ON DEDEKIND'S CRITERION AND MONOGENICITY OVER DEDEKIND RINGS

M. E. CHARKANI and O. LAHLOU

Received 29 November 2002

We give a practical criterion characterizing the monogenicity of the integral closure of a Dedekind ring R, based on results on the resultant $\mathrm{Res}(P,P_i)$ of the minimal polynomial P of a primitive integral element and of its irreducible factors P_i modulo prime ideals of R. We obtain a generalization and an improvement of the Dedekind criterion (Cohen, 1996) and we give some applications in the case where R is a discrete valuation ring or the ring of integers of a number field, generalizing some well-known classical results.

Mathematics Subject Classification: 11Y40, 13A18, 13F30.

- **1. Introduction.** Let K be an algebraic number field and let O_K be its ring of integers. If $O_K = \mathbb{Z}[\theta]$ for some number θ in O_K , we say that O_K has a power basis or O_K is monogenic. The question of the existence of a power basis was originally examined by Dedekind [5]. Several number theorists were interested in and attracted by this problem (see [7, 8, 9]) and noticed the advantages of working with monogenic number fields. Indeed, for a monogenic number field K, in addition to the ease of discriminant computations, the factorization of a prime p in K/\mathbb{Q} can be found most easily (see [4, Theorem 4.8.13, page 199]). The main result of this paper is Theorem 2.5 which characterizes the monogenicity of the integral closure of a Dedekind ring. More precisely, let R be a Dedekind domain, K its quotient field, L a finite separable extension of degree *n* of *K*, α a primitive element of *L* integral over *K*, $P(X) = \text{Irrd}(\alpha, K)$, m a maximal ideal of R, and O_L the integral closure of R in L. Assume that $\bar{P}(X) = \prod_{i=1}^r \bar{P}_i^{e_i}(X)$ in (R/m)[X] with $e_i \ge 2$, and let $P_i(X) \in R[X]$ be a monic lifting of $\bar{P}_i(X)$ for $1 \le i \le r$. Then we prove that $O_L = R[\alpha]$ if and only if, for every maximal ideal m of R and $i \in \{1,...,r\}$, $v_m(\text{Res}(P_i,P)) = \text{deg}(P_i)$, where v_m is the *m*-adic discrete valuation associated to *m*. This leads to a necessary and sufficient condition for a simple extension $R[\alpha]$ of a Dedekind ring R to be Dedekind. At the end, we give two illustrations of this criterion. In the second example, we give the converse which was not known yet.
- **2. Monogenicity over a Dedekind ring.** Throughout this paper R is an integral domain, K its quotient field, L is a finite separable extension of degree n of K, α is a primitive element of L integral over R, $P(X) = Irrd(\alpha, K)$, m is

a maximal ideal of R, and O_L is the integral closure of R in L. Let f and g be two polynomials over R; the resultant of f and g will be denoted by Res(f,g) (see [11]).

DEFINITION 2.1. If $O_L = R[\theta]$ for some number $\theta \in O_L$, then O_L has a power basis or O_L is monogenic.

PROPOSITION 2.2. Let R be an integrally closed ring and let α be an integral element over R. Then $(R[\alpha])_p = R_p[\alpha]$ for every prime ideal p of R. In particular, $O_L = R[\alpha]$ if and only if $R_p[\alpha]$ is integrally closed for every prime ideal p of R if and only if $R[\alpha]$ is integrally closed.

PROOF. We obtain the result from the isomorphism $R[\alpha] \simeq R[X]/\langle P(X)\rangle$, the properties of an integrally closed ring and its integral closure, and the properties of a multiplicative closed subset of a ring R, notably, $S^{-1}(R[X]) = (S^{-1}R)[X]$ (see [1]).

DEFINITION 2.3. Let R be a discrete valuation ring (DVR), $p = \pi R$ its maximal ideal, and α an integral element over R. Let P be the minimal polynomial of α , and $\bar{P}(X) = \prod_{i=1}^r \bar{P}_i^{e_i}(X)$ the decomposition of \bar{P} into irreducible factors in (R/p)[X]. Set

$$f(X) = \prod_{i=1}^{r} P_i(X) \in R[X],$$

$$h(X) = \prod_{i=1}^{r} P_i^{e_i - 1}(X) \in R[X],$$

$$T(X) = \frac{P(X) - \prod_{i=1}^{r} P_i^{e_i}(X)}{\pi} \in R[X],$$
(2.1)

where $P_i(X) \in R[X]$ is a monic lifting of $\bar{P}_i(X)$, for $1 \le i \le r$. We will say that $R[\alpha]$ is p-maximal if $(\bar{f}, \bar{T}, \bar{h}) = 1$ in (R/p)[X] (where (\cdot, \cdot) denotes the greatest common divisor (gcd)). If R is a Dedekind ring and p is a prime ideal of R, then we say that $R[\alpha]$ is p-maximal if $R_p[\alpha]$ is pR_p -maximal.

REMARKS 2.4. (1) If π is uniramified in $R[\alpha]$, that is, $e_i = 1$ for all i, then $\bar{h} = \bar{1}$ and therefore $R[\alpha]$ is p-maximal.

- (2) Let π be ramified in $R[\alpha]$, that is, there is at least one i such that $e_i \geq 2$. Let $S = \{i \in \{1, ..., r\} \mid e_i \geq 2\}$ and $f_1(X) = \prod_{i \in S} P_i(X) \in R[X]$. Then $(\bar{f}_1, \bar{T}) = (\bar{T}, \bar{f}, \bar{h})$ in (R/p)[X] since $\bar{f}_1 = (\bar{f}, \bar{h})$. In particular, if every $e_i \geq 2$, then $(\bar{f}, \bar{T}) = (\bar{T}, \bar{f}, \bar{h})$, because \bar{f} divides \bar{h} in this case.
- (3) Definition 2.3 is independent of the choice of the monic lifting of the \bar{P}_i . More precisely, let

$$\bar{P}(X) = \prod_{i=1}^{r} \bar{P}_{i}^{e_{i}}(X) = \prod_{i=1}^{r} \bar{Q}_{i}^{e_{i}}(X) \quad \text{with } \bar{P}_{i}(X) = \bar{Q}_{i}(X) \text{ for } 1 \le i \le r \text{ in } (R/p)[X].$$
(2.2)

Set

$$g(X) = \prod_{i=1}^{r} Q_i(X) \in R[X], \qquad k(X) = \prod_{i=1}^{r} Q_i^{e_i - 1}(X) \in R[X]$$

$$U(X) = \pi^{-1} \left(P(X) - \prod_{i=1}^{r} Q_i^{e_i}(X) \right) \in R[X].$$
(2.3)

Then $(\bar{f},\bar{T},\bar{h})=1$ in (R/p)[X] if and only if $(\bar{g},\bar{U},\bar{k})=1$ in (R/p)[X]. Indeed, we may assume that R is a DVR and $p=\pi R$. Let $V_1=(g-f)/\pi$ and $V_2=(k-h)/\pi$. Then $\pi T=\pi U+gk-fh$. Replacing g by πV_1+f and k by πV_2+h , we find that $\bar{T}=\bar{U}+\bar{V}_1\bar{h}+\bar{V}_2\bar{f}$ and therefore $(\bar{T},\bar{f},\bar{h})=(\bar{U},\bar{f},\bar{h})=(\bar{U},\bar{g},\bar{k})$ since $\bar{f}=\bar{g}$ and $\bar{h}=\bar{k}$.

THEOREM 2.5. Let R be a Dedekind ring. Let P be the minimal polynomial of α , and assume that for every prime ideal p of R, the decomposition of \bar{P} into irreducible factors in (R/p)[X] verifies:

$$\bar{P}(X) = \prod_{i=1}^{r} \bar{P}_{i}^{e_{i}}(X) \in (R/p)[X]$$
(2.4)

with $e_i \ge 2$ for i = 1,...,r and $P_i(X) \in R[X]$ be a monic lifting of the irreducible factor \bar{P}_i for i = 1,...,r. Then $O_L = R[\alpha]$ if only if $v_p(\text{Res}(P_i,P)) = \deg(P_i)$ for every prime ideal p of R and for every i = 1,...,r, where v_p is the p-adic discrete valuation associated to p.

For the proof we need the following two lemmas.

LEMMA 2.6. Let p = uR + vR be a maximal ideal of a commutative ring R. Then $pR_p = vR_p$ if and only if there exist $a, b \in R$ such that $u = au^2 + bv$.

PROOF. If $pR_p = vR_p$, then there exist $s \in R$ and $t \in R - p$ such that tu = vs. Since p is maximal in R, so there exists $t' \in R$ such that $tt' - 1 \in p$. Hence $u - utt' = u - vst' \in p^2$ and there exist $a, b \in R$ such that $u = au^2 + bv$. Conversely, $u^2R + vR \subseteq vR + p^2 \subseteq p$. If there exist $a, b \in R$ such that $u = au^2 + bv$, then $p = u^2R + vR$ and therefore $vR + p^2 = p$. Localizing at p and applying Nakayama's lemma, we find that $pR_p = vR_p$.

LEMMA 2.7. Let R be a commutative integral domain, let K be its quotient field, and consider $P,g,h,T\in R[X]$. If g is monic and $P=gh+\pi T$, then $\mathrm{Res}(g,P)=\pi^{\deg(g)}\,\mathrm{Res}(g,T)$. In particular, if $m=\pi R$ is a maximal ideal of R and if $\bar{P}(X)=\prod_{i=1}^r\bar{P}_i^{e_i}(X)$ is the decomposition of \bar{P} into irreducible factors in (R/m)[X], with $P_i(X)\in R[X]$ a monic lifting of $\bar{P}_i(X)$ for $1\leq i\leq r$, and $T(X)=\pi^{-1}(P(X)-\prod_{i=1}^rP_i^{e_i}(X))\in R[X]$, then

$$\operatorname{Res}(P_i, P) = \pi^{\deg(P_i)} \operatorname{Res}(P_i, T)$$
(2.5)

and $(\bar{P}_i, \bar{T}) = 1$ in (R/m)[X] if and only if

$$\operatorname{Res}\left(P_{i},T\right) = \frac{\operatorname{Res}\left(P_{i},P\right)}{\pi^{\deg\left(P_{i}\right)}} \in R - m. \tag{2.6}$$

PROOF. Let $x_1, ..., x_m$ be the roots of g in the algebraic closure \bar{K} of K. It is then easy to see (see [11]) that $\operatorname{Res}(g,P) = \prod_{i=1}^m P(x_i) = \pi^{\deg(g)} \operatorname{Res}(g,T)$ because $P(x_i) = \pi T(x_i)$. The second result follows from $\operatorname{Res}(\bar{P}_i,\bar{P}) = \overline{\operatorname{Res}}(P_i,P)$ and [2, Corollary 2, page 73].

PROOF OF THEOREM 2.5. By Proposition 2.2, we may assume that R is a DVR. Let p be a prime ideal of R and $(O_L)_{(p)}$ the integral closure of R_p in L. Let $\bar{P}(X) = \prod_{i=1}^r \bar{P}_i^{e_i}(X)$ in $(R_p/pR_p)[X]$ with $e_i \ge 2$ and $P_i(X) \in R_p[X]$ a monic lifting of $\bar{P}_i(X)$ for $1 \le i \le r$. Let

$$T(X) = \frac{P(X) - \prod_{i=1}^{r} P_i^{e_i}(X)}{\pi} \in R_p[X]$$
 (2.7)

with $\pi R_p = pR_p$.

(a) We prove that if $(\bar{P}_i, \bar{T}) = 1$ in $(R_p/pR_p)[X]$ for every i = 1, ..., r, then $(O_L)_{(p)} = R_p[\alpha] = A$. Indeed, $\bar{P}(X) = \prod_{i=1}^r \bar{P}_i^{e_i}(X)$ in $(R_p/pR_p)[X]$ and R_p is a local ring, so by [14, Lemma 4, page 29] (see also [3]) the ideals $\mathfrak{B}_i = \pi A + P_i(\alpha)A$ (i = 1, ..., r) are the only maximal ideals of A, so A is integrally closed if and only if $\mathcal{A}_{\mathfrak{B}_i}$ is integrally closed for every i = 1, ..., r. More generally, we prove that every $\mathcal{A}_{\mathfrak{B}_i}$ is a DVR. Since R_p is Noetherian, so $R_p[\alpha] \simeq R_p[X]/\langle P(X)\rangle$ is Noetherian, hence $\mathcal{A}_{\mathfrak{B}_i}$ is Noetherian since $\mathcal{A}_{\mathfrak{B}_i}$ is a local integral domain with maximal ideal $\mathfrak{B}_i \mathcal{A}_{\mathfrak{B}_i}$. It remains to show that $\mathfrak{B}_i \mathcal{A}_{\mathfrak{B}_i}$ is principal. Indeed, $(\bar{P}_i, \bar{T}) = 1$ in $(R_p/pR_p)[X]$, hence there exist polynomials $U_1, U_2, U_3 \in R_p[X]$ such that $1 = U_1(X)P_i(X) + U_2(X)T(X) + \pi U_3(X)$. Now $P(\alpha) = 0 = \prod_{i=1}^r P_i^{e_i}(\alpha) + \pi T(\alpha)$, hence $\prod_{i=1}^r P_i^{e_i}(\alpha) = -\pi T(\alpha)$, so

$$\pi = \pi U_1(\alpha) P_i(\alpha) + \pi^2 U_3(\alpha) - \prod_{j=1}^r P_j^{e_j}(\alpha) U_2(\alpha)$$

= $\pi^2 U_3(\alpha) + P_i(\alpha) U_4(\alpha)$ (2.8)

with $U_4 = \pi U_1 - P_i^{e_i-1}(\prod_{j=1, j\neq i}^r P_j^{e_j})U_2 \in R_p[X]$. It follows from Lemma 2.6 that $\mathcal{B}_i\mathcal{A}_{\mathcal{B}_i} = P_i(\alpha)\mathcal{A}_{\mathcal{B}_i}$, in other words, $\mathcal{B}_i\mathcal{A}_{\mathcal{B}_i}$ is principal. We conclude that $\mathcal{A}_{\mathcal{B}_i}$ is a DVR and therefore an integrally closed ring, and $(O_L)_{(p)} = R_p[\alpha]$.

(b) We will now prove that $(\bar{P}_i, \bar{T}) = 1$ in $(R_p/pR_p)[X]$ for every i = 1, ..., r if $(O_L)_{(p)} = R_p[\alpha]$. We first show that the ring $\mathcal{A}_{\mathfrak{B}_i}$ is a DVR, for every i. Indeed, R_p is a Dedekind ring and L is a finite extension of K, and it follows from [10, Theorem 6.1, page 23] that $(O_L)_{(p)} = R_p[\alpha] = A$ is a Dedekind ring, so $\mathcal{A}_{\mathfrak{B}_i}$ is a DVR. Let us show next that $T(\alpha)$ is a unit in every $\mathcal{A}_{\mathfrak{B}_i}$. Indeed, $\mathcal{A}_{\mathfrak{B}_i}$ is a DVR and so its maximal ideal $\mathcal{B}_i \mathcal{A}_{\mathfrak{B}_i} = \pi \mathcal{A}_{\mathfrak{B}_i} + P_i(\alpha) \mathcal{A}_{\mathfrak{B}_i}$ is principal. Let $\lambda \in \mathcal{A}_{\mathfrak{B}_i}$ be a generator of $\mathcal{B}_i \mathcal{A}_{\mathfrak{B}_i}$. Then there exist $u, v \in \mathcal{A}_{\mathfrak{B}_i}$ such that $\lambda = \pi u + P_i(\alpha)v \in \mathcal{B}_i \mathcal{A}_{\mathfrak{B}_i} - (\mathcal{B}_i \mathcal{A}_{\mathfrak{B}_i})^2$. Now R_p is a DVR, $P = \operatorname{Irrd}(\alpha, R_p)$, $\bar{P} = \Pi_{j=1}^r \bar{P}_j^{e_j}$

in $(R_p/\pi R_p)[X]$, $\pi R_p \in \operatorname{Spec} R_p$, and $(O_L)_{(p)} = R_p[\alpha] = A$ is the integral closure of R_p in $L = K(\alpha)$ with $K = Fr(R_p)$, and we find that $\pi A = \prod_{i=1}^r \Re_i^{e_i}$. Hence $\pi \in \mathcal{B}_i^2$ because $e_i \geq 2$. Now $\lambda \notin (\mathcal{B}_i \mathcal{A}_{\mathcal{B}_i})^2$, hence $P_i(\alpha) \notin (\mathcal{B}_i \mathcal{A}_{\mathcal{B}_i})^2$, because $\lambda = u\pi + P_i(\alpha)v$. It then follows that $P_i(\alpha)$ is a generator of $\Re_i A_{\Re_i} = P_i(\alpha) A_{\Re_i}$ since $\pi \mathcal{A}_{\mathfrak{B}_i} = (\mathfrak{B}_i \mathcal{A}_{\mathfrak{B}_i})^{e_i} = P_i^{e_i}(\alpha) \mathcal{A}_{\mathfrak{B}_i}$, and $\pi = P_i^{e_i}(\alpha) \epsilon_1$ with $\epsilon_1 \in U(\mathcal{A}_{\mathfrak{B}_i})$. We now show that $P_j(\alpha) \in U(\mathcal{A}_{\mathfrak{R}_j})$ for every $j \neq i$. Indeed, if $P_j(\alpha) \in \mathfrak{R}_i \mathcal{A}_{\mathfrak{R}_j}$, then there exists $a_i \in \mathcal{B}_i$ and $b_i \in A - \mathcal{B}_i$ such that $P_i(\alpha) = a_i/b_i$. Then $a_i = P_j(\alpha)b_i \in \mathcal{B}_i$. Now, \mathcal{B}_i is a prime ideal of A, hence $P_j(\alpha) \in \mathcal{B}_i$. As $\mathcal{B}_j =$ $\pi A + P_i(\alpha)A$, so $\Re_i \subseteq \Re_i$. The ideal \Re_i is a maximal ideal of A, so $\Re_i = \Re_i$. This is impossible because the \Re_i are distinct, and it follows that $P_j(\alpha) \in U(\mathcal{A}_{\Re_i})$ for every $j \neq i$. Thus there exists $\epsilon_2 \in U(\mathcal{A}_{\mathcal{B}_i})$ such that $\prod_{j=1, j\neq i}^r P_j^{e_j}(\alpha) = \epsilon_2$. Since $\prod_{j=1}^r P_j^{e_j}(\alpha) = -\pi T(\alpha)$, $\pi = P_i^{e_i}(\alpha)\epsilon_1$, and $\prod_{j=1, j\neq i}^r P_j^{e_j}(\alpha) = \epsilon_2$, then $T(\alpha) = -\epsilon_2 \epsilon_1^{-1} \in U(\mathcal{A}_{\mathfrak{B}_i})$. So $T(\alpha) \in U(\mathcal{A}_{\mathfrak{B}_i})$ for every i, and $T(\alpha) \in U(A)$; otherwise, Krull's theorem implies the existence of a maximal ideal \mathfrak{B}_i of A such that $T(\alpha) \in \mathcal{B}_i$, and $T(\alpha) \in \mathcal{B}_i \mathcal{A}_{\mathcal{B}_i} = \mathcal{A}_{\mathcal{B}_i} - U(\mathcal{A}_{\mathcal{B}_i})$, which is impossible. We conclude that $T(\alpha)$ is a unit in $R_p[\alpha]$, and, by [2, Corollary 1, page 73], there exist $U_1, V_1 \in R_p[X]$ such that $1 = U_1(X)P(X) + V_1(X)T(X)$. Consequently $\bar{1} = 1$ $\bar{U}_1(X)\bar{P}(X) + \bar{V}_1(X)\bar{T}(X)$ in $(R_p/\pi R_p)[X]$, which is principal. Hence $(\bar{P},\bar{T}) =$ 1 in $(R_p/\pi R_p)[X]$ since $\bar{P} = \prod_{i=1}^r \bar{P}_i^{e_i}$ in $(R_p/\pi R_p)[X]$ then $(\bar{P}_i,\bar{T}) = 1$ in $(R_p/\pi R_p)[X]$ for every i. Our result now follows from Proposition 2.2 and Lemma 2.7.

REMARKS 2.8. (1) Let π be ramified in $R[\alpha]$, $S = \{i \in \{1,...,r\} \mid e_i \geq 2\}$, and $f_1(X) = \prod_{i \in S} P_i(X) \in R[X]$. It follows from Lemma 2.7 that the following statements are equivalent:

- (i) $(\bar{f}_1, \bar{T}) = 1$ in (R/p)[X];
- (ii) $v_p(\text{Res}(f_1, P)) = \text{deg}(f_1);$
- (iii) for every $i \in S$, we have $v_p(\text{Res}(P_i, P)) = \deg(P_i)$, where v_p is the p-adic discrete valuation associated to p.
- (2) It follows from the above equivalence and Remark 2.4(2) and (3) that the condition in Theorem 2.5 is independent of the choice of the monic lifting of \bar{P}_i . More precisely, if $e_i \geq 2$ for every i, and if we take another monic lifting Q_i of \bar{P}_i , then $v_p(\text{Res}(P_i,P)) = \deg(P_i)$ for all $i=1,\ldots,r$ if and only if $v_p(\text{Res}(Q_i,P)) = \deg(Q_i)$ for all $i=1,\ldots,r$.
- (3) Theorem 2.5 states that, under the assumption that $e_i \ge 2$ for every i, $O_L = R[\alpha]$ if and only if $R[\alpha]$ is p-maximal for every prime ideal p of R.

COROLLARY 2.9. Under the assumptions of Theorem 2.5, if $O_L = R[\alpha]$, then, for every prime ideal p of R, $R_p[\alpha]$ is principal and $\mathfrak{B}_i = P_i(\alpha)R_p[\alpha]$ for every i.

PROOF. Indeed, a Dedekind ring having only a finite number of prime ideals is principal. To prove the second statement, take $x \in A$ such that $\mathcal{B}_i = xA$. Then $\mathcal{B}_i \mathcal{A}_{\mathcal{B}_i} = x\mathcal{A}_{\mathcal{B}_i} = P_i(\alpha)\mathcal{A}_{\mathcal{B}_i}$, hence $P_i(\alpha) = x\varepsilon$ with $\varepsilon \in U(\mathcal{A}_{\mathcal{B}_i})$. Then $\varepsilon \in U(A)$, so $\mathcal{B}_i = P_i(\alpha)A$.

DEFINITION 2.10. Let R be a DVR with maximal ideal $m = \pi R$, with $f, g \in R[X]$ monic polynomials. Then f is called an Eisenstein polynomial relative to g if there exists $T \in R[X]$ and an integer $e \ge 1$ such that $f = g^e + \pi T$ and $(\bar{g}, \bar{T}) = 1$ in $(R/\pi R)[X]$.

REMARK 2.11. As in the classical Eisenstein's criterion, we have a criterion for the irreducibility of an Eisenstein polynomial relative to g, called the Schönemann criterion, see [12, page 273]; if $f = g^e + \pi T$ is an Eisenstein polynomial relative to g such that $\bar{g} \in (R/m)[X]$ is irreducible and $\deg(T) < e\deg(g)$, then f is irreducible in K[X].

COROLLARY 2.12. Let R be a DVR with maximal ideal $m = \pi R$. If $\bar{P} = \bar{g}^e$ in (R/m)[X] with $e \ge 2$, then $O_L = R[\alpha]$ if and only if P is an Eisenstein polynomial relative to g.

PROOF. We obtain the result using Theorem 2.5, Definition 2.10, and Lemma 2.7.

REMARK 2.13. Corollary 2.12 generalizes [14, Propositions 15 and 17]; it integrates the two results in one statement and provides the converse.

3. Monogenicity over the ring of integers. Let $K = \mathbb{Q}(\alpha)$ be a number field of degree n, $P(X) \in \mathbb{Z}[X]$ a minimal polynomial of α , O_K the ring of integers of K, and p a prime number.

PROPOSITION 3.1. Let $K = \mathbb{Q}(\alpha)$ be a number field and P the minimal polynomial of α . Then $O_K = \mathbb{Z}[\alpha]$ if and only if for every prime number p such that p^2 divides $\mathrm{Disc}(P)$, the prime number p does not divide $\mathrm{Ind}(\alpha)$.

PROOF. We obtain the result from the fact that $O_K = \mathbb{Z}[\alpha]$ if and only if $\operatorname{Ind}(\alpha) = 1$, and $\operatorname{Disc}(P) = (\operatorname{Ind}(\alpha))^2 d_K$ (see [6], [4, page 166]).

PROPOSITION 3.2. Let $\bar{P}(X) = \prod_{i=1}^r \bar{P}_i^{e_i}(X)$ be the factorization of P(X) modulo p in $\mathbb{F}_p[X]$, and put $f(X) = \prod_{i=1}^r P_i(X)$ with $P_i(X) \in \mathbb{Z}[X]$ a monic lifting of $\bar{P}_i(X)$ and $e_i \geq 2$ for all i. Let $h(X) \in \mathbb{Z}[X]$ be a monic lifting of $\bar{P}(X)/\bar{f}(X)$ and $T(X) = (f(X)h(X) - P(X))/p \in \mathbb{Z}[X]$. Then the following statements are equivalent:

- (i) p does not divide $\operatorname{Ind}(\alpha) = [O_K : \mathbb{Z}[\alpha]];$
- (ii) $(\bar{f}, \bar{T}) = 1$ in $\mathbb{F}_p[X]$;
- (iii) $v_p(\operatorname{Res}(f, P)) = \deg(f);$
- (iv) $v_p(\text{Res}(P_i, P)) = \text{deg}(P_i)$, for every $i \in \{1, ..., r\}$.

PROOF. (i) \Leftrightarrow (ii). Let $(O_K)_{(p)}$ be the integral closure of $\mathbb{Z}_{(p)}$ in K. We first show that p does not divide $\operatorname{Ind}(\alpha)$ if and only if $(O_K)_{(p)} = \mathbb{Z}_{(p)}[\alpha]$. By the finiteness theorem [13, page 48], $(O_K)_{(p)} = \bigoplus_{i=0}^{n-1} \mathbb{Z}_{(p)} x_i$, and, because $\mathbb{Z}_{(p)}$ is principal, $\alpha^i = \sum_{j=0}^{n-1} a_{ij} x_j$ with $a_{ij} \in \mathbb{Z}_{(p)}$, and therefore $[(O_K)_{(p)} : \mathbb{Z}_{(p)}[\alpha]] = |\det(a_{ij})|$.

On the other hand, $\operatorname{Ind}(\alpha) = [O_K : \mathbb{Z}[\alpha]] = [(O_K)_{(p)} : (\mathbb{Z}[\alpha])_{(p)}] = [(O_K)_{(p)} : \mathbb{Z}_{(p)}[\alpha]]$, hence $(O_K)_{(p)} = \mathbb{Z}_{(p)}[\alpha]$ if and only if p does not divide $\operatorname{Ind}(\alpha)$ if and only if $\operatorname{Ind}(\alpha) \in \cup(\mathbb{Z}_{(p)}) = \mathbb{Z}_{(p)} - p\mathbb{Z}_{(p)}$. Hence by the proof of Theorem 2.5, p does not divide $\operatorname{Ind}(\alpha)$ if and only if $(\bar{P}_i, \bar{T}) = 1$ in $\mathbb{F}_p[X]$ for every i = 1, 2, ..., r (in other words, if and only if $(\bar{f}, \bar{T}) = 1$ in $\mathbb{F}_p[X]$).

(ii) \Leftrightarrow (iii). By [2, Corollary 2, page 73], $(\bar{f}, \bar{T}) = 1$ in $\mathbb{F}_p[X]$ if and only if $\operatorname{Res}(\bar{f}, \bar{T}) = \overline{\operatorname{Res}}(f, T) \neq \bar{0}$ in \mathbb{F}_p if and only if $\operatorname{Res}(f, T) \in \mathbb{Z} - p\mathbb{Z}$. On the other hand,

$$\operatorname{Res}(f,T) = \frac{(-1)^{\deg(f)}}{p^{\deg(f)}} \operatorname{Res}(f,P). \tag{3.1}$$

(ii) \Leftrightarrow (iv). We have $(\bar{f}, \bar{T}) = 1$ in $\mathbb{F}_p[X]$ if and only if $\operatorname{Res}(f, T) \in \mathbb{Z} - p\mathbb{Z}$. On the other hand, $\operatorname{Res}(f, T) = \prod_{i=1}^r \operatorname{Res}(P_i, T)$ and

$$\operatorname{Res}(P_i, T) = \frac{(-1)^{\deg(P_i)}}{p^{\deg(P_i)}} \operatorname{Res}(P_i, P).$$
(3.2)

THEOREM 3.3. Let $K = \mathbb{Q}(\alpha)$ be a number field of degree n, $P(X) \in \mathbb{Z}[X]$ a monic minimal polynomial of α , and O_K the ring of integers of K. Assume $\tilde{P}(X) = \prod_{i=1}^r \tilde{P}_i^{e_i}(X)$ in $\mathbb{F}_p[X]$, for every prime number p such that p^2 divides $\mathrm{Disc}(P)$, with $P_i(X) \in \mathbb{Z}[X]$ a monic lifting of $\tilde{P}_i(X)$ and $e_i \geq 2$ for $1 \leq i \leq r$. Then $O_K = \mathbb{Z}[\alpha]$ if and only if for every prime number p, such that p^2 divides $\mathrm{Disc}(P)$, $v_p(\mathrm{Res}(P_i, P)) = \deg(P_i)$ for $1 \leq i \leq r$.

PROOF. It suffices to apply Propositions 3.1 and 3.2, and Theorem 2.5. \Box

REMARK 3.4. Proposition 3.2 provides a complement to the Dedekind criterion (see [4, page 305]). Indeed, in $\mathbb{F}_p[X]$, we have $(\bar{f}, \bar{T}) = (\bar{f}, \bar{T}, \bar{h})$ since all $e_i \ge 2$.

We finish this section giving other conditions equivalent to p not being a divisor of Ind(α).

PROPOSITION 3.5. *The following statements are equivalent:*

- (i) p does not divide $\operatorname{Ind}(\alpha) = [O_K : \mathbb{Z}[\alpha]];$
- (ii) $\mathbb{Z}[\alpha] + pO_K = O_K$;
- (iii) $\mathbb{Z}[\alpha] \cap pO_K = p\mathbb{Z}[\alpha]$.

PROOF. (ii) \Leftrightarrow (iii). Consider the following map of \mathbb{F}_p -vector spaces:

$$j: \mathbb{Z}[\alpha]/p\mathbb{Z}[\alpha] \longrightarrow O_K/pO_K, \quad j(x+p\mathbb{Z}[\alpha]) = x+pO_K.$$
 (3.3)

As O_K and $\mathbb{Z}[\alpha]$ are two free groups of the same rank n, $\mathbb{Z}[\alpha]/p\mathbb{Z}[\alpha]$ and O_K/pO_K are two \mathbb{F}_p -vector spaces of the same dimension n and injectivity of j is equivalent to surjectivity of j. Moreover, j is one-to-one if and only if $\mathbb{Z}[\alpha] \cap pO_k = p\mathbb{Z}[\alpha]$ and j is onto if and only if $\mathbb{Z}[\alpha] + pO_K = O_K$.

(i) \Leftrightarrow (iii). If p does not divide $\operatorname{Ind}(\alpha)$ and $p\mathbb{Z}[\alpha] \subset \mathbb{Z}[\alpha] \cap pO_K$, then there exists $x \in O_K$ such that $x \notin \mathbb{Z}[\alpha]$ and $px \in \mathbb{Z}[\alpha]$, so the order of the subgroup generated by $x + \mathbb{Z}[\alpha]$ of the finite group $O_K/\mathbb{Z}[\alpha]$ is equal to p, and, by Lagrange's theorem, p divides $\operatorname{Ind}(\alpha)$, which is the order of the group $O_K/\mathbb{Z}[\alpha]$, and this is impossible.

Conversely, assume that $\mathbb{Z}[\alpha] \cap pO_K = p\mathbb{Z}[\alpha]$ and p divides $\operatorname{Ind}(\alpha)$. Cauchy's theorem implies that there exists an element of order p in $O_K/\mathbb{Z}[\alpha]$; in other words, there exists $x \in O_K$ such that $x \notin \mathbb{Z}[\alpha]$ and $px \in \mathbb{Z}[\alpha]$. Then $px \in \mathbb{Z}[\alpha] \cap pO_K = p\mathbb{Z}[\alpha]$, hence $x \in \mathbb{Z}[\alpha]$, which is impossible.

4. Applications

4.1. Monogenicity of cyclotomic fields

PROPOSITION 4.1. Let $n \ge 3$ be an integer, ξ_n a primitive nth root of unity, $K = \mathbb{Q}(\xi_n)$, and $\phi_n(X)$ the nth cyclotomic polynomial over \mathbb{Q} . Then $O_K = \mathbb{Z}[\xi_n]$.

PROOF. We know from [15] that

$$\phi_{n}(X) = \prod_{\substack{1 \le i \le n \\ i \land n = 1}} (X - \xi_{n}^{i}) = \operatorname{Irrd}(\xi_{n}, \mathbb{Q}),$$

$$\operatorname{Disc}(\phi_{n}) = (-1)^{\varphi(n)/2} \frac{n^{\varphi(n)}}{\prod_{p \mid n} p^{\varphi(n)/(p-1)}} = (-1)^{\varphi(n)/2} \prod_{i=1}^{s} p_{i}^{\varphi(n)(r_{i}-1/(p_{i}-1))},$$

$$(4.1)$$

where $\varphi(n)$ is the Euler φ -function and

$$n = \prod_{i=1}^{s} p_i^{r_i} = p_i^{r_i} m_i \quad \text{with } m_i = \prod_{j=1}^{s} p_j^{r_j}.$$
 (4.2)

Let q be a prime number such that q^2 divides $\mathrm{Disc}(\phi_n)$. Then there exists $i \in \{1,\ldots,s\}$ such that $q=p_i$. We have $\bar{\phi}_n(X)=(\bar{\phi}_{m_i}(X))^{\varphi(p_i^{r_i})} \pmod{p_i}$, where $\varphi(p_i^{r_i}) \geq 2$, and

$$\operatorname{Res}(\phi_{m_i}, \phi_n) = (-1)^{\varphi(m_i)\varphi(n)} \operatorname{Res}(\phi_n, \phi_{m_i}) = \operatorname{Res}(\phi_n, \phi_{m_i}) = p_i^{\varphi(m_i)},$$
(4.3)

and we obtain that $v_{p_i}(\operatorname{Res}(\phi_n, \phi_{m_i})) = \deg(\phi_{m_i}(X))$.

Now the result follows immediately from Theorem 3.3 and Proposition 3.2.

4.2. Monogenicity of the field $K = \mathbb{Q}(\alpha)$, with α a root of $P(X) = X^p - a$

PROPOSITION 4.2. Let α be a root of the irreducible polynomial $P(X) = X^p - a$, where a is a squarefree integer and p is a prime number.

- (i) If p divides a, then $O_K = \mathbb{Z}[\alpha]$ if and only if a is squarefree.
- (ii) If p does not divide a, then $O_K = \mathbb{Z}[\alpha]$ if and only if a is squarefree and $v_p(a^{p-1}-1)=1$.

PROOF. We have $P(X) = X^p - a = \operatorname{Irrd}(\alpha, \mathbb{Q})$ and

$$\operatorname{Disc}(P) = (-1)^{p((p-1)/2)} N_{K/\mathbb{O}}(P'(\alpha)) = (-1)^{(3p^2 - p - 2)/2} p(\alpha p)^{p-1}. \tag{4.4}$$

If p is odd, the only prime numbers q such that q^2 divides Disc(P) are p and the prime divisors of a. If p = 2, then 2 is the only prime number q such that q^2 divides Disc(P).

Let q be a prime number such that q^2 divides Disc(P). We have two cases:

- (1) if q does not divide a, then $\bar{P}(X) = \overline{g(X)}^p$ in $\mathbb{F}_p[X]$, with g(X) = X a, and then $\text{Res}(g, P) = P(a) = a^p a$;
- (2) if q divides a, then $\overline{P}(X) = \overline{g(X)}^{p}$ in $\mathbb{F}_{q}[X]$, with g(X) = X and then $\operatorname{Res}(g,P) = P(0) = -a$.

In both cases, the result is deduced from Theorem 3.3.

REFERENCES

- [1] M. F. Atiyah and I. G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, Massachusetts, 1969.
- [2] N. Bourbaki, Algèbre, Masson, Paris, 1981.
- [3] M. Charkani, Structure multiplicative des idéaux d'une extension primitive d'un anneau intégralement clos, in preparation.
- [4] H. Cohen, *A Course in Computational Algebraic Number Theory*, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1996.
- [5] R. Dedekind, Über den Zussamenhang zwischen der Theorie der Ideals und der Theorie der hoheren Cyclotimy index, Abh. Akad. Wiss. Göttingen Math.-Phys. Kl. 23 (1878), 1-23 (German).
- [6] A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, Cambridge, 1993.
- [7] M.-N. Gras, Sur les corps cubiques cycliques dont l'anneau des entiers est monogène, C. R. Acad. Sci. Paris Sér. A 278 (1974), 59-62 (French).
- [8] _____, **Z**-bases d'entiers 1, θ , θ^2 , θ^3 dans les extensions cycliques de degré 4 de **Q** [**Z**-bases of integers 1, θ , θ^2 , θ^3 in cyclic extensions of degree 4 of **Q**], Number Theory, Publ. Math. Fac. Sci. Besançon, Université de Franche-Comté, Besançon, 1981, pp. 1–14 (French).
- [9] _____, Non monogénéité de l'anneau des entiers des extensions cycliques de Q de degré premier $l \ge 5$ [Nonmonogeneity of the ring of integers of cyclic extensions of Q of prime degree $l \ge 5$], J. Number Theory 23 (1986), no. 3, 347–353 (French).
- [10] G. J. Janusz, Algebraic Number Fields, Pure and Applied Mathematics, Academic Press, New York, 1973.
- [11] S. Lang, *Algebra*, 2nd ed., Addison-Wesley, Massachusetts, 1984.
- [12] P. Ribenboim, Théorie des Valuations, Les presses de l'université de Montréal, Montréal, 1964 (French).
- [13] P. Samuel, *Théorie Algébrique des Nombres*, Hermann, Paris, 1971 (French).

- [14] J.-P. Serre, *Corps Locaux*, Publications de l'Université de Nancago, Hermann, Paris, 1968 (French).
- [15] L. C. Washington, *Introduction to Cyclotomic Fields*, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982.
- M. E. Charkani: Department of Mathematics, Faculty of Sciences Dhar-Mahraz, University of Sidi Mohammed Ben Abdellah, BP 1796, Fes, Morocco

E-mail address: mcharkani@excite.com

O. Lahlou: Department of Mathematics, Faculty of Sciences Dhar-Mahraz, University of Sidi Mohammed Ben Abdellah, BP 1796, Fes, Morocco

E-mail address: 1.ouafae@caramail.com