SOME ANALYTICAL PROPERTIES OF SOLUTIONS OF DIFFERENTIAL EQUATIONS OF NONINTEGER ORDER

S. M. MOMANI, S. B. HADID, and Z. M. ALAWENH

Received 25 February 2003

The analytical properties of solutions of the nonlinear differential equations $x^{(\alpha)}(t) = f(t,x)$, $\alpha \in \mathbb{R}$, $0 < \alpha \le 1$ of noninteger order have been investigated. We obtained two results concerning the frame curves of solutions. Moreover, we proved a result on differential inequality with fractional derivatives.

2000 Mathematics Subject Classification: 26A33.

1. Introduction. The problem of existence and uniqueness of solutions of the non-homogeneous differential equations with fractional derivatives

$$x^{(\alpha)}(t) = f(t, x), \quad \alpha \in \mathbb{R}, \ 0 < \alpha \le 1,$$
(1.1)

with the initial condition

$$x^{(\alpha-1)}(t_0) = x_0, \tag{1.2}$$

where \mathbb{R} is the set of real numbers, $t \in I = [0, \infty)$, and f is a real-valued function on $D = I \times \mathbb{R}^n$ into \mathbb{R}^n where \mathbb{R}^n denotes the real *n*-dimensional Euclidean space, and $x_0 \in \mathbb{R}^n$, has been investigated by some authors (see [1, 2, 6, 9]).

In recent years, interest has increased concerning the numerical treatment of fractional differential equations (see [4, 5, 11, 12]). On the other hand, differential inequalities and comparison theorems with the unique solution are very important for the numerical solution of differential equations (see [8] for fractional differential equations, and [10] for ordinary differential equations).

In this note, we will obtain a differential inequality result of (1.1) and (1.2), our result is more general than that in [8]. Also, we obtain two results concerning frame curves, the lower and upper frame curves of the solutions of (1.1) and (1.2); these two results are extensions to those in [10] for ordinary differential equations.

We will use the definitions and terminology used in Barrett [3] and Al-Bassam [2].

It is worth mentioning that it was shown by Hadid and Alshamani [7] that the solutions of (1.1) and (1.2) satisfy the integral equation

$$x(t) = \frac{x_0(t-t_0)^{\alpha-1}}{\Gamma(\alpha)} + \frac{1}{\Gamma(\alpha)} \int_{t_0}^t (t-s)^{\alpha-1} f(s,x(s)) ds,$$
(1.3)

where $0 < t_0 < t \le t_0 + a$, provided that the integral exists in the Lebesque sense, where Γ is the Gamma function.

2. The main theorems. In this section, we will prove the main theorems.

THEOREM 2.1. Let f(t,x) be a continuous function on the region

$$\mathbb{R}(a,b): 0 < t_0 < t \le t_0 + a, \qquad |x - x_0(t - t_0)^{\alpha - 1}| \le b.$$
(2.1)

Suppose $x_1(t)$ is a solution of the differential inequality

$$x^{(\alpha)}(t) \le f(t, x_1(t)) \quad on (t_0, t_0 + a],$$
(2.2)

then there exists a solution $x_2(t)$ of the differential inequality

$$x_2^{(\alpha)}(t) \ge f(t, x_2(t)) \quad on(t_0, t_0 + a], \qquad x_1^{(\alpha - 1)}(t_0) \le x_2^{(\alpha - 1)}(t_0)$$
 (2.3)

such that on this interval, $x_1(t) \le x_2(t)$.

PROOF. Let $\psi(t, x_2) = f(t, \max(x_2, x_1(t)))$. Obviously, ψ is a continuous function on \mathbb{R} .

First we will prove the inequality

$$x_1(t) \le w(t) \quad \text{for } t \in [t_0, t_0 + a],$$
 (2.4)

where w(t) satisfies the differential inequality

$$w^{(\alpha)}(t) \ge \psi(t, w(t)), \qquad w^{(\alpha-1)}(t_0) = x_2^{(\alpha-1)}(t_0).$$
 (2.5)

Suppose that this is not true, that is, that for some value τ , $w(\tau) < x_1(\tau)$. Let τ_0 be the lower bound of numbers *s* for which we have $w(t) < x_1(t)$ for $s \le t \le \tau$. Then $w(\tau_0) = x_1(\tau_0)$ and $w(t) < x_1(t)$ for $\tau_0 < t < \tau$.

Therefore, we get

$$\psi(t, w(t)) = f(t, x_1(t)) \text{ on } t \in [\tau_0, \tau].$$
 (2.6)

Using inequality (2.2) and (1.3), it follows that

$$\begin{aligned} x_1(\tau) &\leq \frac{x_1(\tau_0)(\tau-\tau_0)^{\alpha-1}}{\Gamma(\alpha)} + \frac{1}{\Gamma(\alpha)} \int_{\tau_0}^{\tau} (\tau-s)^{\alpha-1} f(s,x_1(s)) ds \\ &= \frac{w(\tau_0)(\tau-\tau_0)^{\alpha-1}}{\Gamma(\alpha)} + \frac{1}{\Gamma(\alpha)} \int_{\tau_0}^{\tau} (\tau-s)^{\alpha-1} \psi(s,w(s)) ds, \end{aligned}$$
(2.7)

and from (2.5) and (2.7), we get $x_1(\tau) \le w(\tau)$, which is in contradiction with our supposition. This proves inequality (2.4).

But now because (2.4) implies that a solution of inequality (2.5) is also a solution of inequality (2.3), we see that the result follows from (2.4). \Box

REMARK 2.2. The above theorem means that the solution $x_1(t)$ is dominated by the solution $x_2(t)$. Moreover, if $x_2(t)$ is a bounded solution, then so is $x_1(t)$.

THEOREM 2.3. Let $\phi(t, y)$, f(t, y), and F(t, y) be continuous functions on the region

$$\mathbb{R}_{1}(a,b): 0 < t_{0} < t \le t_{0} + a, \qquad |y - y_{0}(t - t_{0})^{\alpha - 1}| \le b$$
(2.8)

and satisfy

$$\phi(t, y) \le f(t, y) \le F(t, y). \tag{2.9}$$

Further let x = x(t), y = y(t), and X = X(t) be solutions of the differential equations

$$x^{(\alpha)}(t) = \phi(t,x), \qquad y^{(\alpha)}(t) = f(t,y), \qquad X^{(\alpha)}(t) = F(t,X),$$
 (2.10)

which pass through the point $(t_0, y_0(t-t_0)^{\alpha-1})$, defined on $[t_0, t_0 + a]$, and which lie between $y_0(t-t_0)^{\alpha-1} - b$ and $y_0(t-t_0)^{\alpha-1} + b$.

If the function f(t, y) satisfies the Lipschitz condition in the second parameter on $\mathbb{R}_1(a, b)$:

$$|f(t, y_1) - f(t, y_2)| \le L |y_1 - y_2|$$
(2.11)

for some positive constant L, then

$$x(t) \le y(t) \le X(t). \tag{2.12}$$

PROOF. It is clear from Theorem 2.1 and equations (2.9) and (2.10) that the following inequalities:

$$X^{(\alpha)}(t) - f(t,X) \ge 0, \quad x^{(\alpha)}(t) - f(t,X) \le 0, \quad x(t) \le y(t) \le X(t),$$
(2.13)

are satisfied if

$$X = y_0 (t - t_0)^{\alpha - 1} + Y, \qquad x = y_0 (t - t_0)^{\alpha - 1} - Y,$$
(2.14)

where

$$Y = \frac{1}{\Gamma(\alpha)} \int_{t_0}^t (t-s)^{\alpha-1} \left| f(s, y_0) \right| ds \le \frac{M}{\alpha \Gamma(\alpha)} (t-t_0)^{\alpha}, \tag{2.15}$$

and *M* is a positive real constant such that $|f(s, y)| \le M$.

Hence, the theorem is proved.

REMARK 2.4. The functions X(t) and x(t) are called "frame curves."

THEOREM 2.5. Let the functions f(t, y), F(t, y), y(t), and X(t) be defined as in *Theorem 2.3.* Set $h(t) = X^{(\alpha)}(t) - f(t, X(t))$, then the function

$$X_1(t) = X(t) - \frac{1}{\Gamma(\alpha)} \int_{t_0}^t (t-s)^{\alpha-1} e^{-L(t-s)} h(s) ds,$$
(2.16)

where *L* the Lipschitz constant for the function f(t, y) is an upper frame curve on the interval $[t_0, t_0 + a]$, and on that interval there exist the inequalities

$$y(t) \le X_1(t) \le X(t).$$
 (2.17)

PROOF. The inequality $X_1(t) \le X(t)$ is obvious. On the other hand, as in [10], we have

$$X^{(\alpha)}(t) - f(t, X_{1}(t))$$

$$= X^{(\alpha)}(t) - h(t) + \frac{L}{\Gamma(\alpha)} \int_{t_{0}}^{t} (t-s)^{\alpha-1} e^{-L(t-s)} h(s) ds - f(t, X_{1}(t)) \qquad (2.18)$$

$$= f(t, X_{1}(t)) - f(t, X(t)) + L[X(t) - X_{1}(t)] \ge 0.$$

Thus $y(t) \leq X_1(t)$.

REMARK 2.6. By using the same above procedure, we can show that if x(t) a lower frame and if we set

$$h_1(t) = x^{(\alpha)}(t) - f(t, x(t)), \qquad (2.19)$$

then

$$x_1(t) = x(t) - \frac{1}{\Gamma(\alpha)} \int_{t_0}^t (t-s)^{\alpha-1} e^{-L(t-s)} h_1(s) ds$$
(2.20)

is also a lower frame curve and we have

$$y(t) \le x_1(t) \le y(t). \tag{2.21}$$

ACKNOWLEDGMENTS. The authors are pleased to express thanks to the United Arab Emirates University for its financial support. The first author is on a leave from Mutah University, Jordan.

REFERENCES

- A. Z. Al-Abedeen and H. L. Arora, A global existence and uniqueness theorem for ordinary differential equations of generalized order, Canad. Math. Bull. 21 (1978), no. 3, 267– 271.
- [2] M. A. Al-Bassam, Some existence theorems on differential equations of generalized order, J. reine angew. Math. 218 (1965), 70–78.
- J. H. Barrett, *Differential equations of non-integer order*, Canadian J. Math. 6 (1954), 529– 541.
- [4] L. Blank, Numerical treatment of differential equations of fractional order, MCCM Numerical Analysis Report 287, Manchester Centre for Computational Mathematics, Manchester, UK, 1996.
- [5] K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron. Trans. Numer. Anal. 5 (1997), 1–6.
- [6] S. B. Hadid, Local and global existence theorems on differential equations of non-integer order, J. Fract. Calc. 7 (1995), 101-105.
- [7] S. B. Hadid and J. G. Alshamani, *Liapunov stability of differential equations of noninteger order*, Arab J. Math. 7 (1986), no. 1-2, 5-17.
- [8] S. B. Hadid, B. Masaedeh, and S. Momani, On the existence of maximal and minimal solutions of differential equations of non-integer order, J. Fract. Calc. 9 (1996), 41–44.
- [9] S. B. Hadid, A. A. Ta'ani, and S. M. Momani, Some existence theorems on differential equations of generalized order through a fixed-point theorem, J. Fract. Calc. 9 (1996), 45-49.

- [10] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, *Inequalities Involving Functions and Their Integrals and Derivatives*, Mathematics and Its Applications (East European Series), vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1991.
- [11] S. Momani and S. B. Hadid, An algorithm for numerical solutions of fractional order differential equations, J. Fract. Calc. 15 (1999), 61–66.
- [12] I. Podlubny, Numerical solution of ordinary fractional differential equations by the fractional difference method, Advances in Difference Equations (Veszprém, 1995), Gordon and Breach, Amsterdam, 1997, pp. 507–515.

S. M. Momani: Department of Mathematics and Computer Science, Faculty of Science, United Arab Emirates University, P.O. Box 17551, Al-Ain, UAE *E-mail address*: shahermm@yahoo.com

S. B. Hadid: Department of Mathematics and Basic Science, Faculty of Science, Ajman Center, Ajman University of Science and Technology, P.O. Box 17550, Al-Ain, UAE *E-mail address*: sbhadid@yahoo.com

Z. M. Alawenh: Department of Mathematics, Faculty of Science, University of Qater, Qater *E-mail address*: zakalawneh@yahoo.com