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Let ν be a finite, finitely subadditive outer measure on P(X). Define ρ(E)= ν(X)−
ν(E′) for E ⊂ X. The measurable sets Sν and Sρ and the set S = {E ⊂ X/ν(E) =
ρ(E)} are investigated in general, and in the presence of regularity or modularity
assumptions on ν . This is also done for ν0(E) = inf{ν(M)/E ⊂ M ∈ Sν}. Gen-
eral properties of ν are derived when ν is weakly submodular. Applications and
numerous examples are given.
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1. Introduction. Let X be an arbitrary nonempty set and ν a finite, finitely

subadditive outer measure on P(X). ρ denotes the set function defined by

ρ(E) = ν(X)− ν(E′), E ⊂ X. We investigate conditions for ρ to be an inner

measure. This entails the notion of weak submodularity for ν , and we fully

investigate the interplay between regularity, submodularity of ν , and measur-

ability of sets with respect to ν . Such matters were first considered in [5],

and, in this paper, we extend and improve upon the results. We also analyze a

large number of examples. This can be done quickly in the light of our general

results. In particular, we consider applications to well-known lattice derived

outer measures.

We also apply our general results to the case of the finite, finitely subadditive

outer measure ν0(E) = inf{ν(M)/E ⊂ M ∈ Sν}, E ⊂ X, where Sν is the usual

ν-measurable sets. While this case is well known for ν , a countably subadditive

outer measure, it is not well known when ν is only finitely subadditive. Again,

a start was made in [5], but we improve on these results and give much shorter

proofs for known results.

We begin with a brief summary of the terminology and notation and some

basic facts that will be used throughout the paper. We then consider the con-

cepts of regularity, modularity, and condition (2.3) (see below) for an outer

measure ν and establish their relationships. Next, examples are given, and

then some interesting inequalities are established with applications. Finally,

ν0 and the measurable sets Sν and Sν0 are considered with further examples

presented.
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2. Background and notations. Throughout this section and the rest of the

paper, ν will designate a finite-valued, finitely subadditive outer measure de-

fined on the power set P(X) of a nonempty set X. ρ will designate the as-

sociated set function ρ(E) = ν(X)−ν(E′), where E ⊂ X, and the prime will

designate complement. Clearly, ρ(E)≤ ν(E), for all E ⊂X. ρ, in general, is not

an inner measure (see Example 4.2). Furthermore, we let

S = {E ⊂X/ρ(E)= ν(E)} (2.1)

and Sν , Sρ denote the ν-measurable andρ-measurable sets, respectively, where,

in general, if λ is a nonnegative real-valued set function on P(X)with λ(φ)= 0,

then we denote

Sλ =
{
E ⊂X/λ(G)= λ(G∩E)+λ(G∩E′) ∀G ⊂X}. (2.2)

It is well known that Sλ is an algebra and λ restricted to Sλ is a finitely additive

measure.

Again, let ν be a finite, finitely subadditive outer measure, then ν is regular

if, for any E ⊂X, there exists anM ∈ Sν such that E ⊂M and ν(E)= ν(M). If ν
is just 0-1 valued, then, clearly, ν is regular. If ν is regular, then E ∈ Sν if and

only if

ν(X)= ν(E)+ν(E′) (2.3)

(see [6]). Hence, we say that ν satisfies condition (2.3) if and only if E ∈ Sν
whenever ν(X) = ν(E)+ν(E′). Therefore, we can say that any regular outer

measure satisfies condition (2.3). The converse is false (see [6] and Section 4).

We also apply this to ρ.

We can express these matters in terms of the above sets, Sν and Sρ . Clearly,

Sν and Sρ are contained in S, while S = Sν if and only if condition (2.3) is

satisfied for ν , and S = Sρ if and only if condition (2.3) is satisfied by ρ. We

note, for example, that if ν satisfies condition (2.3), then S = Sν is an algebra.

However, this is not true in general (see Section 4).

Definition 2.1. Let � be a collection of subsets of X such that � is a lattice,

and let λ be a set function defined on � such that

λ(E∪F)+λ(E∩F)≤ λ(E)+λ(F) (2.4)

for all E,F ∈ �, then λ is submodular on �. If the reverse inequality holds, then

λ is called supermodular on �. It is called modular on � if we have equality.

If � = P(X), we usually leave off the words “on P(X),” and simply say, for

example, submodular.
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Next, let � be a covering class of X such that φ ∈ �, and let τ be a finite,

nonnegative set function defined on � with τ(φ)= 0. Then, as well known,

λ(E)= inf

{ n∑
i=1

τ
(
Ei
)
/E ⊂

n⋃
i=1

Ei, for all Ei ∈�

}
(2.5)

is a finite and finitely subadditive outer measure on P(X).
The following result (see [5]) is extremely useful especially for applications.

Theorem 2.2. Let �, τ , and λ be as above. Then,

(a) if � is closed under finite unions and if τ is finitely subadditive on �,

then

λ(E)= inf
{
λ(C)/E ⊂ C ∈�

}
, where E ⊂X; (2.6)

if, in addition, τ is monotone, then λ= τ on �;

(b) if � is a lattice and if τ is submodular on �, then

λ(E)= inf
{
λ(C)/E ⊂ C ∈�

}
(2.7)

is submodular on P(X).

Finally, let � be a lattice of subsets ofX such thatφ,X ∈�. �(�) denotes the

algebra generated by �, andM(�) denotes the set of all nontrivial, nonnegative,

finitely additive measures on �(�). MR(�) denotes the set of all those µ ∈
M(�) which are �-regular. M(�), MR(�), and other subsets of M(�) have

been extensively studied in the literature; we cite just a few recent papers

[1, 4, 7, 8, 9, 10].

In Theorem 2.2, take � = �′, the complementary lattice to �, and τ = µ ∈
M(�). Then, writing µ′ for λ, we have the following theorem.

Theorem 2.3. If µ ∈M(�), then

µ′(E)= inf
{
µ(�′)/E ⊂ L′, L∈�

}
, (2.8)

for E ⊂ X, is a finite and finitely subadditive outer measure on P(X) and µ′ is

submodular on P(X). Also,

ρ(E)= µ′(X)−µ′(E′)= µ(X)−µ′(E′)= sup
{
µ(L)/L⊂ E, L∈�

}
(2.9)

which has been denoted in the literature by µi(E).

We now proceed to extend and improve results in [5].

3. Modularity results. We again stress the fact that the finitely subadditive

outer measure ν is always assumed to be finite valued. If this is not the case,

then ρ(E) = ν(X)−ν(E′), for E ⊂ X, need not be defined. We have noted that
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ρ need not be an inner measure (see Example 4.2). In order to see when ρ is

an inner measure, we introduce the following definition.

Definition 3.1. Let ν be a finite and finitely subadditive outer measure.

Then ν is weakly submodular if the submodular law

ν(E∪F)+ν(E∩F)≤ ν(E)+ν(F), (3.1)

E,F ⊂X, holds when E∪F =X.

We now have the following theorem.

Theorem 3.2. ρ is an inner measure if and only if ν is weakly submodular.

Proof. Suppose that ν is a weakly submodular outer measure; all we must

show is that

ρ(E∪F)≥ ρ(E)+ρ(F) (3.2)

if E∩F =φ. Now, since E∩F =φ, E′ ∪F ′ =X. Therefore,

ν(E′ ∪F ′)+ν(E′ ∩F ′)≤ ν(E′)+ν(F ′). (3.3)

Hence,

ν(X)−ν(E′ ∪F ′)+ν(X)−ν(E′ ∩F ′)≥ ν(X)−ν(E′)+ν(X)−ν(F ′). (3.4)

That is,

ρ(E∪F)≥ ρ(E)+ρ(F). (3.5)

The proof of the converse is just as simple.

We noted in Section 2 that the set

S = {E ⊂X/ρ(E)= ν(E)} (3.6)

is not in general an algebra (see Example 4.4). However, we have the following

theorem.

Theorem 3.3. If ν is a finite, finitely subadditive outer measure and if ν is

submodular, then S is an algebra and ν , restricted to S, is a finitely additive

measure.

Proof. If E ∈ S, then, clearly, E′ ∈ S; while if E,F ∈ S, then, by the sub-

modularity of ν which is of course equivalent to the supermodularity of ρ, we

have

ρ(E)+ρ(F)≤ ρ(E∪F)+ρ(E∩F)
≤ ν(E∪F)+ν(E∩F)
≤ ν(E)+ν(F)= ρ(E)+ρ(F).

(3.7)
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This, together with the fact that ρ ≤ ν , implies that

ρ(E∪F)= ν(E∪F), ρ(E∩F)= ν(E∩F). (3.8)

Hence, S is an algebra. The last proof of the theorem follows now directly from

(3.7).

We recall the following definition from [5].

Definition 3.4. Let ν be, as usual, a finite, finitely subadditive outer mea-

sure, and let Sν be the ν-measurable sets. We define

ν0 = inf
{
ν(M)/E ⊂M ∈ Sν

}
(3.9)

and say that ν is approximately regular if ν = ν0.

It is clear from Theorem 2.2 that ν0 is a finite, finitely subadditive, submodu-

lar outer measure and ν0(M)= ν(M) forM ∈ Sν . We will consider ν0 in greater

detail in Section 6.

In Section 2, we have noted that ν is regular if each E ⊂X has a measurable

cover M ∈ Sν . Clearly, regularity implies approximately regular, and, in the

case of ν being a countably subadditive outer measure where Sν is a σ -algebra,

the two notions coincide. However, this is not the case for finitely subadditive

outer measures (see Section 4). The next theorem follows immediately from

the definitions and the fact that ν is a finitely additive measure on Sν and

hence modular.

Theorem 3.5. If ν is a finite, finitely subadditive outer measure, then ν is

submodular if ν is approximately regular.

We now wish to investigate the relationship between modularity and condi-

tion (2.3) introduced in Section 2, and, in doing so, we will extend and improve

results in [5].

Theorem 3.6. (a) If ν is a finite, finitely subadditive outer measure, and if

ρ(E)= ν(X)−ν(E′) for E ⊂X, (3.10)

then Sν = Sρ .

(b) If ν is also submodular on P(X), then Sν = Sρ = S.

Proof. (a) Let E ∈ Sν . Then, ν(A)= ν(A∩E)+ν(A∩E′) for A⊂X. Now,

ρ(A∩E)= ν(X)−ν(A′ ∪E′),
ρ(A∩E′)= ν(X)−ν(A′ ∪E). (3.11)

Therefore,

ρ(A∩E)+ρ(A∩E′)= 2ν(X)−ν(A′ ∪E′)−ν(A′ ∪E). (3.12)



466 CHARLES TRAINA

But

ν(A′ ∪E)= ν((A′ ∪E)∩E)+ν((A′ ∪E)∩E′)= ν(E)+ν(A′ ∩E′),
ν(A′ ∪E′)= ν((A′ ∪E′)∩E)+ν((A′ ∪E′)∩E′)= ν(A′ ∩E)+ν(E′). (3.13)

Substituting in (3.12), we have

ρ(A∩E)+ρ(A∩E′)= 2ν(X)−ν(E)−ν(A′ ∩E′)−ν(E′)−ν(A′ ∩E)
= ν(X)−ν(A′ ∩E)−ν(A′ ∩E′)
= ν(X)−ν(A′)
= ρ(A).

(3.14)

Hence, E ∈ Sρ , so Sν ⊂ Sρ . Similarly, Sρ ⊂ Sν . Thus, Sν = Sρ ⊂ S.

(b) Since ν is submodular, ρ is supermodular and, therefore, Sρ = S by [5].

We also see from part (a) that ν satisfies condition (2.3) if and only if ρ satisfies

condition (2.3).

We can summarize some results in the following theorem.

Theorem 3.7. Let ν be a finite, finitely subadditive outer measure. Then, ν
regular implies that ν is approximately regular implies that ν is submodular

implies that ν satisfies condition (2.3).

We will see in the examples to follow that none of these implications can be

reversed in general.

We also note that if µ is a countably additive measure or an algebra, then

the customary induced Carathéodory outer measure µ∗ is regular, and hence,

if finite, it satisfies condition (2.3). Of course, this is well known [3, 6].

4. Examples. In view of our general results in Sections 2 and 3, many spe-

cific examples become easier to analyze. We first consider the important exam-

ples µ ∈M(�) with ν = µ′ and ρ = µi considered in Section 2. Using Theorems

2.3 and 3.7, we have the following theorem.

Theorem 4.1. Let µ ∈M(�) and

µ′(E)= inf
{
µ(L′)/E ⊂ L′, L∈�

}
. (4.1)

Then, µ′ is submodular, and the following are equivalent:

(a) E ∈ Sµ′ = Sµi ,
(b) µ′(E)= µi(E) where µi(E)= sup{µ(L)/L⊂ E, L∈�},
(c) µ′(E)+µ′(E′)= µ′(X).

This result was first proved in [1] in an entirely different manner. It is, as we

see, simply a special case of our more general theorems. It is also of interest

to see when µ′ is even more than submodular, namely, approximately regular.

We will look into this in Section 6.
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We now turn to more specific examples in order to show the need for certain

hypotheses in the theorems and in order to show that certain implications

cannot be reversed.

Example 4.2. Let X = {1,2,3, . . .} and define ν(φ) = 0, ν(X) = 2, ν(E) = 1

for all other sets E ⊂X. Clearly, ν is an outer measure (countably subadditive),

and ρ(φ)= 0, ρ(X)= 2, ρ(E)= 1 for all E ⊂X. Clearly, S = P(X) is of course an

algebra, and, clearly, Sν = {φ,X}. Thus, ν and ρ do not satisfy condition (2.3);

hence ν is not submodular and therefore not regular by Theorem 3.7. Also,

even though S is an algebra, ν is not a measure on S, which shows the need

for submodularity in Theorem 3.3. Also, by taking any two disjoint nonempty

sets whose union is not X, we see that ρ here is not an inner measure, so ν is

not even weakly submodular. We finally note that, unlike two-valued (0-1) ν , a

three-valued ν need not be regular.

Example 4.3. Again, let X = {1,2,3, . . .}, and let ν(φ) = 0, ν(X) = 3/2,

ν(E) = 1 for all other E ⊂ X (see [6]). Then, ρ(φ) = 0, ρ(X) = 3/2, ρ(E) = 1/2
for all other E. Clearly,

Sρ = Sν = S = {φ,X}. (4.2)

However, as easily seen, ν is not weakly submodular and, therefore, not sub-

modular; yet, ν restricted to S is trivially a measure. Also, condition (2.3) is of

course true for ν and ρ.

Example 4.4. Let X = {a,b,c,d} and define ν(φ) = 0, ν (any singleton) =
1, ν (any two-point set) = 1, ν (any three-point set) = 2, and ν(X) = 2. Then,

ρ(φ) = 0, ρ (singleton) = 0, ρ (a two-point set) = 1, ρ (a three-point set) = 1,

and ρ(X)= 2. Hence,

S = {φ,X, all two-point sets} (4.3)

is not an algebra; therefore, ν and ρ do not satisfy (2.3), so ν is not submodular,

but ρ is an inner measure, so ν is weakly submodular. Also, here, Sν = Sρ =
{φ,X}.

We have already proved or observed the following implications pertaining

to the finite, finitely subadditive outer measure ν

regular approximately regular submodular weakly submodular

condition (2.3).
(4.4)

That weakly submodular does not imply submodular is shown in Example 4.4.

That condition (2.3) does not imply submodular is shown in Example 4.3. We
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now give two type examples to show that submodularity does not imply ap-

proximately regular.

Example 4.5. Let X = {a,b,c} and define ν(φ) = 0, and ν (singleton) = 1,

ν (any two-point set) = 2, and ν(X) = 2. Then, ρ(φ) = 0, ρ (singleton) = 0,

ρ (a two-point set) = 1, and ρ(X) = 2. Thus, S = {φ,X}. It is also routine to

show that ν is submodular, and, hence, ν , ρ satisfy condition (2.3), so Sν = Sρ =
S = {φ,X}. However, this implies that ν0 just assumes the two values 0 or 2.

Consequently, ν ≠ ν0 and ν is not approximately regular which is equivalent

to regular when ν just assumes a finite number of values.

Next, we consider the following example.

Example 4.6. Let X be an uncountable set. Define ν(φ) = 0 = ν (a finite

set), ν (a countable set) = 1, and ν (an uncountable set) = 2. Then, ρ(φ) =
ρ (a finite set)= 0, ρ (a countable set)= 0, and ρ (an uncountable set)= 0, 1,

and 2, depending on whether its complement is uncountable, countable, or fi-

nite. ν is easily seen to be submodular, and, clearly, S={φ,X, all finite sets and

their complements}. Thus, Sρ = Sν = S. Hence, ν0 just assumes the values 0

and 2; so, ν0 ≠ ν and ν is not approximately regular.

Finally, we consider an example for which ν is approximately regular but not

regular. Clearly, ν must be finitely subadditive but not countably subadditive

for such an example. Before proceeding to the example, we first recall that

if E ⊂ X, then a measurable cover of E is a set M ∈ Sν such that E ⊂ M and

ν(M) = ν(E). A measurable kernel of a set E ⊂ X is a set N ∈ Sν such that

N ⊂ E and ρ(N)= ρ(E). Clearly, E has a measurable cover if and only if E′ has

a measurable kernel.

Next, we note that if � is an algebra of subsets of X and if µ is a finitely

additive measure on �, then

µ·(E)= inf
{
µ(A)/E ⊂A∈�

}
, (4.5)

for E ⊂ X is, by Theorem 2.2, a finitely subadditive outer measure on P(X)
which extends µ on � and �⊂ Sµ· . Also,

(µ·)0(E)= inf
{
µ·(B)/E ⊂ B ∈ Sµ·

}= µ·(E) (4.6)

for E ⊂X; so, µ· is approximately regular.

If X = [0,1] and if S ⊂ X, we denote by S the closure of S and by S0 the

interior of S.

Example 4.7. LetX = [0,1] and let ν = c, outer Jordan content. Then, ρ = c,

inner Jordan content. Also, let 0 < α < 1, and denote by Cα the Cantor set of

measure 1−α. Although the Cantor set of measure zero is Jordan contentable,

this is not the case for Cα. Since c(C′α) = α while c(C′α) = 1−c(Cα) = 1 since

c(Cα)= c(C0
α)= 0.
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It is clear by the above comments that c is approximately regular, and we now

note that it is not regular. We show that Cα does not have a contentable cover

or, equivalently, that C′α does not have a contentable kernel. Hence, suppose

that there exists S ⊂ C′α, S ∈ Sc , and

c(S)= c(S)= c(C′α)=α. (4.7)

It readily follows that any open set containing anx ∈ C′α intersects S, soC′α ⊂ S.

Consequently,

[0,1]= C′α ⊂ S, (4.8)

since C0
α =φ. Thus,

α= c(S)= c(S)= c[0,1]= 1, (4.9)

a contradiction. Hence, C′α does not have a contentable kernel, and c is not

regular.

5. Further modularity properties. Again, ν denotes a finite, finitely sub-

additive outer measure on P(X), and ρ(E) = ν(X)−ν(E′) for E ⊂ X. In this

section, we prove a number of inequalities which significantly extend those in

[5], and, in the course of proving these inequalities, we also give an alternate

characterization of weakly submodular.

Theorem 5.1. Let ν be a finite and finitely subadditive outer measure. Then,

for E,F ⊂X and E∩F =φ,

(a) ρ(E)+ρ(F)≤ ρ(E∪F) if and only if ν is weakly submodular;

(b) ρ(E∪F)≤ ρ(E)+ν(F);
(c) ρ(E)+ν(F)≤ ν(E∪F) if and only if ν is weakly submodular;

(d) ν(E∪F)≤ ν(E)+ν(F).
Proof. (d) is of course true since ν is an outer measure. (a) was established

in Theorem 3.2.

We proceed to prove (b). By definition of ρ we have,

ρ(E∪F)= ν(X)−ν(E′ ∩F ′), (5.1)

but E′ = F ∪ (E′ ∩ F ′), so ν(E′) ≤ ν(F) + ν(E′ ∩ F ′). Thus, ν(E′) − ν(F) ≤
ν(E′ ∩ F ′), and, by (5.1), we get

ρ(E∪F)≤ ν(X)−ν(E′)+ν(F)= ρ(E)+ν(F). (5.2)

Finally we consider (c). Since E∩F = φ, F ′ = E∪ (F ′ ∩E′). Hence, ρ(F ′) ≥
ρ(E)+ρ(F ′ ∩E′) since ν is weakly submodular. Now,

ρ(E)+ν(F)= ν(X)+ρ(E)−ρ(F ′)≤ ν(X)−ρ(E′ ∩F ′)= ν(E∪F). (5.3)
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Conversely, suppose that, whenever A∩B =φ,

ρ(A)+ν(B)≤ ν(A∪B). (5.4)

Let E∩F =φ, so F ′ = E∪(F ′ ∩E′). Taking A= E and B = F ′ ∩E′, we get

ρ(E)+ν(F ′ ∩E′)≤ ν(F ′). (5.5)

Therefore,

ρ(E)+ν(F ′ ∩E′)≤ ν(X)−ρ(F). (5.6)

So,

ρ(E)+ρ(F)≤ ν(X)−ν(F ′ ∩E′)= ρ(E∪F). (5.7)

Hence, ρ is an inner measure and ν is weakly submodular.

Corollary 5.2. If ν is a finite, finitely subadditive, and weakly submodular

outer measure, then, for E,F ⊂X, and E∩F =φ,

ρ(E)+ρ(F)≤ ρ(E∪F)≤ ρ(E)+ν(F)≤ ν(E∪F)≤ ν(E)+ν(F). (5.8)

Corollary 5.2 is a strong extension of a result in [5], where it is only proven

in the case of an approximately regular ν . Since, as we noted in Theorem 2.3

for a µ ∈M(�), µ′ is submodular, we have the following corollary.

Corollary 5.3. For µ ∈M(�) and E,F ⊂X, E∩F =φ,

µi(E)+µi(F)≤ µi(E∪F)≤ µi(E)+µ′(F)≤ µ′(E∪F)≤ µ′(E)+µ′(F). (5.9)

Corollary 5.4. If ν is a finite, finitely subadditive, and weakly submodular

outer measure, then, for M ∈ Sν and E ⊂X,

ρ(M)= ν(M)= ρ(M∩E)+ν(M∩E′). (5.10)

Proof. By (b) and (c) of Theorem 5.1,

ρ(M)≤ ρ(M∩E)+ν(M∩E′)≤ ν(M)= ρ(M), (5.11)

which completes the proof.

There are clearly many special ν , in addition to µ′, to which we can apply

the above results. We will indeed consider one of these in Section 6. Further

applications should be clear.



ON FINITELY SUBADDITIVE OUTER MEASURES . . . 471

6. The outer measure ν0. As usual, ν denotes a finite, finitely subadditive

outer measure on P(X). In Definition 3.4, we defined the finite, finitely subad-

ditive outer measure

ν0(E)= inf
{
ν(M)/E ⊂M ∈ Sν

}
. (6.1)

Then,

ν0(X)−ν0(E′)= ν(X)−ν0(E′)= sup
{
ν(M)/M ⊂ E, M ∈ Sν

}
(6.2)

since ν0 = ν on Sν ⊂ S, and we denote by ν0,

ν0(E)= sup
{
ν(M)/M ⊂ E, M ∈ Sν

}
. (6.3)

Also, it is clear that

ν0 ≤ ρ ≤ ν ≤ ν0. (6.4)

Clearly, these ν0 and ν0 fit the general framework of the previous sections. ν0

and ν0 have been thoroughly investigated in the case where ν is a countably

subadditive outer measure (see [2]). They have also been investigated in the

finitely subadditive case in [5]. In the light of our stronger results, we can

improve on the results in [5] and also give considerably shorter proofs and

numerous examples. We now proceed to do this.

The following theorem is proved in [5], and we add the proof for complete-

ness.

Theorem 6.1. Let ν be a finite and finitely subadditive outer measure. Then,

Sν ⊂ Sν0 .

Proof. Let E ∈ Sν , and A⊂X be arbitrary. For ε > 0, there exists anM ∈ Sν
such that A ⊂M and ν(M) < ν0(A)+ε. Now, A∩E ⊂M∩E ∈ Sν , and A∩E′ ⊂
M∩E′ ∈ Sν . Hence,

ν0(A∩E)+ν0(A∩E′)≤ ν(M∩E)+ν(M∩E′)= ν(M) < ν0(A)+ε, (6.5)

and, therefore, E ∈ Sν0 .

Next, we note that, for E ⊂X,

ν00(E)= inf
{
ν0(M)/E ⊂M ∈ Sν0

}
≤ inf

{
ν0(M)/E ⊂M ∈ Sν

}
,

(6.6)

by Theorem 6.1, and this, in turn,

= inf
{
ν(M)/E ⊂M ∈ Sν

}
= ν0(E);

(6.7)
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so, ν00 ≤ ν0. But we always have ν00 ≥ ν0. Consequently, ν00 = ν0; so, ν0 is

approximately regular, and we can use the results of the preceding sections

on ν0.

Theorem 6.2. Let ν be a finite, finitely subadditive outer measure. Then,

(a) ν0 is approximately regular and hence submodular and satisfies condi-

tion (2.3);

(b) Sρ = Sν ⊂ Sν0 = Sν0 = S̃ ⊂ S, where S̃ = {E ⊂X/ν0(E)= ν0(E)};
(c) if E,F ⊂X and E∩F =φ, then

ν0(E)+ν0(F)≤ ν0(E∪F)≤ ν0(E)+ν0(F)≤ ν0(E∪F)≤ ν0(E)+ν0(F); (6.8)

(d) for M ∈ Sν0 and E ⊂X,

ν0(M)= ν0(M)= ν0(M∩E)+ν0(M∩E′). (6.9)

Proof. (a) Since we have seen that ν0 is approximately regular, (a) follows

from Theorem 3.7. (b) follows from Theorems 3.6 and 6.1(a), and since

ν0(E)≤ ρ(E)≤ ν(E)≤ ν0(E), (6.10)

it follows that E ∈ S̃ implies E ∈ S.

Corollary 6.3. If ν is a finite, finitely subadditive outer measure that sat-

isfies condition (2.3), then Sρ = Sν = Sν0 = Sν0 = S̃ = S.

Proof. The proof follows immediately from Theorem 6.2(b), and since ν
satisfies condition (2.3), Sν = S.

Remark 6.4. We have shown that Sν ⊂ Sν0 and that Sν = Sν0 if ν satisfies

condition (2.3). It is certainly possible that Sν = Sν0 even if condition (2.3) is

not satisfied (see examples below).

We do have, however, the following result.

Theorem 6.5. Let E ∈ Sν0 , then E ∈ Sν if and only if there exists an M ⊂ E,

M ∈ Sν , and ν(E)= ν(M).
Proof. If the condition holds, then

ν(E)= ν(E∩M)+ν(E∩M′)= ν(M)+ν(E∩M′). (6.11)

Hence, ν(E∩M′)= 0, so, E∩M′ ∈ Sν , and, therefore,

E =M∪(E∩M′)∈ Sν. (6.12)

The converse is of course clear.

Remark 6.6. In the case of a countably subadditive measure ν which is

finite, the condition in Theorem 6.5 is satisfied, and we always have Sν = Sν0 .
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However, if ν can take on infinite values, then this is no longer the case. As

noted earlier, this is treated in full detail in [2].

Corollary 6.7. If ν is a finite, finitely subadditive outer measure and if

(a) ν just assumes a finite number of values on Sν or

(b) Sν is a σ -algebra, then Sν = Sν0 .

Proof. In both cases, it is clear that the condition of Theorem 6.5 is satis-

fied.

We now consider several examples.

Example 6.8. We first consider the general example of a µ ∈ M(�). Since

µ′ is submodular, we have, by Corollary 6.3, Sµ′ = S(µ′)0 . Suppose next that

µ ∈MR(�). This is equivalent to �⊂ Sµ′ . Hence,

µ′(E)= inf
{
µ(L′)/E ⊂ L′ ∈�′}

≥ inf
{
µ′(M)/E ⊂M ∈ Sµ′

}
= (µ′)0(E)≥ µ′(E).

(6.13)

Thus, we have µ ∈ MR(�) that implies that (µ′)0 = µ′, that is, µ′ is approxi-

mately regular. The converse need not be true since, for any µ ∈ M(�) that

just assumes two values, µ′ is regular.

We next consider two specific examples.

Example 6.9. Let X,ν be as in Example 4.6. We saw that ν is submodular.

Hence, by Corollary 6.3, Sν = Sν0 . This also follows by Corollary 6.7. We also

note that ν is just finitely subadditive here.

Example 6.10. Let X = {1,2,3, . . .}; and define ν(φ)= 0, ν (a finite set)= 0,

ν(E) = 1 (if E is infinite and E′ is infinite), and ν(E) = 2 (if E is infinite and

E′ is finite), so, ν(X) = 2. Then, ρ(φ) = 0, ρ (a finite set) = 0, ρ(E) = 1 (if

E is infinite and E′ is infinite), and ρ(E) = 2 (if E is infinite and E′ is finite).

Thus, S = P(X) while Sν = {φ,X,E such that E or E′ is finite}. Thus, S ≠ Sν ;

so, condition (2.3) is not satisfied here but by Corollary 6.7 Sν = Sν0 . Thus,

Sν = Sν0 does not imply condition (2.3). We also note that ν here is clearly only

finitely subadditive.

Different examples in the case of a finite, finitely subadditive outer measure

of a general type can be found in [5].
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