SKEW-SYMMETRIC VECTOR FIELDS ON A CR-SUBMANIFOLD OF A PARA-KÄHLERIAN MANIFOLD

ADELA MIHAI and RADU ROSCA

Received 16 July 2003

We deal with a CR-submanifold M of a para-Kählerian manifold \tilde{M}, which carries a J-skew-symmetric vector field X. It is shown that X defines a global Hamiltonian of the symplectic form Ω on M^\top and JX is a relative infinitesimal automorphism of Ω. Other geometric properties are given.

2000 Mathematics Subject Classification: 53C15, 53C20, 53C21.

1. Introduction. CR-submanifolds M of some pseudo-Riemannian manifolds \tilde{M} have been first investigated by Rosca [10], and also studied in [2, 3, 11].

If \tilde{M} is a para-Kählerian manifold, it has been proved that any coisotropic submanifold M of \tilde{M} is a CR-submanifold (such CR-submanifolds have been denominated CICR-submanifolds [6]).

In this note, one considers a foliate CICR-submanifold M of a para-Kählerian manifold $\tilde{M}(J, \tilde{\Omega}, \tilde{g})$. It is proved that the necessary and sufficient condition in order that the leaf M^\top of the horizontal distribution D^\top on M carries a J-skew-symmetric vector field X, that is, $\nabla X = X \wedge JX$, is that the vertical distribution D^\perp on M is autoparallel.

In this case, M may be viewed as the local Riemannian product $M = M^\top \times M^\perp$, where M^\top is an invariant totally geodesic submanifold of M and M^\perp is an isotropic totally geodesic submanifold.

Furthermore, if Ω is the symplectic form of M^\top, it is shown that X is a global Hamiltonian of Ω and JX is a relative infinitesimal automorphism of Ω (a similar discussion can be made for proper CR-submanifolds of a Kählerian manifold).

2. Preliminaries. Let $\tilde{M}(J, \tilde{\Omega}, \tilde{g})$ be a $2m$-dimensional para-Kählerian manifold, where, as is well known [7], the triple $(J, \tilde{\Omega}, \tilde{g})$ of tensor fields is the paracomplex operator, the symplectic form, and the para-Hermitian metric tensor field, respectively.

If $\tilde{\nabla}$ is the Levi-Civita connection on \tilde{M}, these manifolds satisfy

$$J^2 = Id, \quad d\tilde{\Omega} = 0, \quad (\tilde{\nabla} J) \tilde{Z} = 0, \quad \tilde{Z} \in \Gamma T\tilde{M}. \quad (2.1)$$

Let $x : M \to \tilde{M}$ be the immersion of an l-codimensional submanifold M, $l < m$, in \tilde{M} and let $T_p^\perp M$ and $T_p M$ be the normal space and the tangent space at each point $p \in M$.
If $J(T^\perp p M) \subset T_p M$, then M is said to be a coisotropic submanifold of \tilde{M} (see [2]). If $\tilde{W} = \text{vect} \{ h_a, h_{a^*}; \ a = 1, \ldots, m, \ a^* = a + m \}$ is a real Witt vector basis on \tilde{M}, one has

$$\tilde{g}(h_a, h_b) = \tilde{g}(h_{a^*}, h_{b^*}) = \delta_{ab}. \quad (2.2)$$

Next, if $\tilde{W}^* = \{ \omega^a, \omega^{a^*} \}$ denotes the associated cobasis of \tilde{W}, then \tilde{g} and $\tilde{\Omega}$ are expressed by

$$\tilde{g} = 2 \sum \omega^a \otimes \omega^{a^*}, \quad (2.3)$$

$$\tilde{\Omega} = \sum \omega^a \wedge \omega^{a^*}. \quad (2.4)$$

We recall also that \tilde{W} may split as

$$\tilde{W} = \tilde{S} + \tilde{S}^*, \quad (2.5)$$

where the pairing (\tilde{S}, \tilde{S}^*) defines an involutive automorphism of square 1, that is,

$$Jh_a = h_{a^*}, \quad Jh_{a^*} = h_a, \quad (2.6)$$

and the local connection forms $\tilde{\theta}^A_B \in \Lambda^1 \tilde{M}, A, B \in \{1, 2, \ldots, 2m\}$ satisfy

$$\tilde{\theta}^a_{b^*} = 0, \quad \tilde{\theta}^a_{b^*} = 0, \quad \tilde{\theta}^a_b + \tilde{\theta}^b_a = 0. \quad (2.7)$$

It has been proved in [10] that any coisotropic submanifold M of a para-Kählerian manifold \tilde{M} is a CR-submanifold of \tilde{M} and such a submanifold has been called a CICR-submanifold [6].

Let $D^\top : p \rightarrow D^\top_p = T_p M \setminus J(T^\perp p M)$ and $D^\perp : p \rightarrow D^\perp_p = J(T^\perp p M) \subset T_p M$ be the two complementary differentiable distributions on M. One has

$$JD^\top_p = D^\top_p, \quad JD^\perp_p = T^\perp_p M, \quad (2.8)$$

and D^\top (resp., D^\perp) is called the horizontal (resp., vertical) distribution on M.

As in the Kählerian case, the vertical distribution D^\perp is always involutive.

If M is defined by the Pfaffian system

$$\omega^r = 0, \quad r = 2m + 1 - l, \ldots, 2m, \quad (2.9)$$

then one has

$$D^\top_p = \{ h_i, h_{i^*}; \ i = 1, \ldots, m - l, \ i^* = i + m \},$$

$$D^\perp_p = \{ h_r, \ r = m - l + 1, \ldots, m \}. \quad (2.10)$$

Further denote by

$$\varphi^\perp = \omega^m \wedge \cdots \wedge \omega^m \quad (2.11)$$

the simple unit form which corresponds to D^\perp.
Then, in order that the distribution D^\top be also involutive, it is necessary and sufficient that \(\varphi^\perp \) be a conformal integral invariant of D^\top, that is,

\[
\mathcal{L}_{D^\top} \varphi^\perp = f \varphi^\perp
\]

(2.12)

for a certain scalar function f.

By a standard calculation, one derives that the above equation implies

\[
\theta^r_i = 0,
\]

(2.13)

and in this case, one may write

\[
d\varphi^\perp = - \left(\sum \theta^r_i \right) \wedge \varphi^\perp,
\]

(2.14)

that is, φ^\perp is exterior recurrent.

In this case, as is known [2, 10], M is a foliated CR-submanifold of \tilde{M}.

We will investigate now the case when the leaf M^\top of D^\top carries a J-skew-symmetric vector field X, that is,

\[
\nabla X = X \wedge JX.
\]

(2.15)

One may express ∇X as

\[
\nabla X = (JX)^\flat \otimes X - X^\flat \otimes JX,
\]

(2.16)

where

\[
X = X^i h_i + X^i^* h_i^* = X^i \omega^i + X^i^* \omega^i.
\]

(2.17)

Recalling Cartan structure equations [4],

\[
\nabla h = \theta \otimes e \in A^1(M, TM),
\]

\[
d\omega = - \theta \wedge \omega,
\]

\[
d\theta = - \theta \wedge \theta + \Theta.
\]

(2.18)

In the above equations, θ, respectively Θ, are the local connection forms in the bundle W, respectively the curvature forms on M.

Then making use of Cartan structure equations, one finds by a standard calculation that (2.16) implies that the vertical distribution D^\perp is autoparallel, that is, $\nabla Z' Z'' \in D^\perp$, for all $Z', Z'' \in D^\perp$, which, in terms of connection forms, is expressed by

\[
\theta^i_r = 0.
\]

(2.19)

We agree to call θ^i_r and θ^r_i the \textit{mixed connection forms}.

Taking account of (2.13) and (2.19), one derives from (2.16)

\[
dX^\flat = 2 (JX)^\flat \wedge X^\flat,
\]

(2.20)

which agrees with the general equation of skew-symmetric killing vector fields [5, 8].
Next, by (2.1), one has

\[\nabla JX = (JX)^\flat \otimes JX - X^\flat \otimes X, \tag{2.21} \]

which shows that \(JX \) is a gradient vector field.

Hence, we may state the following theorem.

Theorem 2.1. Let \(x : M \to \tilde{M} \) be an improper immersion of a CR-submanifold in a para-Kählerian manifold \(\tilde{M}(J, \tilde{\Omega}, \tilde{g}) \) and let \(D^\perp \) (resp., \(D^\parallel \)) be the horizontal distribution (resp., the vertical distribution) on \(M \). If \(M \) is a foliate CR-submanifold, then the necessary and sufficient condition in order that the leaf \(M^\perp \) of \(D^\perp \) carries a \(J \)-skew-symmetric vector field \(X \) is that \(D^\parallel \) is an autoparallel foliation. In this case, the CR-submanifold \(M \) under consideration may be viewed as the local Riemannian product \(M = M^\perp \times M^\parallel \), where \(M^\perp \) is an invariant totally geodesic submanifold of \(M \) and \(M^\parallel \) is an isotropic totally geodesic submanifold. In addition, in this case, \(JX \) is a gradient vector field.

3. **Properties.** In this section, we will point out some additional properties of \(X \) involving the symplectic form \(\Omega \) of \(M^\perp \) and the exterior covariant differential \(d^V \) of \(\nabla X \).

Operating on (2.16) and (2.21), one derives by a short calculation

\[
\begin{align*}
d^V(\nabla X) &= \nabla^2 X = 2(X^\flat \wedge (JX)^\flat) \otimes JX, \\
d^V(\nabla JX) &= \nabla^2 JX = 2(X^\flat \wedge (JX)^\flat) \otimes X,
\end{align*}
\tag{3.1}
\]

which gives

\[
\begin{align*}
\nabla^2 (X + JX) &= 2(X^\flat \wedge (JX)^\flat) \otimes (X + JX), \\
\nabla^2 (X - JX) &= -2(X^\flat \wedge (JX)^\flat) \otimes (X - JX).
\end{align*}
\tag{3.2}
\]

Therefore, we agree to define \(X + JX \) and \(X - JX \) as 2-covariant recurrent vector fields.

It should also be noticed that by reference to the general formula

\[\nabla_V (X_1 \wedge \cdots \wedge X_p) = \sum (X_1 \wedge \cdots \wedge \nabla_V X_j \wedge \cdots \wedge X_p), \quad V \in \Gamma TM, \tag{3.3} \]

one finds by (2.15) and (2.21)

\[\nabla_V (X \wedge JX) = 2g(V, JX)(X \wedge JX). \tag{3.4} \]

This shows that the covariant derivative of \(X \wedge JX \) with respect to any vector field \(V \) is proportional to \(X \wedge JX \).

On the other hand, by the general formula

\[\nabla^2 V(Z, Z') = R(Z, Z')V, \tag{3.5} \]

...
where R denotes the curvature tensor field and V, Z, Z' are vector fields, one has (see also [9])

$$\mathcal{R}(Z, V) = Tr R(\cdot, Z)V,$$

(3.6)

where \mathcal{R} is the Ricci tensor field of ∇.

Since in the case under consideration one must take in (3.6) the para-Hermitian trace, then setting in (3.6) $Z = V = X$, one finds

$$\mathcal{R}(X, X) = 0,$$

(3.7)

that is, the Ricci curvature of X vanishes.

Denote by $\tilde{\Omega}$ the symplectic form of \tilde{M}, then $\Omega = \tilde{\Omega}|_{M^\perp}$ is a symplectic form of rank equal to the dimension of M^\perp, that is, in our case, $2(m - l)$.

Then, if $^b Z : Z \rightarrow -i_Z \Omega$ is the symplectic isomorphism, by a short calculation and on behalf of (2.4), one gets

$$^b X = -(JX)^b,$$

(3.8)

and since JX is a gradient vector field, we conclude according to a known definition (see also [1]) that X is a global Hamiltonian of Ω.

In a similar manner, one finds

$$^b (JX) = X^b,$$

(3.9)

and by (2.20), it follows that

$$d(L_{JX} \Omega) = 0,$$

(3.10)

which shows that JX is a relative infinitesimal automorphism of Ω [1].

We state the following theorem.

THEOREM 3.1. Let M be a CR-submanifold of a para-Kählerian manifold \tilde{M} and let Ω be the symplectic form on M^\perp. If M carries a J-skew-symmetric vector field X, then the following properties hold:

(i) X is a global Hamiltonian of Ω and JX is a relative infinitesimal automorphism of Ω;

(ii) the Ricci tensor field $\mathcal{R}(X, X)$ vanishes;

(iii) the vector fields $X + JX$ and $X - JX$ are 2-covariant recurrent.

ACKNOWLEDGMENT. The first author was supported by a Japan Society for the Promotion of Science Postdoctoral Fellowship.

REFERENCES

Adela Mihai: Department of Geometry, Faculty of Mathematics, University of Bucharest, Street Academiei 14, 70109 Bucharest, Romania
E-mail address: adela@math.math.unibuc.ro

Radu Rosca: 59 avenue Emile Zola, 75015 Paris, France
Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>February 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>August 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk