A)= j⊗n(sAn)·B⊗n (4.40)

is an extension of degree 2n of Σn(A), and

Ω(B/A)� Σ(B/A)Sn . (4.41)
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Example 4.6. Suppose, as in Example 3.9, that A and B are split of dimen-

sions 3 and 6, respectively, with minimal idempotents e1, e2, e3, and f1, f ′1, f2,

f ′2, f3, f ′3 such that

ei = fi+f ′i for i= 1,2,3. (4.42)

The algebra Σ(B/A) is split. Its 48 minimal idempotents are

fσ(1)⊗fσ(2)⊗fσ(3), f ′σ(1)⊗f ′σ(2)⊗f ′σ(3),
fσ(1)⊗f ′σ(2)⊗f ′σ(3), f ′σ(1)⊗fσ(2)⊗fσ(3),
f ′σ(1)⊗fσ(2)⊗f ′σ(3), fσ(1)⊗f ′σ(2)⊗fσ(3),
f ′σ(1)⊗f ′σ(2)⊗fσ(3), fσ(1)⊗fσ(2)⊗f ′σ(3),

(4.43)

where σ varies in S3. The action of S3 on these idempotents is clear and the

fixed subalgebra is Ω(B/A) as described in Example 3.9.

Proposition 4.7. Let B/A be an extension of étale algebras of degree d and

let n= dimF A. If b ∈ B is a generator of B as F -algebra, then the nd elements

εij(b) generate Σ(B/A) over Σn(A).

Proof. Let Σ′ be the subalgebra of Σ(B/A) generated over Σ(A) by the

εij(b). We show that Σ′ = Σ(B/A). We may assume that A and B are split

and we assume for simplicity that n = 3 and d = 2. We use the notations

of Example 3.9. Let

b = β1f1+β′1f ′1+β2f2+β′2f ′2+β3f3+β′3f ′3 (4.44)

with β1, . . . ,β′3 ∈ F , hence

b = β′1f1+β1f ′1+β′2f2+β2f ′2+β′3f3+β3f ′3. (4.45)

Since b generates B, the 6 elements βi and β′j are pairwise different. We have

ε11(b)= sA3 ·b⊗1⊗1, ε21(b)= sA3 ·b⊗1⊗1. (4.46)

Thus

ε11(b)
(
e1⊗e2⊗e3

)= (β1f1+β′1f ′1
)⊗e2⊗e3,

ε21(b)
(
e1⊗e2⊗e3

)= (β′1f1+β1f ′1
)⊗e2⊗e3

(4.47)

are elements of Σ′. It follows that f1⊗e2⊗e3 and f ′1⊗e2⊗e3 are in Σ′. Hence

all the minimal idempotents of Σ(B/A) are in Σ′ and Σ′ = Σ(B/A).

5. The symmetric group on four elements. In the rest of this paper, we

focus on various aspects of étale algebras of dimension 4 (called quartic étale

algebras) which, as explained in the preceding sections, can be viewed from the
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perspective of Γ -sets of 4 elements, or of the cohomology of S4, or of S4-torsors,

or of S4-Galois algebras. It turns out that there is a group isomorphism

S2×S4 � S2 �S3 (5.1)

which relates the various “quartic” notions listed above to those associated

with the cohomology of S2 �S3: quadratic extensions of cubic étale algebras,

double coverings of sets of 3 elements, S2 �S3-torsors, and S2 �S3-Galois alge-

bras. We explain this relation in the simplest case, namely, Γ -sets and coverings,

and then give the cohomological viewpoint in the next subsection. In the last

two subsections, we give explicit constructions of �(Q) for a quartic algebra

Q, making clear that this algebra is related to the resolvent cubic of quartic

equations, and of Ω(B/A) and �(B/A) for a quadratic extension of a cubic

algebra A.

5.1. Sets of four elements and double coverings. In this section, Γ is an

arbitrary profinite group. Suppose X is a Γ -set with |X| = 4, as in Example 2.1,

where the constructions of Λ2(X) and �(X) are made explicit. Our first obser-

vation concerns the discriminants of Λ2(X) and �(X).

Proposition 5.1. The map which carries (ξ1,ξ2,ξ3,ξ4)∈ Σ4(X) to

({{
ξ1,ξ2

}
,
{
ξ3,ξ4

}}
,
{{
ξ1,ξ3

}
,
{
ξ2,ξ4

}}
,
{{
ξ1,ξ4

}
,
{
ξ2,ξ3

}})∈ Σ3
(
�(X)

)
(5.2)

induces a canonical isomorphism of Γ -sets

∆(X) ∼
����������������������������→∆(�(X)). (5.3)

Moreover, the Γ -action on ∆(Λ2(X)) is trivial.

The proof is a straightforward verification. To see that the Γ -action on

∆(Λ2(X)) is trivial, it suffices to observe that every transposition on X—hence

every permutation of X—induces an even permutation of Λ2(X). For another

approach, see Proposition 5.9.

To get a better grasp of the various constructions associated with X, it is

useful to think of X as the set of diagonals of a cube. (We are indebted to F.

Buekenhout for his suggestion to use geometric language in this context.) Each

pair of diagonals determines a diagonal plane (passing through an edge and its

opposite), henceΛ2(X) is identified with the set of diagonal planes of the cube.

The map γX carries each diagonal plane to the plane through parallel edges,

and �(X) can therefore be identified with the set of directions of the edges.

The canonical map �(X) ε←� Λ2(X)maps each diagonal plane to the direction of

the edges it contains. The set Ω(Λ2(X)/�(X)) consists of (unordered) triples

of diagonal planes with different edge directions. For each such triple τ , either

the intersection of the planes is a diagonal, or the intersection is just the center
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of the cube. However, if the intersection is a diagonal, then the intersection of

the complementary triple τ = γΛ2(X)/�(X)(τ) is the center. Therefore, we may

associate to the pair {τ,τ} ∈ �(Λ2(X)/�(X)) a unique diagonal in X, and

obtain a map

Φ : �
(
Λ2(X)/�(X)

)
�→X. (5.4)

Proposition 5.2. For |X| = 4, the map

Φ : �
(
Λ2(X)/�(X)

)
�→X (5.5)

is a canonical isomorphism of Γ -sets.

Proof. From the definition, it is clear that Φ is Γ -equivariant. Bijectivity of

Φ is checked by direct inspection.

To put this result into perspective, consider the full subcategory Set4
Γ of

SetΓ whose objects are the Γ -sets of four elements, and the category Cov2�3
Γ of

double coverings of Γ -sets of three elements, with morphisms of coverings.

There are functors

Λ : Set4
Γ �→ Cov2�3

Γ , S : Cov2�3
Γ �→ Set4

Γ (5.6)

defined by

Λ(X)=Λ2(X)/�(X), S(Y π←������������������������������� Z)=�(Z/Y). (5.7)

Proposition 5.2 yields a natural equivalence between S◦Λ and the identity on

Set4
Γ .

To investigate the composition Λ◦S, suppose Y π←�������������� Z is a double covering of

a Γ -set Y with |Y | = 3. (See Example 2.3 for an explicit description of Ω(Z/Y)
and �(Z/Y).) We may consider Z as the set of faces of a cube, Y as the set of

directions of edges, andπ as the map which carries each face to the orthogonal

direction. Then Ω(Z/Y) is the set of (unordered) triples of faces which are not

pairwise parallel. Since the faces in each such triple meet at one vertex, we

may view Ω(Z/Y) as the set of vertices of the cube. The map γZ/Y carries each

vertex to its opposite, hence �(Z/Y) is the set of diagonals of the cube. As in

the discussion before Proposition 5.2, we may then identify Λ2(�(Z/Y)) with

the set of diagonal planes and �(�(Z/Y)) with the set of edge directions. It

is then clear that �(�(Z/Y)) is canonically identified with Y , but there is no

canonical identification of Λ2(�(Z/Y)) with Z .

As we now show, we may however define a canonical bijection

∆(Z)∗Λ2
(
�(Z/Y)

) ∼
����������������������������→ Z, (5.8)

hence an isomorphism of coverings between Y π←�������������� Z and the covering �(�(Z/Y))
ε←� ∆(Z) ∗ Λ2(�(Z/Y)) induced by the canonical covering �(�(Z/Y)) ε←�
Λ2(�(Z/Y)). (We denote both coverings by ε.)
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Our first goal is to give a geometrical interpretation of the set ∆(Z). Recall

the map

δZ :Ω(Z/Y) �→∆(Z) (5.9)

of (2.20). By Proposition 2.4, this map is onto. It may therefore be used to

consider ∆(Z) as a quotient of Ω(Z/Y), the set of vertices of the cube. It is

easily checked that the four vertices which have the same image under δZ
are the vertices of a regular tetrahedron whose edges are the diagonals of the

faces of the cube. Therefore, we may identify ∆(Z) with the set {T1,T2} of

such tetrahedra. Given a diagonal plane λ ∈ Λ2(�(Z/Y)) and a tetrahedron

T ∈∆(Z), there is a unique face z ∈ Z whose intersection with λ is an edge of

T . The same face z intersects the “complementary” plane λ following an edge

of the “complementary” tetrahedron T . Therefore, the map (T ,λ)� z induces

a well-defined map

Ψ :∆(Z)∗Λ2
(
�(Z/Y)

)
�→ Z. (5.10)

Proposition 5.3. The map Ψ defines an isomorphism of coverings between

�(�(Z/Y)) ε←������������������ ∆(Z)∗Λ2(�(Z/Y)) and Y π←������������������������������� Z.
Proof. The map Ψ is clearly equivariant. The other properties are checked

by direct inspection.

This proposition shows that Λ◦S is not equivalent to the identity. However,

when ∆(Z) is a trivial Γ -set, the proposition yields an isomorphism between

Z/Y and Λ◦S(Z/Y):
Corollary 5.4. If the Γ -action on ∆(Z) is trivial, then there is an isomor-

phism of coverings between �(�(Z/Y)) ε←��������������������������� Λ2(�(Z/Y)) and Y π←���������������������������������������� Z.
Proof. This readily follows from Proposition 5.3 and Proposition 2.5(b).

Corollary 5.4 applies in particular to double coverings of the form Λ2(X)/
�(X), for X a Γ -set with |X| = 4, by Proposition 5.1. Therefore, Λ◦S(X)�X.

Theorem 5.5. The functors Λ and S define a canonical one-to-one corre-

spondence between the set of isomorphism classes of Γ -sets of 4 elements and

the set of isomorphism classes of double coverings Z/Y of Γ -sets Y of 3 elements

with trivial action on ∆(Z).

The authors are indebted to F. Borceux for enlightening comments about

the following remark.

Remark 5.6. ForX,X′ ∈ Set4
Γ , every morphism of coverings f :Λ2(X)/�(X)

→ Λ2(X′)/�(X′) induces a morphism �(Λ2(X)/�(X)) → �(Λ2(X′)/�(X′)),
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hence, by Proposition 5.2, a morphism f̃ : X → X′. The functor Λ carries f̃ to

f , hence it is full. Since S ◦Λ is equivalent to the identity, the functor Λ is

also faithful. Moreover, Corollary 5.4 shows that every covering Z/Y ∈ Cov2�3
Γ ,

such that the Γ -action on ∆(Z) is trivial, is isomorphic to a covering of the

form Λ(X). Therefore, it follows from [6, Theorem 1, page 93] that Λ is an

equivalence of categories from Set4
Γ to the full subcategory of Cov2�3

Γ whose

objects are the coverings Z/Y with trivial Γ -action on ∆(Z).

In order to take into account the double coverings of Γ -sets of three elements

which have nontrivial action on the discriminant, we consider the product cat-

egory Set2
Γ ×Set4

Γ whose objects are pairs (U,X) of Γ -sets with |U| = 2 and

|X| = 4, and extend Λ and S to functors

Λ̂ : Set2
Γ ×Set4

Γ �→ Cov2�3
Γ , Ŝ : Cov2�3

Γ �→ Set2
Γ ×Set4

Γ (5.11)

defined by

Λ̂(U,X)= (U∗Λ2(X)
)
/�(X), Ŝ

(
Y π←���������������������������������������� Z)= (∆(Z),�(Z/Y)). (5.12)

Proposition 5.3 yields a natural equivalence between Λ̂◦ Ŝ and the identity on

Cov2�3
Γ .

On the other hand, for U and X with |U| = 2 and |X| = 4, we have canonical

isomorphisms

�
(
U∗Λ2(X)/�(X)

)��
(
Λ2(X)/�(X)

)�X, (5.13)

by Propositions 2.8 and 5.2, and

∆
(
U∗Λ2(X)

)�∆(U×�(X)
)∗∆(Λ2(X)

)�U∗∆(Λ2(X)
)
, (5.14)

by Propositions 2.6 and 2.7. The Γ -action on ∆(Λ2(X)) is trivial by Proposition

5.1, hence the rightmost Γ -set in (5.14) is isomorphic toU by Proposition 2.2(b).

Note that the latter isomorphism is not canonical, hence Ŝ◦Λ̂ is not naturally

equivalent to the identity on Set2
Γ ×Set4

Γ . However, since Ŝ◦ Λ̂(U,X) � (U,X),
we have an isomorphism between sets of isomorphism classes.

Theorem 5.7. The functors Λ̂ and Ŝ define a canonical one-to-one corre-

spondence between the set of isomorphism classes of pairs of Γ -sets (U,X) with

|U| = 2 and |X| = 4 and the set of isomorphism classes of double coverings of

Γ -sets with three elements.

An alternative proof in cohomology can be derived from diagram (5.24).

Theorems 5.5 and 5.7 have analogues in terms of quartic étale algebras and

double coverings of cubic algebras, whose statements are left to the reader.
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Remark 5.8. The functor Ŝ is faithful since Λ̂◦ Ŝ is equivalent to the iden-

tity. Moreover, every (U,X)∈ Set2
Γ ×Set4

Γ is isomorphic to an object of the form

Ŝ(Z/Y) (namely, Z/Y = Λ̂(U,X)). Furthermore, every morphism f : Ŝ(Z/Y)→
Ŝ(Z′/Y ′) induces a morphism Λ̂(f ) : Λ̂ ◦ Ŝ(Z/Y) → Λ̂ ◦ Ŝ(Z′/Y ′), hence, by

Proposition 5.3, a morphism f̃ : Z/Y → Z′/Y ′. We may check that f = Ŝ(f̃ ),
hence the functor Ŝ is full. By [6, Theorem 1, page 93], it defines an equiva-

lence of categories Cov2�3
Γ ≡ Set2

Γ ×Set4
Γ .

5.2. Cohomology. This section presents the cohomological perspective on

Theorem 5.7. We use the same notation as in Section 5.1.

Let U = {1,2} and X = {1,2,3,4} with trivial Γ -action. The group of automor-

phisms of (U,X) in the category Set2
Γ ×Set4

Γ is S2×S4, and since Ŝ◦ Λ̂(U,X) �
(U,X), the functor Λ̂ yields an isomorphism

λ̂ : S2×S4
∼
����������������������������→ Aut

(
U∗Λ2(X)/�(X)

)� S2 �S3. (5.15)

For definiteness, consider S2 �S3 as the group of automorphisms of the cov-

ering

Y = {1,2,3} π2←������������������������������������������ {1,2}×{1,2,3} = Z, (5.16)

where Γ acts trivially on Y and Z . The right isomorphism in (5.15) depends on

the choice of an isomorphism U∗Λ2(X)/�(X)� Z/Y .

Similarly, the functor Ŝ yields an isomorphism

ŝ : S2 �S3
∼
�������������������������������������→ Aut

(
∆(Z),�(Z/Y)

)� S2×S4, (5.17)

where again the latter isomorphism is given by identifications ∆(Z) � {1,2}
and �(Z/Y)� {1,2,3,4}. The isomorphisms λ̂ and ŝ induce bijections

H1(Γ ,S2×S4
)�H1(Γ ,S2 �S3

)
. (5.18)

Since these cohomology sets are in one-to-one correspondence with the sets

of isomorphism classes in Set2
Γ ×Set4

Γ and Cov2�3
Γ , respectively (see Section 4.2),

we thus recover Theorem 5.7.

The isomorphisms λ̂ and ŝ can also be described in purely group-theoretical

terms. The subgroup S2 = S2×{1} ⊂ S2×S4 is mapped to the “diagonal” sub-

group S2 ⊂ S2 �S3, which is the center of S2 �S3. On the other hand, the restric-

tion of λ̂ to S4 = {1}×S4 is a homomorphism

λ : S4 �→ S2 �S3 (5.19)
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which may be described as the action of S4 by conjugation on its transpositions.

Indeed, S4 contains six transpositions, which sit by pairs in the three Sylow 2-

subgroups of S4. The map which carries each transposition to the unique Sylow

2-subgroup which contains it is a double covering of a set of three elements.

Note that the composition of λ with the canonical homomorphism β : S2 �S3→
S3 is the surjective homomorphism

ρ : S4 �→ S3 (5.20)

which is the action of S4 on its three Sylow 2-subgroups. (Alternately, the map

ρ may be identified with the canonical homomorphism SX → S�(X) for X =
{1,2,3,4}, since there is a canonical one-to-one correspondence between �(X)
and the Sylow 2-subgroups of SX .) The kernel of ρ is the Vierergruppe V.

By definition, it is clear that the first component of ŝ is the signature map

sgn : S2 �S3 ⊂ S6 �→ S2, (5.21)

since the map SZ/Y → S∆(Z) is the signature. The second component is a homo-

morphism

s : S2 �S3 �→ S4 (5.22)

which is the action of S2 �S3 on its four Sylow 3-subgroups. (There is a nat-

ural one-to-one correspondence between the Sylow 3-subgroups of SZ/Y and

�(Z/Y).) The image of λ is the kernel of sgn, by Proposition 5.1 or by Prop-

osition 4.1, and the map s splits λ (if the Sylow 3-subgroups of S2 �S3 are suit-

ably indexed). The maps ρ, λ, and β, and the inclusions ι and η are part of the

following commutative diagram with exact rows and columns:

1 1

1 V
ι

S4
ρ

λ

S3 1

1 S3
2

η

σ

S2 �S3
β

sgn

S3 1

S2 S2

1 1,

(5.23)
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where σ is the sum. Since the exact sequences in this diagram are split, there

is a corresponding commutative diagram of exact sequences in cohomology:

1 1

1 H1(Γ ,V)
ι1

H1
(
Γ ,S4

) ρ1

λ1

H1
(
Γ ,S3

)
1

1 H1
(
Γ ,S3

2

) η1

σ1

H1
(
Γ ,S2 �S3

) β1

sgn1

H1
(
Γ ,S3

)
1

H1
(
Γ ,S2

)
H1
(
Γ ,S2

)

1 1.

(5.24)

Cohomology yields an alternative proof of Proposition 5.1.

Proposition 5.9. For any Γ -set X with |X| = 4,

∆(X)�∆(�(X)). (5.25)

Moreover, the Γ -action on ∆(Λ2(X)) is trivial.

Proof. The commutative diagram

S4

sgn

ρ
S3

sgn

S2 S2

(5.26)

induces a commutative diagram in cohomology

H1
(
Γ ,S4

) ρ1

sgn1

H1
(
Γ ,S3

)
sgn1

H1
(
Γ ,S2

)
H1
(
Γ ,S2

)
.

(5.27)

The first part of the proposition follows since ρ1 maps the isomorphism class

of X to the isomorphism class of �(X), and sgn1 maps the isomorphism class

of any Γ -set to the isomorphism class of its discriminant. The second part
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follows from the fact that

H1(Γ ,S4
) λ1

����������������������������������������������→H1(Γ ,S2 �S3
) sgn1

�������������������������������������������������������������������������������→H1(Γ ,S2
)

(5.28)

is a zero-sequence.

As another application of cohomology, we describe the quartic étale algebras

which have a given resolvent cubic.

Let R be a Γ -set of three elements and let X0 = R
∐{0} be the Γ -set of four

elements obtained by adjoining to R a fixed point 0. To each partition of X0

into 2-element subsets, we may associate the unique element r ∈ R such that

{0,r} is in the partition, and thus identify

�
(
X0
)= R. (5.29)

As in Section 4.2, we let Γ act by conjugation on the groups SX0 and SR , and

denote by S′X0
and S′R the Γ -groups thus defined. The inclusion R↩X0 yields a

Γ -equivariant embedding S′R ↩ S′X0
which splits the map ρ : S′X0

→ S′R . The split

exact sequence

1 �→ V′X0

ι
���������������������→ S′X0

ρ
���������������������������������→ S′R �→ 1 (5.30)

yields an exact sequence in cohomology

1 �→H1(Γ ,V′X0

) ι1
�����������������������������������→H1(Γ ,S′X0

) ρ1

������������������������������������������������→H1(Γ ,S′R) �→ 1, (5.31)

and the isomorphism classes of X ∈ Set4
Γ such that �(X)� R are in one-to-one

correspondence with kerρ1 = imι1. They form a pointed set with the isomor-

phism class of X0 as a distinguished element. Note that exactness of the se-

quence (5.31) does not mean that ι1 is injective. In fact, the group AutΓ (R) =
H0(Γ ,S′R) acts on H1(Γ ,V′X0

), and imι1 is in canonical bijection with the orbit

set H1(Γ ,V′X0
)/AutΓ (R), by [3, (28.4)].

To give a more explicit description, we use a variant of diagram (5.24). First,

observe that we may identify Λ2(X0) to {1,2} × R as follows: we map a 2-

element subset U ⊂ X0 to (1,r ) if 0 ∉ U and r ∉ U , and to (2,r ) if U = {0,r}.
We may then identify the double covering Λ2(X0)/�(X0) to

R
π2←������������������������������������������ {1,2}×R. (5.32)

Let Z0 = {1,2}×R. As above, we let Γ act by conjugation on SZ0/R , and denote

by S′Z0/R the corresponding Γ -group. As in Section 4.2, let T′Z0/R be the kernel

of the canonical map βZ0/R : S′Z0/R → S′R . The exact sequence

1 �→T′Z0/R
η
��������������������������������→ S′Z0/R

βZ0/R�������������������������������������������������������������������������������������������������������������������������→ S′R �→ 1 (5.33)
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is split and induces an exact sequence in cohomology

1 �→H1(Γ ,T′Z0/R
) η1

��������������������������������������→H1(Γ ,S′Z0/R
) β1

��������������������������������������→H1(Γ ,S′R) �→ 1. (5.34)

As above, there is a canonical bijection

imη1 = kerβ1 �H1(Γ ,T′Z0/R
)
/AutΓ (R). (5.35)

The orbit set on the right side may therefore be identified with the set of

isomorphism classes of double coverings of R, see Section 4.2. Consider the

following commutative diagram analogous to (5.24):

1 1

H1
(
Γ ,V′X0

) ι1 H1
(
Γ ,S′X0

) ρ1

λ1

H1
(
Γ ,S′R

)

H1
(
Γ ,T′Z0/R

) η1

σ1

H1
(
Γ ,S′Z0/R

) β1

sgn1

H1
(
Γ ,S′R

)

H1
(
Γ ,S2

)
H1
(
Γ ,S2

)

1 1.

(5.36)

The left vertical sequence is an exact sequence of groups. It shows that H1(Γ ,
V′X0
) can be identified with the kernel of σ 1. Recall from Section 4.2 that

H1(Γ ,T′Z0/R) is in canonical bijection with the setC2(R) of isomorphism classes

over R of double coverings of R, and that H1(Γ ,S2) classifies Γ -sets of two ele-

ments up to isomorphism. By commutativity of the lower square in (5.36), the

map σ 1 carries every double covering to the isomorphism class of its discrim-

inant. Therefore, we may identify H1(Γ ,V′X0
) with the group C2

0 (R) of isomor-

phism classes over R of double coverings of R with trivial discriminant:

H1(Γ ,V′X0

)= C2
0 (R). (5.37)

We have thus shown the following proposition.

Proposition 5.10. The set of isomorphism classes of sets X of four elements

such that �(X) � R is in canonical bijection with the set C2
0 (R)/AutΓ (R) of

isomorphism classes of double coverings of R with trivial discriminant.

Suppose now Γ is the absolute Galois group of a field F with separable closure

Fs , and letA be a cubic étale F -algebra. Using the antiequivalence SetΓ ≡ ÉtF , we
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may translate Proposition 5.10 into the following statement, where we denote

by Quad0(A) the set of isomorphism classes over A of quadratic extensions of

A whose discriminant (as F -algebra) is trivial.

Proposition 5.11. The set of isomorphism classes of quartic étale F -alge-

bras Q with �(Q)�A is in canonical bijection with the set Quad0(A)/AutF (A)
of F -isomorphism classes of quadratic extensions of A with trivial discriminant.

The next proposition gives an explicit description of the group Quad0(A).

Proposition 5.12. Let N1(A) be the (multiplicative) group of elements of A
of norm 1 and let T 0(A) be the (additive) group of elements of A of trace 0.

(a) If charF ≠ 2, Quad0(A)�N1(A)/N1(A)2.

(b) If charF = 2, Quad0(A)� T 0(A)/℘(T 0(A)), where ℘ is the Artin-Schreier

map ℘(x)= x2−x.

Proof. If A is a field, the action of Γ on X(A) is transitive. Letting Γ0 ⊂ Γ be

the absolute Galois group of a copy of A in Fs , we have Quad(A)�H1(Γ0,S2) as

observed in Section 4.2, and the map σ 1 can be interpreted as the corestriction

H1(Γ0,S2
)
�→H1(Γ ,S2

)
. (5.38)

If charF ≠ 2, we identify S2 with {1,−1} ⊂ F×s . The exact sequence

1 �→ S2 �→ F×s 2
�����������������������������→ F×s �→ 1 (5.39)

yields isomorphisms

H1(Γ ,S2
)� F×/F×2, H1(Γ0,S2

)�A×/A×2, (5.40)

under which the corestriction corresponds to a map induced by the norm. Its

kernel is N1(A)/N1(A)2 since if y ∈A× is such that NA/F(y)= z2 ∈ F×2, then

NA/F(y3z−2)= 1.

If charF = 2, we identify S2 with {0,1} ⊂ Fs . The exact sequence

0 �→ S2 �→ Fs ℘
����������������������������������→ Fs �→ 0 (5.41)

yields isomorphisms

H1(Γ ,S2
)� F/℘(F), H1(Γ0,S2

)�A/℘(A), (5.42)

under which the corestriction corresponds to a map induced by the trace. Its

kernel is T 0(A)/℘(T 0(A)) since if TA/F(y)= z2−z, then TA/F(y−z2+z)= 0.

If A is not a field, it decomposes into a direct product of fields:

A� F×K or A� F×F×F. (5.43)
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In the first case,

Quad(A)�Quad(F)×Quad(K)�


(
F×/F×2

)×(K×/K×2
)

if charF ≠ 2,(
F/℘(F)

)×(K/℘(K)) if charF = 2,
(5.44)

and the map σ 1 can be again interpreted as induced by the norm or the trace.

We may then use the same arguments as above. The case where A � F×F×F
is left to the reader.

Following Section 4.5, the set H1(Γ ,S′R) for R = X(A) is also in one-to-one

correspondence with the set of isomorphism classes of S3-Galois F -algebras,

where the distinguished element corresponds to the isomorphism class of

the S3-Galois closure Σ3(A). Likewise, the set H1(Γ ,S′X0
) classifies S4-Galois

F -algebras up to isomorphism, with the class of Σ4(F ×A) as a distinguished

element. The upper exact sequence of diagram (5.36) shows that the S4-Galois

F -algebras M which are the S4-Galois closure of an étale quartic F -algebra Q
with �(Q)�A are in one-to-one correspondence with Quad0(A)/AutF (A). Us-

ing Proposition 5.12, we may make this correspondence explicit as follows.

Proposition 5.13. Let A be a cubic étale F -algebra, identified with a subal-

gebra of its S3-Galois closure Σ3(A), and let ρ ∈ S3 be an element of order 3.

(a) If charF ≠ 2, let a∈A× be such that NA/F(a)= 1, and set

M = Σ3(A)
[√
a,
√
ρ(a),

√
ρ2(a)

]
. (5.45)

(b) If charF = 2, let a∈A be such that TA/F(a)= 0, and set

M = Σ3(A)
[
℘−1(a),℘−1(ρ(a)),℘−1(ρ2(a)

)]
. (5.46)

In each case, there is an S4-action on M which endows it with the structure

of an S4-Galois algebra. The quartic subalgebra Q = MS3 satisfies �(Q) � A.

Moreover, every S4-Galois F -algebra which is the S4-Galois closure of a quartic

étale F -algebra Q with �(Q)�A is of this form.

Remark 5.14. Similar constructions are described by Serre [9] (we are in-

debted to J.-P. Serre for calling our attention to this reference) and by Weil

(for the construction of dyadic field extensions with Galois group S4, see [13,

Section 31]).

5.3. Quartic étale algebras. In this section, our goal is to make explicit the

relation between resolvent cubics of quartic polynomials and the construction

of �(Q) for Q a quartic étale F -algebra. Our first observation is a direct con-

sequence of Proposition 5.1 (see also Proposition 5.9).
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Proposition 5.15. Let Q be a quartic étale F -algebra. There is a canonical

isomorphism

∆
(
�(Q)

) ∼
�������������������������������������→∆(Q). (5.47)

Moreover, ∆(Λ2(Q))� F×F .

Proof. The proposition readily follows from Proposition 5.1 under the

antiequivalence ÉtF ≡ SetΓ , since the ∆, �, and Λ2 construction commute with

the functor X.

Recall from [12] that the resolvent cubic of a quartic polynomial

f(u)=u4−α1u3+α2u2−α3u+α4 (5.48)

with roots u1, u2, u3, and u4 in an algebraic closure is the polynomial g(v)
with roots

v1 =
(
u1+u2

)(
u3+u4

)
, v2 =

(
u1+u3

)(
u2+u4

)
,

v3 =
(
u1+u4

)(
u2+u3

)
.

(5.49)

This polynomial has the form

g(v)= v3−β1v2+β2v−β3, (5.50)

where

β1 = 2α2, β2 =α1α3+α2
2−4α4,

β3 =α1α2α3−α2
1α4−α2

3.
(5.51)

An alternative resolvent cubic, suggested by Lagrange [4, (32), page 266] in

characteristic different from 2, has roots

w1 =
(
u1+u2−u3−u4

)2, w2 =
(
u1−u2+u3−u4

)2,

w3 =
(
u1−u2−u3+u4

)2.
(5.52)

Since wi =α2
1−4vi for i= 1,2,3, this polynomial has the form

h(w)=−43g
(α2

1−w
4

)
=w3−�1w2+�2w−�3, (5.53)

where

�1 = 3α2
1−8α2,

�2 = 3α4
1−16α2

1α2+16α1α3+16α2
2−64α4,

�3 =
(
α3

1−4α1α2+8α3
)2.

(5.54)
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Now, letQ be a quartic étale algebra over a field F of arbitrary characteristic.

For x ∈Q, let

λx = s2 ·
(
x⊗1+1⊗x)∈Λ2(Q). (5.55)

Proposition 5.16. Suppose x ∈ Q is a generating element with minimal

polynomial f(u) as in (5.48) so that the coefficient α1 is the trace TQ/F(x) of x.

Then

(a) λx+γQ(λx)= TQ/F(x);
(b) γQ(λx)λx ∈�(Q) is a generating element with minimal polynomial g(v)

as in (5.50). Moreover, if the characteristic of F is different from 2, then

(λx−γQ(λx))2 ∈�(Q) is a generating element with minimal polynomial

h(w) as in (5.53).

In arbitrary characteristic, if the element �3 of (5.54) is not 0 (in characteristic

2, the condition is thus TQ/F(x) ≠ 0), then λx ∈ Λ2(Q) is a generating element

over �(Q), with minimal polynomial

t2−TQ/F(x)t+γQ
(
λx
)
λx ∈�(Q)[t]. (5.56)

Proof. Extending scalars, we may assume that Q is split, with a basis (e1,
e2,e3,e4) consisting of minimal (orthogonal) idempotents. Then �(Q) is split

and (e1 ⊗ e2 + e2 ⊗ e1 + e3 ⊗ e4 + e4 ⊗ e3, e1 ⊗ e3 + e3 ⊗ e1 + e2 ⊗ e4 + e4 ⊗ e2,
e1 ⊗ e4 + e4 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2) is a basis of �(Q) consisting of minimal

idempotents. Let

x = x1e1+x2e2+x3e3+x4e4 (5.57)

with x1,x2,x3,x4 ∈ F . Since x generates Q, the coefficients xi are pairwise

distinct. Computation shows that

λx =
∑

1≤i<j≤4

(
xi+xj

)(
ei⊗ej+ej⊗ei

)
, (5.58)

hence

γQ
(
λx
)= ∑

1≤i<j≤4

(
xi+xj

)(
ei′ ⊗ej′ +ej′ ⊗ei′

)
, (5.59)

where {i,j,i′,j′} = {1,2,3,4}. It follows that

λx+γQ
(
λx
)= (x1+x2+x3+x4

) ∑
1≤i<j≤4

(
ei⊗ej+ej⊗ei

)= TQ/F(x). (5.60)

Similarly

γQ
(
λx
)
λx =

(
x1+x2

)(
x3+x4

)(
e1⊗e2+e2⊗e1+e3⊗e4+e4⊗e3

)
+(x1+x3

)(
x2+x4

)(
e1⊗e3+e3⊗e1+e2⊗e4+e4⊗e2

)
+(x1+x4

)(
x2+x3

)(
e1⊗e4+e4⊗e1+e2⊗e3+e3⊗e2

)
.

(5.61)
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This shows that γQ(λx)λx is a root of a polynomial g whose roots in F are

y1 =
(
x1+x2

)(
x3+x4

)
, y2 =

(
x1+x3

)(
x2+x4

)
,

y3 =
(
x1+x4

)(
x2+x3

)
.

(5.62)

These roots are distinct since an easy computation yields

(
y1−y2

)(
y1−y3

)(
y2−y3

)=−∏
i<j

(
xi−xj

)
. (5.63)

Therefore, γQ(λx)λx is a generator of �(Q) and g is its minimal polynomial.

Similarly,

(
λx−γQ

(
λx
))2 = (x1+x2−x3−x4

)2(e1⊗e2+e2⊗e1+e3⊗e4+e4⊗e3
)

+(x1−x2+x3−x4
)2(e1⊗e3+e3⊗e1+e2⊗e4+e4⊗e2

)
+(x1−x2−x3+x4

)2(e1⊗e4+e4⊗e1+e2⊗e3+e3⊗e2
)
,

(5.64)

and the same arguments show that (λx − γQ(λx))2 is a generating element

of �(Q) with minimal polynomial h as in (5.53) if the characteristic of F is

different from 2.

Since

�3 =
(
x1+x2−x3−x4

)2(x1−x2+x3−x4
)2(x1−x2−x3+x4

)2, (5.65)

the condition �3 ≠ 0 implies that the elements xi+xj for 1 ≤ i < j ≤ 4 are

pairwise distinct, hence λx generates Λ2(Q). Since λx+γQ(λx)= TE/F(x), the

minimal polynomial of λx over �(Q) is as stated in the proposition.

Remark 5.17. Allison gives in [1, Section 6] another description of the al-

gebra �(Q), forQ a quartic étale F -algebra. For x ∈Q, he considers the image

fx =ϕ2
(
λx
)∈ EndF

( 2∧
Q
)

(5.66)

of λx ∈Λ2(Q) under the mapϕ2 induced by the homomorphism in (3.18) (see

Lemma 3.3); thus

fx(a∧b)= xa∧b+a∧xb for a,b ∈Q. (5.67)

Assuming that the characteristic of F is different from 2, Allison defines �(Q)
as the span of the products fx ◦ fy , for x,y ∈ Q of trace 0. This definition

coincides with the definition in Section 3.1 under an isomorphism induced

by ϕ2.
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5.4. Quadratic extensions of cubic étale algebras. Let A be an étale F -

algebra of dimension 3 and let B be an extension of degree 2 of A. In the

same spirit as the preceding subsection, we proceed to give explicit equations

for generating elements of �(B/A).
Our first observation is the analogue of Proposition 2.4 through the antiequi-

valence between coverings of Γ -sets and extensions of étale F -algebras.

Proposition 5.18. There is a canonical embedding ∆(B) ↩ Ω(B/A) such

that

Ω(B/A)�∆(B)⊗F �(B/A). (5.68)

In the case where B (and therefore A) is split, the image of ∆(B) in Ω(B/A)
is spanned by the idempotents

d= g0+g1+g2+g3, d′ = g′0+g′1+g′2+g′3 (5.69)

in the notation of Example 3.9.

In the general case, for b ∈ B, we set for brevity b = γB/A(b), and

b1 = sA3 ·(b⊗1⊗1)= ε11(b), b′1 = sA3 ·
(
b⊗1⊗1

)= ε21(b),

b2 = sA3 ·(1⊗b⊗1)= ε12(b), b′2 = sA3 ·
(
1⊗b⊗1

)= ε22(b),

b3 = sA3 ·(1⊗1⊗b)= ε13(b), b′3 = sA3 ·
(
1⊗1⊗b)= ε23(b),

(5.70)

where εij : B→ Σ(B/A) are the embeddings of (4.37). Hence we have Σ(B/A)=
Σ3(A)[b1,b′1, . . . ,b3,b′3], by Proposition 4.7, and S3 acts on Σ(B/A) through the

action on Σ3(A) and by permuting the bi and the b′j . The algebraΩ(B/A) is gen-

erated over F by all the polynomials in the bi and the b′j which are symmetric

under S3. In particular,

δb = b1b2b3+b′1b′2b3+b′1b2b′3+b1b′2b
′
3,

ωb = b1+b2+b2
(5.71)

are elements of Ω(B/A).

Proposition 5.19. The element δb lies in the image of ∆(B) inΩ(B/A), and

γB
(
δb
)= δb. (5.72)

Moreover, the following conditions are equivalent:

(a) b generates B over A;

(b) δb generates ∆(B).
Similarly, the following conditions are equivalent:

(a′) ωb generates Ω(B/A) over ∆(B);
(b′) (b−b)2 generates A.
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Proof. It suffices to prove the assertions after scalar extension. We may

therefore assume B is split, and use the same notation as in Example 3.9. Let

b = β1f1+β′1f ′1+β2f2+β′2f ′2+β3f3+β′3f ′3 (5.73)

with β1, . . . ,β′3 ∈ F , hence

b = β′1f1+β1f ′1+β′2f2+β2f ′2+β′3f3+β3f ′3. (5.74)

Computation yields

δb =
(
β1β2β3+β1β′2β

′
3+β′1β2β′3+β′1β′2β3

)(
g0+g1+g2+g3

)
+(β′1β′2β′3+β′1β2β3+β1β′2β3+β1β2β′3

)(
g′0+g′1+g′2+g′3

)
,

(5.75)

proving that δb ∈ ∆B . Since γB interchanges g0+···+g3 and g′0+···+g′3, it

is clear that

γB
(
δb
)= δb. (5.76)

We have δb ∈ F if and only if the coefficients of g0+···+g3 and g′0+···+g′3
in (5.75) are equal, and this condition is equivalent to δb = δb. On the other

hand, b generates B over A if and only if βi ≠ β′i for i= 1,2,3. Since

δb−δb =
(
β1−β′1

)(
β2−β′2

)(
β3−β′3

)(
g0+g1+g2+g3−g′0−g′1−g′2−g′3

)
,

(5.77)

this condition holds if and only if δb ≠ δb. The equivalence of (a) and (b) is

thus proved.

To complete the proof, let

ωb =u0g0+u1g1+u2g2+u3g3+u′0g′0+u′1g′1+u′2g′2+u′3g′3. (5.78)

This element generates Ω(B/A) over ∆(B) if and only if u0, . . . ,u3 are pairwise

distinct and u′0, . . . ,u
′
3 are pairwise distinct. Computation yields

u0=β1+β2+β3, u1=β1+β′2+β′3, u2=β′1+β2+β′3, u3=β′1+β′2+β3,

u′0=β′1+β′2+β′3, u′1=β′1+β2+β3, u′2=β1+β′2+β3, u′3=β1+β2+β′3.
(5.79)

Computation also yields

(
u0−u1

)(
u0−u2

)(
u0−u3

)(
u1−u2

)(
u1−u3

)(
u2−u3

)
=
((
β2−β′2

)2−(β3−β′3
)2
)((
β1−β′1

)2−(β2−β′2
)2
)((
β1−β′1

)2−(β3−β′3
)2
)

= (u′0−u′1)(u′0−u′2)(u′0−u′3)(u′1−u′2)(u′1−u′3)(u′2−u′3).
(5.80)
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Therefore,ωb generates Ω(B/A) over ∆(B) if and only if (β1−β′1)2, (β2−β′2)2,

and (β3−β′3)2 are pairwise distinct. Since

(
b−b)2 = (β1−β′1

)2e1+
(
β2−β′2

)2e2+
(
β3−β′3

)2e3, (5.81)

this proves the equivalence of (a′) and (b′).

Recall from [3, page xviii] the forms T = TA/F , S = SA/F , and N = NA/F of

degrees 1, 2, and 3, respectively, on A, such that the generic polynomial of

every element a∈A has the form

X3−T(a)X2+S(a)X−N(a)∈ F[X]. (5.82)

(The form T is the trace, and N is the norm.) For a∈A, let ai = εi(A)∈ Σ3(A).
One has T(a)= a1+a2+a3, S(a)= a1a2+a1a3+a2a3, and N(a)= a1a2a3.

Fix b ∈ B and let

α1 = b+b ∈A, α2 = bb ∈A. (5.83)

Computation yields

δb+δb =N
(
α1
)
,

δbδb = S
(
α2

1−2α2
)
T
(
α2
)−T(α2

1−2α2
)
T
((
α2

1−2α2
)
α2
)

+T((α2
1−2α2

)2α2
)+4N

(
α2
)
.

(5.84)

Proposition 5.20. If ωb generates Ω(B/A) over ∆(B), its minimal polyno-

mial is

X4−2T
(
α1
)
X3+

(
T
(
α2

1

)+2T
(
α2
)+3S

(
α1
))
X2

−(4αb+2αb+2T
(
α1
)
T
(
α2
)+S(α1

)
T
(
α1
)−3N

(
α1
))
X

+(2δb+δb)T(α1
)+T(a1

)2T
(
α2
)−S(α1

)
T
(
α2
)

−T(α2
1α2

)+T(α2
2

)−T(α1
)
N
(
α1
)−2S

(
α2
)
.

(5.85)

Proof. Use that in the split case, the four roots of the minimal polynomial

of ωb over ∆(A) are (with the notations of the proof of Proposition 5.19) the

elements ui, i= 0, . . . ,3.

If charF ≠ 2, we may simplify the results above by a specific choice of a

generating element b. Let b ∈ B be such that b =−b and assume that a= b2 ∈
A generates A.

Proposition 5.21 (charF ≠ 2). With the notation above,

∆(B)= F[δb], Ω(B/A)= F[δb,ωb]=∆(B)[ωb]. (5.86)
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Moreover, the minimal polynomial of δb over F is X2−16N(a), and the minimal

polynomial of ωb over ∆(B) is

X4−2T(a)X2−2δbX+T
(
a2)−2S(a). (5.87)

Proof. Proposition 5.19 shows that δb generates ∆(B) and that ωb gen-

erates Ω(B/A) over ∆(B). This last fact can also be seen directly: the algebra

Ω(B/A) is generated over F by the elementary symmetric functions in the bi;
since

2
(
b1b2+b1b3+b2b3

)=ω2
b−

(
b2

1+b2
2+b2

3

)=ω2
b−T(a), (5.88)

we have Ω(B/A) = F[δb,ωb] = ∆(B)[ωb]. The formula for the minimal poly-

nomial of δb (resp., ωb) follows from (5.84) (resp., Proposition 5.20). One can

also repeat the proof of Proposition 5.20 with the special choice of b.

Corollary 5.22 (charF ≠ 2). The discriminant ∆(B) is split if and only if

N(a)∈ F×2. If N(a)= ν2 for some ν ∈ F×, then �(B/A) is generated over F by

an element whose minimal polynomial is

X4−2T(a)X2−8νX+T(a2)−2S(a). (5.89)

Proof. The first part readily follows from Proposition 5.21. If N(a) = ν2,

then ∆(B) � F × F . Let d and d′ be the minimal idempotents of ∆(B). By

Proposition 5.18, we have

Ω(B/A)��(B/A)×�(B/A), (5.90)

and we may identify dΩ(B/A) and d′Ω(B/A) with �(B/A). Since

dδb =±4νd, d′δb =∓4νd′, (5.91)

the minimal polynomials of dωb and d′λb are

X4−2T(a)X2±8νX+T(a2)−2S(a). (5.92)

Assume now charF = 2. Let b be a generating element for B over A with

b = b+1, hence b2+b ∈A. Letting a= b2+b, that is, using the notation ℘ for

the map x� x2+x, we have

a= ℘(b)∈A. (5.93)

Assume, moreover, that a generates A, hence

A= F[a], B = F[℘−1(a)
]
. (5.94)

In contrast with Proposition 5.21, ωb does not generate Ω(B/A) since (b−
b)2 = 1 does not generate A (see Proposition 5.19). One could take for example
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ωab as a generator of Ω(B/A), since (ab−ab)2 = a2 (assuming that a2 also

generates A, which, for a cubic étale algebra, is the case in general). However,

a simpler minimal polynomial is obtained for the element

µb = b1b2+b1b3+b2b3 (5.95)

(with the notations of (5.70)). Moreover, we have

δb = b1+b2+b3 (5.96)

if charF = 2 and b+b = 1.

Proposition 5.23 (charF = 2). With the notation above,

∆(B)= F[δb], Ω(B/A)= F[δb,µb]=∆(B)[µb]. (5.97)

Moreover, the minimal polynomial of δb over F is

X2+X+T(a), (5.98)

and the minimal polynomial of µb over ∆(B) is

X4+X3+(δ2
b+1

)
X2+(δ2

b+S(a)+1
)
X+(δb+S(a)+1

)
S(a)+N(a). (5.99)

Proof. Since b generates B over A, Proposition 5.19 shows that ∆(B) =
F[δb], and (5.84) yields the minimal polynomial of δb.

To prove the rest, we extend scalars and assume B is split. Using the same

notation as in Example 3.9, we have

b = β1f1+
(
β1+1

)
f ′1+β2f2+

(
β2+1

)
f ′2+β3f3+

(
β3+1

)
f ′3 (5.100)

for some β1,β2,β3 ∈ F . Then, letting

d= g0+g1+g2+g3, d′ = g′0+g′1+g′2+g′3 (5.101)

be the minimal idempotents of ∆(B)⊂Ω(B/A), we have

δb =
(
β1+β2+β3

)
d+(β1+β2+β3+1

)
d′,

µb = v0g0+v′0g′0+v1g1+v′1g′1+v2g2+v′2g′2+v3g3+v′3g′3,
(5.102)

where

v0 = β1β2+β1β3+β2β3, v′0 = v0+1,

v1 = β1β2+β1β3+β2β3+β2+β3+1, v′1 = v1+1,

v2 = β1β2+β1β3+β2β3+β1+β3+1, v′2 = v2+1,

v3 = β1β2+β1β3+β2β3+β1+β2+1, v′3 = v3+1.

(5.103)
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Then

∏
0≤i<j≤3

(
vi−vi

)= ∏
1≤i<j≤3

(
βi−βj

)2. (5.104)

Since b generates B over A, the elements β1, β2, and β3 are pairwise dis-

tinct. Hence this equality shows that v0, . . . ,v3 are pairwise distinct. Similarly,

v′0, . . . ,v
′
3 are pairwise distinct, hence µb generates Ω(B/A) over ∆(B). We have

T(a)= (β2
1+β1

)+(β2
2+β2

)+(β2
3+β3

)
,

S(a)= (β2
1+β1

)(
β2

2+β2
)+(β2

1+β1
)(
β2

3+β3
)+(β2

2+β2
)(
β2

3+β3
)
,

N(a)= (β2
1+β1

)(
β2

2+β2
)(
β2

3+β3
)
,

(5.105)

and brute force computation shows that v0, v1, v2, and v3 are roots of

X4+X3+(β2
1+β2

2+β2
3+1

)
X2+(β2

1+β2
2+β2

3+S(a)+1
)
X

+(β1+β2+β3+S(a)+1
)
S(a)+N(a). (5.106)

Similarly, v′0, v′1, v′2, and v′3 are roots of

X4+X3+(β2
1+β2

2+β2
3

)
X2+(β2

1+β2
2+β2

3+S(a)
)
X

+(β1+β2+β3+S(a)
)
S(a)+N(a), (5.107)

hence the proof is complete.

Corollary 5.24 (charF = 2). With the same notation as in Proposition 5.23,

the discriminant ∆(B) is split if and only if T(a) ∈ ℘(F). If T(a) = ℘(ν) for

some ν ∈ F , then �(B/A) is generated over F by an element whose minimal

polynomial is

X4+X3+ν2X2+(ν2+S(a))X+(ν+S(a))S(a)+N(a). (5.108)

Proof. The first part readily follows from Proposition 5.23. If T(a)= ℘(ν),
then ∆(B)= F×F . Let d, d′ be the minimal idempotents of ∆(B)⊂Ω(B/A). We

may assume d= δb+ν and d′ = δb+ν+1, hence

dδb = (ν+1)d. (5.109)

As in the proof of Corollary 5.22, we may identify dΩ(B/A) and d′Ω(B/A)with

�(B/A), and it follows from Proposition 5.23 that the minimal polynomial of

dµb is as stated.

Combining the results of Sections 5.3 and 5.4, we get the following propo-

sition.
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Proposition 5.25. Let Q be a quartic étale algebra.

(a) If charF ≠ 2, let x ∈Q be a generator such that TQ/F(x)= 0. There exists

an isomorphism φ1 :Q ∼
����������→�(Λ2(Q)/�(Q)) such that φ1(x)=ωλx .

(b) If charF = 2, let x ∈Q be a generator such that TQ/F(x)= 1. There exists

an isomorphism φ2 :Q ∼
����������→�(Λ2(Q)/�(Q)) such that φ2(x)= µλx .

6. Special actions on four elements. As in the preceding sections, Γ denotes

a profinite group. The constructions on Γ -sets given in Section 2.1 take a special

form when the Γ -action has some particular properties. For instance, if the

action on a set X is not transitive, then the orbits X1, . . . ,Xr under Γ yield a

Γ -set decomposition

X =X1
∐ ···∐Xr . (6.1)

Even if the Γ -action on X is transitive, the induced action on Σn(X)may not be

transitive.

Proposition 6.1. Let X be a Γ -set with |X| = n and let α : Γ → SX be the

action of Γ . If (SX :α(Γ))= r , there is a Γ -set decomposition

Σn(X)=Ω1
∐ ···∐Ωr . (6.2)

Each Γ -set Ωi is a Gi-torsor for some subgroup Gi ⊂ Sn isomorphic to α(Γ),
and the subgroups Gi are conjugate in Sn. Moreover, the Γ -sets Ω1, . . . ,Ωr are

isomorphic.

Proof. The Γ -orbits of Σn(X) yield the decomposition (6.2). To see that

each Ωi is a Gi-torsor, recall that for (x1, . . . ,xn) ∈ Σn(X), γ ∈ Γ , and σ ∈ Sn,

we have by definition

γ
(
x1, . . . ,xn

)= (α(γ)(x1
)
, . . . ,α(γ)

(
xn
))
,(

x1, . . . ,xn
)σ = (xσ(1), . . . ,xσ(n)). (6.3)

For each γ ∈ Γ , there is a unique σ ∈ Sn such that

γ
(
x1, . . . ,xn

)= (x1, . . . ,xn
)σ , (6.4)

and the map γ � σ defines a homomorphism Γ → Sn which depends on the

choice of (x1, . . . ,xn) and factors through α to yield an injection α(Γ)↩ Sn. If

(x1, . . . ,xn)∈Ωi, let Gi ⊂ Sn be the image of this map. Then Ωi is a Gi-torsor.

Moreover, if (x1, . . . ,xn) ∈ Ωi and (y1, . . . ,yn) ∈ Ωj , there exists σ ∈ Sn such

that

(
y1, . . . ,yn

)= (x1, . . . ,xn
)σ . (6.5)

Conjugation by σ maps Gj to Gi and the action of σ defines an isomorphism

of Γ -sets Ωi
∼
����������→Ωj .
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Remark 6.2. The Sn-torsor Σn(X) can be obtained as the induced torsor

IndSn
G1
Ω1, by mimicking the construction in [3, (18.17)].

Note that if the Γ -action onX is transitive, then the mapX πn←��������������������������������������� Σn(X) restricts

to each Ωi to define a covering X ←Ωi. Extending Definition 4.2, this covering

may be regarded as a Gi-Galois closure of X.

Taking for Γ the absolute Galois group of a field F , and using the antiequiv-

alence ÉtF ≡ SetΓ of Section 3, we may adapt the construction above to étale

algebras. Disjoint unions of Γ -sets correspond to direct product decomposi-

tions of algebras, hence an étale F -algebra is a field if and only if the Γ -action

on X(E) is transitive. If dimE =n, Proposition 6.1 thus yields a direct product

decomposition of the Sn-Galois closure Σn(E) into isomorphic fields

Σn(E)� L1×···×Lr . (6.6)

Each Li is a Galois extension of F with Galois group Gi ⊂ Sn isomorphic to the

image of the action Γ → SX(E). If E is a field, each Li can be regarded as a Galois

closure of E/F , see [3, (18.22)].

In the rest of this section, we consider the particular case where n = 4. To

determine the various possibilities for the image of the action Γ → S4, we list

the subgroups of S4.

Proposition 6.3. In the symmetric group S4,

(i) the alternating group A4 is the unique subgroup of order 12;

(ii) there are four subgroups of order 6, conjugate to S3;

(iii) there are three subgroups of order 8, pairwise conjugate and isomorphic

to the dihedral group D4.

Moreover, every proper subgroup of S4 is contained in at least one of the sub-

groups listed above.

Proof. Any subgroup of index 2 in S4 must contain all the Sylow 3-sub-

groups of S4. Since these Sylow subgroups are generated by the cycles of length

3, the first claim is clear.

A subgroup of order 6 in S4 cannot be transitive on {1,2,3,4}. On the other

hand, it has an orbit of 3 elements since it contains a Sylow 3-subgroup, hence

it must be the isotropy group of one of 1, 2, 3, or 4.

The dihedral group D4 acts on the four vertices of a square, hence it may be

considered as a subgroup of S4. It is then identified with a 2-Sylow subgroup

of S4, and all the 2-Sylow subgroups are conjugate.

Finally, let G ⊂ S4 be a subgroup. If its order is divisible by 3, then it is 3, 6,

or 12. Hence G is contained in A4 or in a conjugate of S3. If its order is a power

of 2, then G is contained in a 2-Sylow subgroup.

In the following subsections, we examine the additional information on a

Γ -set X with |X| = 4 (or on a quartic étale F -algebra Q) when the Γ -action
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factors through a subgroup S3 orD4. We then collect the information to obtain

a classification of quartic étale F -algebras in Section 6.3.

6.1. Action through S3. Suppose first the action of Γ leaves an element x ∈
X invariant. It then preserves a disjoint union decomposition

X = {x}∐R, (6.7)

where |R| = 3. The 2-element subsets of X containing x are in one-to-one

correspondence with R, hence Λ2(X) decomposes as

Λ2(X)= R
∐
Λ2(R). (6.8)

Moreover, the “complementary subset” involution γX on Λ2(X) interchanges R
and Λ2(R) and defines an isomorphism R �Λ2(R). Therefore, we have canon-

ical isomorphisms

Λ2(X)� R
∐
R, �(X)� R. (6.9)

(See also Section 5.2.)

Assuming Γ is the absolute Galois group of a field F , we may translate the

results above in the framework of étale F -algebras.

Proposition 6.4. LetQ be a quartic étale F -algebra. If the Γ -action on X(Q)
factors through a subgroup S3 ⊂ SX(Q), then there is a cubic field extension L/F
such that

Q� F×L, Λ2(Q)� L×L, �(Q)� L. (6.10)

Moreover, the following conditions are equivalent:

(a) the Γ -action factors through a cyclic subgroup C3;

(b) the extension L/F is Galois (hence cyclic);

(c) ∆(Q)� F×F .

6.2. Action through D4. Suppose now that the action of Γ factors through

a Sylow 2-subgroup of SX , that is, through a dihedral subgroup D4. Since the

Sylow 2-subgroups of SX are the isotropy groups of partitions of X into 2-

element subsets, there is such a partition which is invariant under Γ . This

observation characterizes the case where Γ acts through D4.

Proposition 6.5. For a setX ∈ Set4
Γ , the following conditions are equivalent:

(a) the Γ -action factors through a Sylow 2-subgroup of SX ;

(b) the Γ -action leaves a point of �(X) fixed;

(c) �(X)� {∗}∐∆(X);
(d) X is a double covering of a set of two elements, that is, there exists a map

(D←X)∈ Cov2�2
Γ .
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Proof. The points of �(X) are the partitions of X into 2-element sub-

sets, hence (a)�(b). The implication (c)⇒(b) is clear, and (b)⇒(c) follows from

Proposition 5.1. If D = {{x1,x2},{x3,x4}} ∈ �(X) is fixed under Γ , then the

canonical map D ← X which carries x1 and x2 to {x1,x2}, and x3 and x4

to {x3,x4} is a double covering, hence (b)⇒(d). Finally, (d)⇒(a) follows from

S2 �S2 �D4.

The following proposition establishes the existence of a dual Γ -set X̌.

Proposition 6.6. If the equivalent conditions of Proposition 6.5 hold, then

there exists a Γ -set X̌ ∈ Set4
Γ , with Γ -action through a Sylow 2-subgroup of SX̌ ,

such that

Λ2(X)�∆
(
X̌
)∐
X̌, Λ2

(
X̌
)�∆(X)∐X,

�(X)� {∆(X̌)}∐∆(X), �
(
X̌
)� {∆(X)}∐∆(X̌). (6.11)

Moreover, X is a double covering of ∆(X̌), and X̌ is a double covering of ∆(X).
If the Γ -action on ∆(X) is not trivial, the Γ -set X̌ is canonically determined.

If the Γ -actions on ∆(X) and ∆(X̌) are not trivial, then there is a canonical

isomorphism

ˇ̌X =X. (6.12)

Proof. Let D ∈�(X) be a fixed point of Γ . Define X̌ as the complementary

subset in Λ2(X) of the fiber ε−1(D) under the canonical map �(X) ε←� Λ2(X).
The set X̌ is thus canonically determined if Γ has a unique fixed pointD ∈�(X),
or, equivalently by Proposition 6.5, if the Γ -action on ∆(X) is not trivial.

We proceed to prove that X̌ satisfies the stated properties. To clarify the

discussion, we use geometric language. If D = {{x1,x2},{x3,x4}}, we identify

X with the set of vertices of a square, letting {x1,x2} and {x3,x4} be the pairs

of opposite vertices. We may thus identify D to the set of diagonals of the

square, and we have a decomposition

Λ2(X)=D
∐
X̌, (6.13)

where X̌ is the set of pairs of adjacent vertices, which may be identified with

the set of edges of the square. (Note that X̌ may also be viewed as the dual

square of X in the sense of polytope theory.) There is a dual decomposition

Λ2
(
X̌
)=M∐

X, (6.14)

where X is identified with the set of pairs of adjacent edges (by mapping every

such pair to their common vertex) and M is the set of pairs of parallel edges,

which may be identified with the medians of the square. The “complementary

subset” involutions γX and γX̌ preserve the decompositions (6.13) and (6.14),

and the set of orbits of X̌ (resp., X) under γX (resp., γX̌ ) can be identified with
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M (resp., D). Hence

�(X)= {D}∐M, �
(
X̌
)= {M}∐D, (6.15)

and there are natural maps D ← X and M ← X̌ which show that X and X̌
are double coverings of D and M , respectively. By Proposition 5.1, (6.15) yield

canonical isomorphisms

M =∆(X), D =∆(X̌). (6.16)

If the Γ -action on ∆(X̌) is not trivial, then M is the unique fixed point of

�(X̌), and X ⊂Λ2(X̌) is the complementary subset of the fiber ofM under the

canonical map �(X̌)←Λ2(X̌), hence ˇ̌X =X. This completes the proof.

Remark 6.7. For a given covering (D ← X) ∈ Cov2�2
Γ , the Γ -set X̌ can be

defined as Ω(X/D).

We may use the Γ -set X̌ to obtain information on the Γ -action onX as follows.

Proposition 6.8. LetX ∈ Set4
Γ be a Γ -set satisfying the equivalent properties

of Proposition 6.5, and suppose the Γ -action on ∆(X) is not trivial, so that the

dual set X̌ is uniquely determined. The following properties are equivalent:

(a) the Γ -action on X factors through a cyclic subgroup C4;

(b) X̌ �X;

(c) ∆(X̌)�∆(X).
Proof. If the action of Γ factors through C4, we may regard X as the set

of vertices of an oriented square, and use the orientation to define a canonical

isomorphism X ∼
����������→ X̌, proving (a)⇒(b). Since the implication (b)⇒(c) is clear, it

only remains to prove (c)⇒(a). If the image of Γ under the action contains the

Vierergruppe VX , then there is an element in Γ which acts trivially on M and

nontrivially on D, hence ∆(X) �� ∆(X̌). Similarly, if some element of Γ acts by

a single transposition on X, then it acts trivially on D and nontrivially on M ,

hence ∆(X) �� ∆(X̌). Therefore, (c) implies that the image of the action of Γ
contains at most cycles of length 4 and one element of VX .

Remark 6.9. The Γ -set D∗M = ∆(X)∗∆(X̌) can be identified with the set

of orientations of the square.

For the following proposition, recall that the dihedral groupD4 contains two

nonconjugate elementary abelian subgroups C2×C2. ViewingD4 as a subgroup

of S4, one of these subgroups is V (= D4∩A4). The other one is generated by

two disjoint transpositions and is not transitive on {1,2,3,4}.
Proposition 6.10. Let X ∈ Set4

Γ be a Γ -set satisfying the equivalent proper-

ties of Proposition 6.5, and suppose the Γ -action on ∆(X) is not trivial, so that

the dual set X̌ is uniquely determined. The following properties are equivalent:
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(a) the Γ -action on X factors through an elementary abelian subgroup C2×
C2 ≠ VX ;

(b) the Γ -action on X̌ factors through VX̌ ;

(c) the Γ -action on ∆(X̌) is trivial.

The proof is left to the reader.

Finally, we consider the case where the Γ -action on X factors through VX .

Proposition 6.11. For a Γ -set X ∈ Set4
Γ , the following conditions are equiv-

alent:

(a) the Γ -action on X factors through the Vierergruppe VX ;

(b) the Γ -action on �(X) is trivial;

(c) the Γ -set Λ2(X) has a decomposition into 2-element subsets stable under

the canonical involution of Λ2(X)/�(X):

Λ2(X)=D1
∐
D2

∐
D3; (6.17)

(d) X satisfies the equivalent conditions of Proposition 6.5 and Γ acts trivially

on ∆(X).
Moreover, if these conditions hold, then the Γ -action on D1∗D2∗D3 is trivial.

Proof. The Vierergruppe can be defined as the subgroup of SX which leaves

all the partitions of X into 2-element subsets invariant, hence (a)�(b). The

equivalence of (b) and (c) is clear: take for D1, D2, and D3 the fibers of the

canonical map �(X) ← Λ2(X). The equivalence (b)�(d) readily follows from

Proposition 6.5.

If the equivalent conditions of the proposition hold, then the set X̌ of Prop-

osition 6.6 can be arbitrarily chosen as D1
∐
D2, D1

∐
D3, or D2

∐
D3. If we

choose X̌ =D1
∐
D2, Proposition 6.6 yields ∆(X̌)=D3. On the other hand, it is

easily checked that

∆
(
D1

∐
D2
)�D1∗D2, (6.18)

hence D1∗D2 �D3 and, therefore, the Γ -action on D1∗D2∗D3 is trivial.

Taking for Γ the absolute Galois group of a field F , we may translate the

results of this section in terms of étale F -algebras, by using the antiequivalence

ÉtF ≡ SetΓ of Section 3. By a quartic 2-algebra we mean an étale algebra which

is a quadratic extension of a quadratic étale algebra. These algebras can be

characterized through Proposition 6.5.

Proposition 6.12. For a quartic F -algebra Q, the following conditions are

equivalent:

(a) the Γ -action on X(Q) factors through a Sylow 2-subgroup of SX(Q);

(b) �(Q) is not a field;

(c) �(Q)� F×∆(Q);
(d) Q is a quartic 2-algebra.
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Proposition 6.6 proves, for every quartic 2-algebraQ, the existence of a dual

quartic 2-algebra Q̌, which is canonically determined if ∆(Q) is not split. This

algebra is a quadratic extension of ∆(Q), and Q is a quadratic extension of

∆(Q̌). Moreover, Q and Q̌ satisfy the following relations:

Λ2(Q)�∆
(
Q̌
)×Q̌, Λ2

(
Q̌
)�∆(Q)×Q,

�(Q)� F×∆(Q), �
(
Q̌
)� F×∆(Q̌). (6.19)

We record a few special cases.

Proposition 6.13. Let Q be a quartic 2-algebra over F .

(1) If Q is a cyclic field extension of F , then Q̌ � Q, hence Q is a quadratic

extension of ∆(Q), and

Λ2(Q)�∆(Q)×Q, �(Q)� F×∆(Q). (6.20)

(2) IfQ=K1×K2, whereK1 andK2 are nonisomorphic quadratic F -algebras,

then Q̌�K1⊗F K2, ∆(Q)�K1∗K2, and

Λ2(Q)� F×F×
(
K1⊗F K2

)
, �(Q)� F×(K1∗K2

)
. (6.21)

(3) IfQ=K1⊗F K2, where K1 and K2 are quadratic field extensions of F , then

Q̌ = K1×K2, K1× (K1∗K2), or K2× (K1∗K2). Moreover, ∆(Q) is split,

and

Λ2(Q)�K1×K2×
(
K1∗K2

)
, �(Q)� F×F×F. (6.22)

These results are easily derived from Propositions 6.8, 6.10, and 6.11. Note

that split quadratic algebras are allowed in (2.20), and that the case where

Q=K×K for some quadratic field extension K of F is covered by (3.18) since

K×K �K⊗F K.

Since Λ2(Q)�∆(Q̌)×Q̌, we may use the computations of Section 5.3 to give

an explicit description of Q̌.

Proposition 6.14. Let Q be a quartic 2-algebra over F and let K ⊂Q be a

quadratic étale F -algebra. Denote by the canonical involution of K over F .

(1) Suppose charF ≠ 2 and Q=K(√y), where y ∈K generates K. Then

∆(Q)� F
(√
NK/F(y)

)
, Q̌� F

(√
y+

√
y
)
, ∆

(
Q̌
)�K. (6.23)

(2) Suppose charF = 2 and Q=K(℘−1(y)), where y ∈K generates K. Then

∆(Q)� F(℘−1(TK/F(y))), Q̌� F(℘−1(y)℘−1(y)
)
, ∆

(
Q̌
)�K. (6.24)

In the proof below, we simply write T(y) andN(y) for TK/F(y) andNK/F(y).
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Proof. (1) By hypothesis, the element x =√y generates Q over F . Its min-

imal polynomial is

u4−T(y)u2+N(y)∈ F[u]. (6.25)

Let λx ∈Λ2(Q) be defined as in (5.55). By Proposition 5.16, γQ(λx)λx generates

�(Q) and its minimal polynomial is

t
((
t+T(y))2−4N(y)

)
. (6.26)

Therefore,

�(Q)� F×F
(√
N(y)

)
, (6.27)

determining ∆(Q). Moreover, Proposition 5.16 also shows that γQ(λx)=−λx ,

hence, regarding (6.27) as an identification,

λ2
x =

(
0,T (y)−2

√
N(y)

)
. (6.28)

Therefore, the projection λ̌x of λx to Q̌ under the isomorphism Λ2(Q) �
∆(Q̌)×Q̌ satisfies

λ̌2
x = T(y)−2

√
N(y)=y+y−2

√
yy. (6.29)

If the minimal polynomial (6.25) of x has no root in F , computation shows that

T(y)−2
√
N(y) is not a square in ∆(Q), hence

Q̌= F(λ̌x). (6.30)

The proof is complete since (6.29) shows that we may identify λ̌x with
√y+√y ,

determining the square roots in such a way that
√y√y =−√N(y).

If the minimal polynomial (6.25) has a root in F , then Q has a factor F and

we are in the situation of Proposition 6.13(2) with K1 or K2 split. This case is

left to the reader.

(2) Suppose now charF = 2. The element x = y℘−1(y) generates Q with

minimal polynomial

u4+T(y)u3+(T(y)3+T(y)N(y)+N(y))u2+T(y)2N(y)u+N(y)3∈F[u].
(6.31)

Consider again the element λx ∈Λ2(Q) defined in (5.55). By Proposition 5.16,

γQ(λx)λx generates �(Q) and has minimal polynomial

(
t−N(y))(t2−N(y)t+T(y)6+T(y)2N(y)+T(y)N(y)2). (6.32)
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Table 6.1

α(Γ) Q ∆(Q) �(Q) Λ2(Q)

{1} F4 F2 F3 F6

C2 �⊂ V F2×K K F×K F2×K2

C2 ⊂ V K×K F2 F3 F2×K2

C3 F×L, L cyclic F2 L L×L
C2×C2 �⊂ V K1×K2 K1∗K2 F×K1∗K2 F2×(K1⊗K2)
V K1⊗K2 F2 F3 K1×K1×K1∗K2

C4 Cyclic K ⊂Q F×K K×Q
S3 F×L K L L×L
D4 Q⊃ Ǩ K F×K Ǩ×Q̌, Q̌⊃K
A4 A4-quartic F2 L cyclic N ⊃ L
S4 S4-quartic K L S3-cubic N ⊃ L

If w is a root of the quadratic factor, then

℘
(
N(y)−1(w−T(y)3−T(y)N(y)))= T(y), (6.33)

hence

�(Q)� F×F(℘−1(T(y))). (6.34)

Proposition 5.16 also shows that the projection λ̌x of λx onto Q̌ satisfies

λ̌2
x+T(y)λ̌x+w = 0. (6.35)

If ℘−1(y) and ℘−1(y) are determined in such a way that ℘−1(y)+℘−1(y) =
℘−1(T(y)), computation shows that ℘−1(T(y))(T(y)+℘−1(y)℘−1(y)) also

satisfies (6.35), hence we may identify Q̌ with F(℘−1(y)℘−1(y)).

We refer to [5] for a description of quartic 2-extensions of fields in charac-

teristic different from 2.

6.3. Classification of quartic algebras. Combining the results of Sections

6.1 and 6.2, we obtain a classification of quartic étale F -algebras Q based on

the action of the absolute Galois group Γ of F on X(Q). We summarize the

various possibilities for Q, ∆(Q), �(Q), and Λ2(Q) in Table 6.1. In this table,

α(Γ) ⊂ SX(Q) � S4 is the image of the Γ -action. The letters N and L are used

for sextic and cubic separable field extensions of F , and K, Ǩ, K1, and K2 for

quadratic separable field extensions of F . A quartic separable field extension

is called an S4-quartic (resp., A4-quartic) if its Galois closure has Galois group

isomorphic to S4 (resp., A4).

7. Cyclic quartic algebras. Let F be an arbitrary field with absolute Galois

group Γ = Gal(Fs/F). Quartic étale F -algebrasQ such that the Γ -action on X(Q)
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factors through a cyclic group C4 can be endowed with the structure of a C4-

Galois algebra. (In Table 6.1, they can be found in the lines α(Γ)= {1}, α(Γ)=
C2 ⊂ V, and α(Γ) = C4.) Fixing a generator of C4 (or, equivalently, choosing

an isomorphism C4 � Z/4Z), we may consider a C4-Galois F -algebra as a pair

(Q,ν), whereQ is a quartic étale F -algebra and ν is an F -algebra automorphism

of Q such that

{
x ∈Q | ν(x)= x}= F. (7.1)

The automorphism ν then satisfies ν4 = Id, and it yields the action onQ of the

generator of C4. An isomorphism of C4-Galois F -algebras β : (Q,ν)→ (Q′,ν′)
is an isomorphism β :Q ∼

����������→Q′ such that ν′ ◦β= β◦ν . Let Cycl4(F) be the set of

isomorphism classes of C4-Galois F -algebras. As observed in Section 4.5, there

is a canonical bijection

Cycl4(F)�H1(Γ ,C4
)
. (7.2)

If C4 is embedded in S4, the corresponding map in cohomology H1(Γ ,C4) →
H1(Γ ,S4)maps the isomorphism class of (Q,ν) to the isomorphism class ofQ.

Since C4 is an abelian group, the setH1(Γ ,C4) is an abelian group. The group

structure on Cycl4(F) is induced by the following composition law (see [2]):

(Q,ν)�
(
Q′,ν′

)= ((Q⊗Q′)ν−1⊗ν′ ,ν⊗ Id
)
. (7.3)

The class of the split algebra F4 with the cyclic permutation of factors is the

neutral element. The squaring map ρ : C4→ S2 fits into an exact sequence

1 �→ S2
ι
���������������������→ C4

ρ
���������������������������������→ S2 �→ 1. (7.4)

Since H1(Γ ,S2)�Quad(F) (see Section 4.4), the induced exact sequence in co-

homology takes the form

1 �→Quad(F) ι
1

���������������������������→ Cycl4(F)
ρ1

���������������������������������������→Quad(F). (7.5)

The map ι1 is induced by K � (K×K,ν), where ν(x,y)= (y,γK(x)), and the

map ρ1 carries every C4-Galois algebra (Q,ν) to its discriminant ∆(Q) (which

is isomorphic to the quadratic subalgebra Qν2
, see Proposition 6.13).

Remark 7.1. The algebra K×K contains K and F×F as quadratic subalge-

bras. However, Galois theory shows that if (Q,ν) is a C4-Galois algebra and Q
is a field, then Q contains a unique quadratic extension of F .

In the rest of this section, we give an explicit description of H1(Γ ,C4) and

use it to parametrize C4-Galois algebras up to isomorphism. The description

depends in an essential way on whether the characteristic is 2 or not.
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7.1. Characteristic not equal to 2. If charF ≠ 2, the group µ4(Fs) ⊂ Fs of

fourth roots of unity is cyclic of order 4. Let S = F[X]/(X2+1). Twisting the

Γ -action on µ4(Fs) by a cocycle whose image in H1(Γ ,S2) defines S, we obtain a

Γ -module µ4[S] with trivial Γ -action. Thus, µ4[S] � C4, and C4-Galois F -algebras

are also classified by H1(Γ ,µ4[S]). To give an explicit description of this group,

consider the homomorphism

Υ : F××S× �→ F××S× (7.6)

defined by

Υ(�,z)= (NS/F(z),�z2). (7.7)

Proposition 7.2. There is a canonical isomorphism

H1(Γ ,µ4[S]
)� (F××S×)/Υ(F××S×). (7.8)

Proof. Let i=√−1∈ S be the image of X. We may identify µ4[S] with

{
(1,1),(1,−1),(−1,1⊗i),(−1,−1⊗i)}⊂ F×s ×(Fs⊗S)×, (7.9)

which is the kernel of the map Υ extended to Fs . The proposition follows from

the cohomology exact sequence associated with

1 �→ µ4[S] �→ F×s ×
(
Fs⊗S

)× Υ
��������������������������������→ F×s ×

(
Fs⊗S

)×
�→ 1, (7.10)

since Hilbert’s Theorem 90 and Shapiro’s lemma yieldH1(Γ ,F×s ×(Fs⊗S)×)= 1.

Remark 7.3. Another description of H1(Γ ,µ4[S]) is given in [3, (30.13)].

It follows from Proposition 7.2 that C4-Galois algebras are classified by the

group

(
F××S×)/Υ(F××S×). (7.11)

(See [2] for a proof without cohomology and, more generally, for a class of

commutative rings in which 2 is invertible.) We give an explicit description of

this correspondence.

Let i = √−1 ∈ S. For λ ∈ F× and s = s1+ is2 ∈ S×, let d = NS/F(s) = s2
1 + s2

2

and let

Qλ,s = F[W,X,Y]/Iλ,s , (7.12)

where Iλ,s is the ideal generated by

W 2−d, X2− λ
2

(
d+s1W

)
, Y 2− λ

2

(
d−s1W

)
, XY − λ

2
s2W. (7.13)



4318 M.-A. KNUS AND J.-P. TIGNOL

The automorphism ν of F[W,X,Y] defined by

ν(W)=−W, ν(X)= Y , ν(Y)=−X (7.14)

preserves Iλ,s and induces an automorphism of Qλ,s which we denote by νλ,s .

Proposition 7.4. For any λ ∈ F× and s ∈ S×, the pair (Qλ,s ,νλ,s) is a C4-

Galois F -algebra. The map (λ,s)� (Qλ,s ,νλ,s) induces a group isomorphism

Φ : F××S×/{(NS/F(z),�z2) | � ∈ F×, z ∈ S×} ∼
�������������������������������������→ Cycl4(F). (7.15)

Proof. We first show thatQλ,s is a quartic étale F -algebra. Letω,ξ,η∈Qλ,s
be the images of W , X, and Y , respectively. The algebra F[ω] is quadratic,

F[ω]� F[√d].
If s2 ≠ 0, then d ≠ s2

1 , hence d+s1ω is invertible. Computation shows that

(ξ−1(λ/2)s2ω)2 = (λ/2)(d−s1ω), so

Qλ,s = F[ω,ξ]� F
[√
d
][√λ

2

(
d+s1

√
d
)]
. (7.16)

If s2 = 0, then d = s2
1 , hence F[ω] � F ×F and we may identify ξ and η to

s1(
√
λ,0) and s1(0,

√
λ) in

Qλ,s � F
[√
λ
]×F[√λ]. (7.17)

Therefore, in each case, Qλ,s is an quartic étale F -algebra, and the fact that the

subalgebra fixed under νλ,s is F is easily verified.

To prove that Φ is a group homomorphism, consider (λ,s),(λ′,s′)∈ F××S×
with s = s1+ is2 and s′ = s′1+ is′2. Let d = NS/F(s) and d′ = NS/F(s′), and let

ω,ξ,η∈Qλ,s and ω′,ξ′,η′ ∈Qλ′,s′ be defined as above. The elements

ω� =ω⊗ω′, ξ� = ξ⊗ξ′ −η⊗η′, η� = ξ⊗η′ +η⊗ξ′ (7.18)

are in (Qλ,s⊗Qλ′,s′)ν
−1
λ,s⊗νλ′ ,s′ and satisfy

ω2
� = dd′,

ξ2
� =

λλ′

2

[
dd′ +(s1s′1−s2s′2)ω�],

ξ�η� = λλ
′

2

(
s1s′2+s2s′1

)
ω�,

η2
� =

λλ′

2

[
dd′ −(s1s′1−s2s′2)ω�].

(7.19)

Moreover,

(
νλ,s⊗ Id

)(
ω�

)=−ω�, (
νλ,s⊗ Id

)(
ξ�
)= η�, (

νλ,s⊗ Id
)(
η�
)=−ξ�.

(7.20)
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Therefore,

(
Qλ,s,νλ,s

)
�
(
Qλ′,s′ ,νλ′,s′

)� (Qλλ′,ss′ ,νλλ′,ss′). (7.21)

If (λ,s) = (NS/F(z),�z2) for some � ∈ F× and z = z1+ iz2 ∈ S×, then the

homomorphism F[W,X,Y]→ F4 defined by

W � �→ �NS/F(z)(1,−1,1,−1),
X � �→ �NS/F(z)

(
z1,z2,−z1,−z2

)
,

Y � �→ �NS/F(z)
(
z2,−z1,−z2,z1

) (7.22)

induces an isomorphism (Qλ,s ,νλ,s)
∼
����������→(F4,σ), whereσ is the cyclic permutation.

Conversely, suppose that for some (λ,s)∈ F××S× there is an isomorphism

Qλ,s � F4, and let (ωi)1≤i≤4, (ξi)1≤i≤4, and (ηi)1≤i≤4 be the images ofω, ξ, and

η, respectively, in F4. Then, from the relations betweenω, ξ, and η, it follows

that z =ω−1
1 (ξ1+iη1)∈ S and � = (ξ2

1+η2
1)−1ω3

1 satisfy

λ=NS/F(z), s = �z2. (7.23)

Therefore, the homomorphism Φ is injective, and it only remains to prove its

surjectivity.

Let (Q,ν) be a C4-Galois F -algebra. If Q � F[√µ]×F[√µ] for some µ ∈ F×,

then Q � Qµ,1, as was observed at the beginning of the proof. Therefore, for

the rest of the proof we may assume Q is a field. Let K = Qν2 ⊂ Q be the

subfield fixed under ν2, let K = F(ω) with ω2 = d for some d ∈ F×, and let

Q = K(ξ) with ξ2 = y for some y ∈ K×. We have y ∉ F since Q/F is cyclic.

Let y = a+bω with a,b ∈ F , b ≠ 0. Substituting for y an element of the form

u2y with u∈K, we may assume a≠ 0. Letting λ= 2ad−1 and s1 = a−1bd, we

may then write y in the form

y = λ
2

(
d+s1ω

)
. (7.24)

Let η= ν(ξ). Since ξ2 ∈K and ξ ∉K, we have ν2(ξ2)= ξ2 and ν2(ξ)≠ ξ, hence

ν2(ξ)=−ξ. Therefore, ν(ξη)=−ξη, and it follows that ξη∈ωF×. Let

ξη= λ
2
s2ω for some s2 ∈ F×. (7.25)

From the equation ξ2 = (λ/2)(d+s1ω), we obtain

η2 = λ
2

(
d−s1ω

)
. (7.26)

Therefore, (7.25) yields

λ2

4
s2

2d=
λ2

4

(
d+s1ω

)(
d−s1ω

)
, (7.27)

hence d= s2
1+s2

2 . It is then clear that (Q,ν)� (Qλ,s ,νλ,s) with s = s1+is2.
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Corollary 7.5. A quadratic étale F -algebra F[
√
d] can be embedded in a

C4-Galois algebra (Q,ν) as F[
√
d]�Qν2

if and only if d is a sum of two squares

in F .

Proof. The “only if” part was shown in the last lines of the proof of Prop-

osition 7.4. (Alternately, it follows from Propositions 6.13 and 6.14.) The “if”

part follows from the observation that F[
√
d] � Qν

2
λ,s
λ,s whenever NS/F(s)= d.

In other words, this corollary shows that the exact sequence (7.5) can be

extended to

1 �→Quad(F) ι
1

���������������������������→ Cycl4(F)
ρ1

���������������������������������������→Quad(F) δ
����������������������→ Br(F), (7.28)

where Br(F) is the Brauer group of F and δ maps K = F[√d] to the Brauer

class of the quaternion algebra (−1,d)F . Of course, this result is well known

and has an easy cohomological proof.

7.2. Characteristic 2. Cyclic Galois Cpn -algebras over fields over character-

istic p were constructed by Witt [14, Satz 13] using Witt vectors. The group

H1(F,Cpn) over a field of characteristic p was computed by Serre in [10, Chap-

ter X, Section 3], also in terms of Witt vectors. We recall explicitly the results

of Serre and Witt for the group C4 over a field F of characteristic 2.

LetW2(F) be the additive group of Witt vectors of length 2. By definition, we

have W2(F)= {(t,s) | t,s ∈ F} with the addition

(
t1,s1

)+. (t2,s2)= (t1+t2,s1+s2+t1t2). (7.29)

Alternately,

W2(F)=





1 t s
0 1 t
0 0 1



∣∣∣∣∣∣∣s,t ∈ F


⊂ GL2(F). (7.30)

The neutral element is (0,0) and −. (t,s)= (t,s+t2). The map

℘2 :W2(F) �→W2(F), (t,s) � �→ (t2,s2)−. (t,s)= (t2+t,s2+s+t2+t3),
(7.31)

is a group homomorphism and there is an exact sequence of Γ -modules:

0 �→ C4 �→W2
(
Fs
) ℘2����������������������������������������→W2

(
Fs
)
�→ 0, (7.32)

where C4 is identified with the subgroup of W2(Fs) generated by (1,0).
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Proposition 7.6. We have H1(Γ ,W2(Fs)) = 0 and H1(Γ ,C4) � W2(F)/
℘2(W2(F)).

Proof. The first claim follows from the exact sequence of (additive) Γ -
modules:

0 �→ Fs ι
���������������������→W2

(
Fs
) π
����������������������������������������→ Fs �→ 0, (7.33)

where ι(s)= (0,s) and π(t,s)= t, and the fact that H1(Γ ,Fs)= 0 (by the addi-

tive version of Hilbert’s Theorem 90). The last claim follows from the exactness

of (7.32) and from the first claim.

For (t,s) ∈W2(F), let I(t,s) ⊂ F[W,X] be the ideal generated by the polyno-

mials f1(W) and f2(W,X) such that

(
f1(W),f2(W,X)

)= ℘2(W,X)−. (t,s), (7.34)

and let

Q(t,s) = F[W,X]/I(t,s). (7.35)

Lettingω and ξ be the images of W and X in Q(t,s), we can write the relations

defining Q(t,s) as

ω2+ω= t, ξ2+ξ = tω+s. (7.36)

It is therefore clear thatQ(t,s) is a quartic 2-algebra over F . The automorphism

of F[W,X] given by

(W,X) � �→ (W,X)+. (1,0) (7.37)

induces an automorphism ν(t,s) of Q(t,s). We have by definition ν(t,s)(ω) =
ω+ 1 and ν(t,s)(ξ) = ξ +ω, hence the fixed subalgebra of Q(t,s) is F . Thus,

(Q(t,s),ν(t,s)) is a C4-Galois F -algebra.

Proposition 7.7. The map (t,s) � (Q(t,s),ν(t,s)) induces a group isomor-

phism

Ψ :W2(F)/℘2
(
W2(F)

) ∼
�������������������������������������→ Cycl4(F). (7.38)

Proof. Let (t,s),(t′,s′) ∈ W2(F), and let ω,ξ ∈ Q(s,t) and ω′,ξ′ ∈ Q(s′,t′)
be the elements defined as above. In Q(t,s)⊗Q(t′,s′), consider the elements

ω� =ω⊗1+1⊗ω′, ξ� = ξ⊗1+1⊗ξ′ +ω⊗ω′. (7.39)

Computation shows thatω� and ξ� are invariant under ν−1
(t,s)⊗ν(t′,s′) and sat-

isfy

ω2
�+ω� = t+t′, ξ2

�+ξ� =
(
t+t′)ω�+s+s′ +tt′. (7.40)
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Moreover, (ν(t,s)⊗ Id)(ω�)=ω�+1 and (ν(t,s)⊗ Id)(ξ�)= ξ�+ω�. Therefore,

(
Q(t,s),ν(t,s)

)
�
(
Q(t′,s′),ν(t′,s′)

)� (Q(t,s)+. (t′,s′),ν(t,s)+. (t′,s′)). (7.41)

If (t,s) = ℘2(x,y) = (x2+x,y2+y+x3+x2) for some x,y ∈ F , then the

map F[W,X]→ F defined by

W � �→ (x,x+1,x,x+1), X � �→ (y,x+y,y+1,x+y+1) (7.42)

induces an isomorphism (Q(t,s),ν(t,s))
∼
����������→ (F4,σ) where σ is the cyclic permu-

tation of factors.

Conversely, ifQ(t,s)�F4 for some t,s∈F , then, letting (ωi)1≤i≤4 and (ξi)1≤i≤4

denote the images of ω and ξ in F4, it is readily verified that

t =ω2
1+ω1 s = ξ2

1+ξ1+ω3
1+ω2

1, (7.43)

hence (t,s)= ℘2(ω1,ξ1). This shows that the map Ψ is an injective homomor-

phism of groups, and it only remains to prove its surjectivity.

Let (Q,ν) be a C4-Galois algebra. If Q � F[℘−1(u)]× F[℘−1(u)] for some

u ∈ F , then (Q,ν) � (Q(0,u),ν(0,u)). For the rest of the proof, we may thus

assume Q is a field. Let K = Qν2 ⊂ Q be the subfield fixed under ν2 and let

Q = K(ξ) with ξ2+ξ ∈ K. Then ν2(ξ) = ξ+1, and it follows that the element

ω= ξ+ν(ξ) satisfies

ν2(ω), ν(ω)=ω+1, (7.44)

hence K = F(ω). We then have ξ2+ξ = tω+s for some t,s ∈ F , and

ω2+ω= (ξ2+ξ)+ν(ξ2+ξ)= t. (7.45)

Therefore, (Q,ν)� (Q(t,s),ν(t,s)).
Corollary 7.8. Every quadratic étale F -algebra can be embedded in a C4-

Galois F -algebra (Q,ν) as Qν2 �∆(Q).

Proof. For any t ∈ F , we have F[℘−1(t)]�Qν
2
(t,s)
(t,s) for all s ∈ F .

The corollary shows that the last map in the exact sequence (7.5) is onto

when charF = 2. This is clear from a cohomological viewpoint, since the coho-

mological 2-dimension of Γ is at most 1, see [11, page 86].
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