CHARACTERIZATION OF THE AUTOMORPHISMS HAVING THE LIFTING PROPERTY IN THE CATEGORY OF ABELIAN *p*-GROUPS

S. ABDELALIM and H. ESSANNOUNI

Received 23 October 2002

Let *p* be a prime. It is shown that an automorphism α of an abelian *p*-group *A* lifts to any abelian *p*-group of which *A* is a homomorphic image if and only if $\alpha = \pi \operatorname{id}_A$, with π an invertible *p*-adic integer. It is also shown that if *A* is a torsion group or torsion-free *p*-divisible group, then id_A and $-\operatorname{id}_A$ are the only automorphisms of *A* which possess the lifting property in the category of abelian groups.

2000 Mathematics Subject Classification: 20K30.

1. Introduction. Every inner automorphism of a group *G* has the property that it extends to an automorphism of any group containing *G* as subgroup. Schupp [4] showed that this extension property characterizes inner automorphisms in the category of groups. Pettet [3] gave an easier proof of Schupp's result and proved at the same time that the inner automorphisms of a group *G* are also characterized by the lifting property in the category of groups. In [1], we characterized the automorphisms of abelian *p*-groups having the extension property in the category of abelian *p*-groups, as well as those having the extension property in the category of all abelian groups.

Let \mathscr{C} be a full subcategory of the category of abelian groups. An automorphism α of $A \in \mathscr{C}$ has the lifting property in \mathscr{C} if, for all $B \in \mathscr{C}$ and any epimorphism $s : B \to A$, there exists $\tilde{\alpha} \in \operatorname{Aut}(B)$ such that $s \circ \tilde{\alpha} = \alpha \circ s$, in other words, the diagram

$$\begin{array}{cccc}
B & \xrightarrow{s} & A \\
& & & & \\ & & & \alpha \\
& & & & \\
B & \xrightarrow{s} & A
\end{array}$$
(1.1)

commutes. In this note, we show that an automorphism α of a *p*-group *A* (with *p* being a prime number) has the lifting property in the category of abelian *p*-groups if and only if $\alpha = \pi \operatorname{id}_A$, with π an invertible *p*-adic number. We also determine the automorphisms of an abelian group *A* having the lifting property in the category of all abelian groups, when *A* is either torsion or *p*-divisible torsion-free. In both cases they are id_A and $-\operatorname{id}_A$.

We will use the notation introduced in [2].

2. The lifting property in the category of the *p*-groups. Let *p* be a prime number.

LEMMA 2.1. Let α be an automorphism of a *p*-group *A* having the lifting property in the category of abelian *p*-groups. If *C* is subgroup of *A* with $\alpha(C) = C$, then the restriction of α to *C* also has the lifting property in the category of abelian *p*-groups.

PROOF. Let μ : $B \rightarrow C \rightarrow 0$ be an exact sequence. It follows from [2, page 108] that we have a commutative diagram with exact rows:

where *i* and *j* are the canonical injections. It is easy to show that *F* is again a *p*-group, then there exists $\tilde{\alpha} \in \operatorname{Aut}(F)$ such that $\gamma \tilde{\alpha} = \alpha \gamma$. If we put, for any $b \in B$, $\tilde{\alpha}(\sigma(b)) = \sigma(\gamma(b))$, then $\gamma \in \operatorname{Aut}(B)$ and $\mu \gamma = \alpha_0 \mu$, with α_0 the restriction of α to *C*.

LEMMA 2.2. Let *A* be a torsion group and $n \in \mathbb{N}^*$. Then there exists an abelian group *B* and an epimorphism $\mu : B \to A$ such that $B[n] \subseteq \text{Ker } \mu$, where $B[n] = \{b \in B \mid nb = 0\}$.

PROOF. For $a \in A$, we put $B_a = \langle x_a \rangle$, where $o(x_a) = o(a)$ and $\mu_a : B_a \to A$ is defined by $\mu_a(x_a) = a$. If we put $B = \bigoplus_{a \in A} B_a$ and $\mu : B \to A$, where $\mu(x_a) = \mu_a(x_a)$, for all $a \in A$, then μ is an epimorphism and $B[n] \subseteq \text{Ker}\mu$.

THEOREM 2.3. Let *A* be an abelian *p*-group and an automorphism α of *A* has the lifting property in the category of abelian *p*-groups if and only if $\alpha = \pi \operatorname{id}_A$, where π is an invertible *p*-adic number.

PROOF. One implication is clear. Assume that α has the lifting property in the category of abelian *p*-groups. The proof of the fact that $\alpha = \pi \operatorname{id}_A$ goes in three steps.

STEP 1. We suppose that *A* is reduced. Let $x \in A$ be such that $\langle x \rangle$ is a direct summand of *A*. We prove that $\alpha(x) \in \langle x \rangle$.

Put $\langle x \rangle \bigoplus A' = A$ and let E(A') be the injective envelope of A'. We put

$$A'' = \{ y \in E(A') \mid p^n y \in A' \},$$
(2.2)

where $o(x) = p^n$. We consider the group $B = \langle x \rangle \bigoplus A''$; the map $s : B \to A$ defined by

$$s(mx+y) = mx + p^n y, \tag{2.3}$$

for all $m \in \mathbb{Z}$ and $\gamma \in A''$, is an epimorphism. Therefore, there exists $\tilde{\alpha} \in Aut(B)$ such that $s\tilde{\alpha} = \alpha s$. We can write $\tilde{\alpha}(x) = kx + a''$, with $k \in \mathbb{Z}$ and $a'' \in A''$. Now

$$s\widetilde{\alpha}(x) = kx + p^n a^{\prime\prime} = kx = \alpha s(x) = \alpha(x)$$
(2.4)

because $p^n a'' = 0$, thus $\alpha(x) \in \langle x \rangle$. Let *B* be a basic subgroup of *A*, $B = \bigoplus_{n \ge 1} B_n$, and, for any $n \ge 1$, $B_n = 0$ or B_n is a direct sum of torsion cyclic groups of order p^n . We suppose $B_n \ne 0$ for $n \ge 1$, so $B_n = \bigoplus_{i \in I} \langle x_i \rangle$ such that $o(x_i) = p^n$, for all $i \in I$, since B_n is a direct summand of *A* (see [2, page 138]). With $m_i \in \mathbb{Z}$, $\alpha(x_i) = m_i x_i$. Let $(i, j) \in I^2$ with $i \ne j$. We can write $A = \langle x_i \rangle \bigoplus A_i$ with $x_j \in A_i$. It is easy to see that $\langle x_i + x_j \rangle \bigoplus A_i = A$, so $\alpha(x_i + x_j) = m(x_i + x_j)$, hence $p^n \mid (m_i - m_j)$. Then there is $k_n \in \mathbb{Z}$ such that $\alpha(b) = k_n b$, for all $b \in B_n$. For $(m, n) \in \mathbb{N}^2$ where $1 \le m < n$, $B_m \bigoplus B_n$ is a direct summand of *A* [2, page 138] and it is easy to see that $p^m \mid (k_n - k_m)$.

Let π be the *p*-adic number defined by $(k_n)_{n\geq 0}$ (with $k_0 = 0$ and $k_n = k_{n-1}$ if $B_n = 0$). Then $\alpha(b) = \pi b$, for all $b \in B$. Since *A* is reduced, it follows that $\alpha = \pi \operatorname{id}_A$ (see [2, page 145]).

STEP 2. We suppose that *A* is divisible. Therefore, $A = \bigoplus_{i \in I} A_i$ with $A_i \cong \mathbb{Z}(p^{\infty})$, for all $i \in I$ (see [2, page 104]). We consider the direct product $E = \prod_{n \ge 1} \langle x_n \rangle$, where $o(x_n) = p^n$, for all $n \ge 1$. For all $n \ge 1$, let $e_n \in E$ be defined by

$$f_m(e_n) = \begin{cases} 0 & \text{if } m < n, \\ p^{m-n} x_m & \text{if } m \ge n, \end{cases}$$
(2.5)

where $f_m : E \to \langle x_m \rangle$ is the canonical projection. Let *C* be the following subgroup of *E*:

$$C = \left(\bigoplus_{n \ge 1} \langle x_n \rangle\right) + \left\langle \{e_n \mid n \ge 1\} \right\rangle.$$
(2.6)

It is easy to see that $C/(\bigoplus_{n\geq 1} \langle x_n \rangle) \cong \mathbb{Z}(p^{\infty})$.

We choose $i \in I$ and $a_i \in A_i$. We want to show that $\alpha(a_i) \in A_i$. Let $j \in I$ with $j \neq i$. We put $A' = \bigoplus_{k \in I - \{j\}} A_k$ and we have $A = A_j \bigoplus A'$. Let $\gamma : C \to A_j$ be an epimorphism. If we suppose that $B = C \bigoplus A'$ and consider $s : B \to A$ which is defined by $s(c + a') = \gamma(c) + a'$ ($c \in C$, $a' \in A'$), then s is an epimorphism. Therefore, there exists $\tilde{\alpha} \in \operatorname{Aut}(B)$ such that $s\tilde{\alpha} = \alpha s$. Since A' is a maximal divisible subgroup of B, $\tilde{\alpha}(a') = a'$. Since $a_i \in A'$, then $\tilde{\alpha}(a_i) = \alpha(a_i) \in A'$. Thus for all $j \neq i$, $\alpha(a_i) \in \bigoplus_{k \neq j} A_k$, and therefore, $\alpha(a_i) \in A_i$. Then there is a p-adic number π_i such that $\alpha(a_i) = \pi_i a_i$, for all $a_i \in A_i$ (see [2, page 181]). For each $i \in I$, we put $A_i = \langle \{y_{i,n} \mid n \geq 1\} \rangle$ with $p y_{i,1} = 0$ and $p y_{i,n+1} = y_{i,n}$, for all $n \geq 1$. Let $(i, j) \in I^2$ with $i \neq j$. If we suppose that $z_n = y_{i,n} + y_{j,n}$ and $H = \langle \{z_n \mid n \geq 1\} \rangle$, then $H \cong \mathbb{Z}(p^{\infty})$ and $A_i \bigoplus A_j = A_i \oplus H$. By the preceding

arguments, there exists a *p*-adic number π such that $\alpha(h) = \pi h$, $\alpha h \in H$. Then we deduce that $\pi_i = \pi_j = \pi$.

STEP 3. We suppose that *A* is an arbitrary abelian *p*-group. We can write $A = C \bigoplus D$ with *C* reduced and *D* divisible. We can also suppose that $C \neq 0$ and $D \neq 0$. We have $\alpha(D) = D$, and the restriction α_1 of α to *D* has the lifting property in the category of *p*-groups, by Lemma 2.1. Then there is a *p*-adic number π such that $\alpha(d) = \pi d$, for all $d \in D$.

Let $c_0 \in C$ with $o(c_0) = p^{n_0}$. we define the map $s : A \to A$ by

$$s(c+d) = c + p^{n_0}d,$$
 (2.7)

for $(c,d) \in C \times D$. Then *s* is an epimorphism, and therefore, there exists $\tilde{\alpha} \in Aut(A)$ such that $s\tilde{\alpha} = \alpha s$. Put $\tilde{\alpha}(c_0) = c_1 + d_1$. Then

$$s\widetilde{\alpha}(c_0) = c_1 + p^{n_0}d_1 = c_1 = \alpha s(c_0) = \alpha(c_0), \qquad (2.8)$$

and it follows that $\alpha(c_0) \in C$ and $\alpha(C) = C$. We show that $\alpha(c) = \pi c$, for all $c \in C$. To this end, take $\bigoplus_{i \in I} \langle c_i \rangle$ as a basic subgroup of *C*. We choose $i \in I$; $\langle c_i \rangle$ is a direct summand of *C*. Put $p^{n_i} = o(c_i)$ and $\bigoplus C_i = C$. Let $d_i \in D$ such that $o(d_i) = p^{n_i}$. We have

$$A = \langle c_i + d_i \rangle \bigoplus C_i \bigoplus D.$$
(2.9)

Then there exist a group *G* and an epimorphism $\eta : G \to C_i \bigoplus D$ such that $G[p^{n_i}] \subseteq \ker \eta$, by Lemma 2.2. We suppose that $B = \langle c_i + d_i \rangle \bigoplus G$, and we define $\mu : B \to G$ by $\mu(m(c_i + d_i) + g) = m(c_i + d_i) + \eta(g)$. Then μ is an epimorphism. Let $\tilde{\alpha} \in \operatorname{Aut}(B)$ be such that $\alpha \mu = \mu \tilde{\alpha}$. We have

$$\alpha\mu(c_i+d_i) = \alpha(c_i+d_i) = \alpha(c_i) + \pi d_i.$$
(2.10)

We put $\widetilde{\alpha}(c_i + d_i) = k(c_i + d_i) + g_0$, then $\mu \widetilde{\alpha}(c_i + d_i) = k(c_i + d_i)$ (because $\eta(g_0) = 0$). Thus $\alpha(c_i) + \pi d_i = kc_i + kd_i$, so $\alpha(c_i) = \pi c_i$, and therefore, $\alpha(c) = \pi c_i$, for all $c \in C$, by [2, page 145].

3. The lifting property in the category of abelian groups. In this section, we show that, for a torsion or *p*-divisible torsion-free group *A* (*p* is a prime number), id_A and $-id_A$ are the only automorphisms of *A* having the lifting property in the category of abelian groups.

PROPOSITION 3.1. Let *A* be an abelian torsion group. Then an automorphism α of *A* has the lifting property in the category of abelian groups if and only if $\alpha = id_a$ or $\alpha = -id_a$.

PROOF. One implication is obvious. Assume that α has the lifting property in the category of abelian groups and consider the exact sequence

$$E: 0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0, \tag{3.1}$$

4514

then, by the Cartan-Eilenberg theorem (see [2, page 218]), the sequence

$$0 = \operatorname{Hom}(A, \mathbb{Q}) \longrightarrow \operatorname{Hom}(A, \mathbb{Q}/\mathbb{Z}) \xrightarrow{E_*} \operatorname{Ext}(A, \mathbb{Z}) \longrightarrow \operatorname{Ext}(A, \mathbb{Q}) = 0$$
(3.2)

is exact, where E_* is the map associating to $\xi \in \text{Hom}(A, \mathbb{Q}/\mathbb{Z})$ with the class extension $E\xi$.

Let $E_1: 0 \to \mathbb{Z} \xrightarrow{\lambda} B \xrightarrow{\mu} A \to 0$ be an extension of \mathbb{Z} by A. Then there exists $\sigma \in \operatorname{Aut}(\mathbb{Z})$ such that the following diagram is commutative:

If $\sigma = id_{\mathbb{Z}}$, then $E_1 \equiv E_1 \alpha$, and if $\sigma = -id_{\mathbb{Z}}$, then $E_1 \equiv E_1(-\alpha)$. Therefore, for all $\xi \in \text{Hom}(A, \mathbb{Q}/\mathbb{Z})$, $E_*(\xi \alpha - \xi) = 0$ or $E_*(\xi \alpha + \xi) = 0$. Thus $\xi(\alpha - id) = 0$ or $\xi(\alpha + id) = 0$, for all $\xi \in \text{Hom}(A, \mathbb{Q}/\mathbb{Z})$.

From the fact that \mathbb{Q}/\mathbb{Z} is divisible, it follows that $\alpha = id$ or $\alpha = -id$.

PROPOSITION 3.2. Let *p* be a prime number and *A* a *p*-divisible torsion-free group. Then an automorphism α of *A* has the lifting property in the category of abelian groups if and only if $\alpha = id_a$ or $\alpha = -id_a$.

PROOF. One implication is obvious. Suppose that α has the required lifting property, and consider the pure exact sequence

$$E: 0 \longrightarrow \mathbb{Z} \longrightarrow J_p \longrightarrow J_p / \mathbb{Z} \longrightarrow 0, \tag{3.4}$$

where J_p is the additive group of *p*-adic integers. By the theorem of Harrisson (see [2, page 231]), the sequence

$$\operatorname{Hom}(A, J_p) \longrightarrow \operatorname{Hom}(A, J_p / \mathbb{Z}) \xrightarrow{E_*} \operatorname{Pext}(A, \mathbb{Z}) \longrightarrow \operatorname{Pext}(A, J_p)$$
(3.5)

is exact. Hom $(A, j_p) = 0$ because J_p contains no nonzero p-divisible subgroup and Pext $(A, j_p) = 0$ because J_p is algebraically compact. Thus E_* is an isomorphism, and, as in the proof of Proposition 3.1, we find that $\alpha = id$ or $\alpha = -id$.

REFERENCES

- S. Abdelalim and H. Essannouni, *Caractérisation des automorphismes d'un groupe* abélien ayant la propriété de l'extension, Portugal. Math. 59 (2002), no. 3, 325-333 (French).
- [2] L. Fuchs, *Infinite Abelian Groups. Vol. I*, Pure and Applied Mathematics, vol. 36, Academic Press, New York, 1970.

- [3] M. R. Pettet, *On inner automorphisms of finite groups*, Proc. Amer. Math. Soc. **106** (1989), no. 1, 87-90.
- [4] P. E. Schupp, A characterization of inner automorphisms, Proc. Amer. Math. Soc. 101 (1987), no. 2, 226–228.

S. Abdelalim: Department of Mathematics and Computer Science, Faculty of Sciences, Mohammed V University, B.P.1014 Rabat, Morocco *E-mail address*: seddikabd@hotmail.com

H. Essannouni: Department of Mathematics and Computer Science, Faculty of Sciences, Mohammed V University, B.P.1014 Rabat, Morocco *E-mail address*: esanouni@fsr.ac.ma

4516