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We consider some geometric aspects of regular eigenvalue problems of an arbitrary order.
First, we clarify a natural geometric structure on the space of boundary conditions. This
structure is the base for studying the dependence of eigenvalues on the boundary condition
involved, and reveals new properties of these eigenvalues. Then, we solve the selfadjointness
condition explicitly and obtain a manifold structure on the space of selfadjoint boundary
conditions and several other consequences. Moreover, we give complete characterizations of
several subsets of boundary conditions such as the set of all complex boundary conditions
having a given complex number as an eigenvalue, and describe some of them topologically.
The shapes of some of these subsets are shown to be independent of the quasidifferential
equation in question.
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1. Introduction. The study of regular spectral problems for linear ordinary differen-

tial equations (more generally, quasidifferential equations, to be abbreviated as QDEs)

originated from a series of seminal papers of Sturm and Liouville in 1836/1837, while

the singular case started with the celebrated work of Weyl in 1910 introducing the

limit-point and limit-circle dichotomy. Another important milestone in this area is the

Glazman-Krein-Năımark (GKN) theorem [18] of 1950, see also [4, 7, 8, 20] for gener-

alizations (which will be included in the theorem). This theorem gives a one-to-one

correspondence between the selfadjoint differential operators in a Hilbert function

space representing a given QDE and the unitary isometries on an appropriate finite-

dimensional subspace (or equivalently, certain Lagrange subspaces of some finite-

dimensional quotient space, see [5, 6]). In the regular case and some subcases of the sin-

gular case, the GKN theorem also yields a characterization of the selfadjoint operators

in terms of (linear) complex boundary conditions (BCs).

In this paper, we only consider regular problems. In this case, the GKN character-

ization of selfadjointness in terms of a complex BC can be simply expressed as the

algebraic condition

AEAt = BEBt, (1.1)

where E is a fixed matrix, see (2.23), while A and B come from the coefficient matrix

(A | B) of the BC. Note that the coefficient matrix (A | B) is unique only up to left

multiplications by nonsingular n×n complex matrices, where n is the order of the
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QDE. If n= 2, then (A | B) can be chosen to equal(
cosα −sinα 0 0

0 0 cosβ −sinβ

)
(1.2)

with α∈ [0,π) and β∈ (0,π], or(
eiγk11 eiγk12 −1 0

eiγk21 eiγk22 0 −1

)
(1.3)

with γ ∈ [0,π), k11,k12,k21,k22 ∈ R, and k11k22−k12k21 = 1. Since the determinant 1

condition k11k22−k12k21 = 1 can be explicitly solved, we see that the selfadjoint BCs

of order 2 are explicitly given by (1.2) and (1.3). It seems to us that order 2 is the only

order where the selfadjoint BCs are all explicitly known.

For some purposes (such as the situations where one wants to use all the selfadjoint

BCs close to a given selfadjoint BC in some sense), the forms of selfadjoint BCs given

by (1.2) and (1.3) are not convenient. The reason is very simple: selfadjoint BCs of the

form (1.3) can be close to a selfadjoint BC of the form (1.2). Actually, in [1, 9, 12, 14],

the subset {(
1 r 0 z
0 z −1 s

)
; r ,s ∈R, z ∈C

}
(1.4)

of (coefficient matrices of) selfadjoint BCs of order 2 and three similar ones proved to be

more suitable to such situations. Note that these subsets are open under the topology

on the set �C
2 of all selfadjoint BCs of order 2 induced from the Grassmann manifold

topology on the set of all complex BCs of order 2, each of them can be identified with

R4, and they together form an atlas of coordinate charts on �C
2 (and hence �C

2 is a

real-analytic manifold).

One of the main results of this paper is a successful generalization of the subsets

of selfadjoint BCs of the form in (1.4) to an arbitrary order, see Lemmas 3.10 and 3.17

together with Lemma 3.8, (3.22), and (3.45). For example, any selfadjoint BC of order 3

is in the open set


1 0 −1

2
vv+ir 0 v −u−vz

0 1 −eiαv 0 eiα −eiαz
0 0 u −1 z −1

2
zz+is

 ;

α∈ [0,2π)
r ,s ∈R
u,v,z ∈ C

 (1.5)

or one of three similar open sets. In this way, we not only explicitly solve the selfadjoint-

ness condition (1.1), but also obtain a manifold structure on the space of selfadjoint BCs

(see Theorems 3.11, 3.15, 3.18, and 3.21). To the best of our knowledge, for the orders

greater than or equal to 3, the selfadjointness condition is explicitly solved for the first

time. We believe that this explicit representation of the selfadjoint BCs is an important

preparation for an in-depth study of the dependence of the eigenvalues of a selfadjoint

problem on its BC for the orders greater than or equal to 3 (see, e.g., [1, 3, 9, 12, 14] for

order 2), and we plan to undertake this task in forthcoming publications.
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We would like to mention here that by a dimension count, a selfadjoint operator

corresponding to the QDE is generically represented by more than one selfadjoint BC

(see Remark 3.12 for details). Therefore, it is interesting to determine which selfadjoint

BCs represent the same selfadjoint operator.

Under our explicit representation of the selfadjoint BCs, one directly sees how many

algebraic equations in a selfadjoint BC can be only at the left-end point of the interval of

the QDE and how many only at the right-end point. The two numbers must equal each

other (see Corollaries 3.14 and 3.20). When these two numbers are fixed, one even sees

the dimension of the subspace of such selfadjoint BCs. In particular, separated selfad-

joint BCs only occur when the order n is even. The subspace �C,s
n of such selfadjoint

BCs is a manifold of (real) dimension n2/2. The subspace of real separated selfadjoint

BCs is a submanifold of �C,s
n and has a dimension of n2/4+n/2. This shows that when

the order is even and greater than or equal to 4, almost all separated selfadjoint BCs

are nonreal. The existence of nonreal separated selfadjoint BCs for these orders was

first shown by Everitt and Markus in [5]. Using our representation of the selfadjoint

BCs, one can directly write down all these selfadjoint BCs.

Our method also applies to the singular case as long as the selfadjointness condition

can be expressed as algebraic equations of a form similar to (1.1). In particular, if the

two endpoints of the interval of a singular QDE are both of the limit-circle type, then the

selfadjoint BCs can be explicitly written down in the same way as in the regular case.

We remark that [5, 6] provide some new information about how many and/or what kind

of algebraic equations there are in a singular selfadjoint BC.

In the last section of this paper, Section 4, we first discuss some Lie group actions

on spaces of BCs. Then, for a given QDE of order n and each complex number λ, we

show that there is a unique complex BC having λ as an eigenvalue of geometric mul-

tiplicity n, and we find the BC. We also characterize the set of complex BCs having λ
as an eigenvalue and the set of real BCs having a real number λ as an eigenvalue. The

determination of these two sets uses the above Lie group actions. Moreover, we also

present a topological description of each of these two sets.

2. Notation and basic results. In this section, we introduce our notation and recall

some basic facts about QDEs and their boundary value problems (BVPs).

For any n,m ∈ N, we use Mn,m(C) to denote the vector space of n×m matrices

with complex entries and M∗
n,m(C) its open subset consisting of the elements with the

maximum rank min{n,m}. We define Mn,m(R) and M∗
n,m(R) in a similar way. When a

capital Latin or Greek letter stands for a matrix, the entries of the matrix will be de-

noted by the corresponding lower case letter with two indices. If A ∈ Mn,m(C), then

At and A∗ are the transpose and the complex conjugate transpose of A, respectively.

The general linear group GL(n,C) := Mn,n(C) is a complex Lie group under the ma-

trix multiplication, while the special linear group SL(n,C) consists of the elements of

GL(n,C) with determinant 1 and is a Lie subgroup of GL(n,C). One defines GL(n,R)
and SL(n,R) similarly. Let J be an open interval, bounded or unbounded. Assume that

S is one of the spaces Cn, Rn, Mn,m(C), and Mn,m(R). We denote by L(J,S) the space

of Lebesgue integrable S-valued functions on J, and ACloc(J,S) the space of S-valued

functions which are absolutely continuous on all compact subintervals of J.
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For the rest of this paper, we fix n∈N satisfying n≥ 2 and J = (a,b) with

−∞≤ a< b ≤+∞. (2.1)

Assume that F ∈ L(J,Mn,n(C)) satisfies

fi,i+1 �= 0 a.e. on J for 1≤ i≤n−1,

fi,j = 0 a.e. on J for 2≤ i+1< j ≤n. (2.2)

We define Γ0 = L(J,C), y[0] =y for y ∈ Γ0, and

Γi =
{
y ∈ Γi−1; y[i−1] ∈ACloc(J,C)

}
, (2.3)

y[i] =
(
y[i−1])′ −∑i

j=1fi,jy[j−1]

fi,i+1
for y ∈ Γi, (2.4)

for i= 1,2, . . . ,n, where fn,n+1 = 1. We will set

Qy = iny[n] for y ∈ Γn. (2.5)

The expression Qy is called the quasi-differential expression in y associated with F .

For y ∈ Γi, where 0 ≤ i ≤ n, the function y[i] is called the ith quasiderivative of y
associated with F . The subject of our study is the regular QDE

Qy = λwy on J, (2.6)

associated with F and a weight w ∈ L(J,C), where λ ∈ C is the so-called spectral pa-

rameter. By a solution of (2.6) we mean a function y ∈ Γn satisfying (2.6) a.e.

Throughout this paper, we will always assume that F ∈ L(J,Mn,n(C)) satisfies (2.2);

and w ∈ L(J,C) satisfies that

w is not a.e. 0 on J. (2.7)

Even though (2.7) will not be needed for every result, we include it in our assumptions

for the simplicity of our statements.

For any y ∈ Γn, we will also use the notation

Y =


y[0]

y[1]
...

y[n−1]

 . (2.8)

Then, (2.6) is equivalent to its matrix form

Y ′ = (F+(−i)nλW)Y on J, (2.9)

where W = (wij)n×n is the matrix such that wn1 = w and wij = 0 otherwise. By the

theory of first-order linear DEs, for any solution y of (2.6), Y has finite continuous

extensions to the endpoints a and b (even when one or both of a and b are infinite).
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With the obvious topology on [−∞,+∞], the following results are standard in the

theory of first-order linear DEs.

Theorem 2.1. (i) For any x0 ∈ [a,b] and C ∈ Cn, the differential equation (2.9)

always has a unique solution Y satisfying Y(x0)= C .

(ii) As a continuous function on [a,b], the above solution Y depends continuously on

(
x0,C

)∈ [a,b]×Cn. (2.10)

Let Φ(·,λ) be the fundamental solution of (2.9) satisfying Φ(a,·) = I, where I is the

identity matrix. We will call Φ the principal matrix of (2.6). The following result is also

standard in the theory of first-order linear DEs.

Theorem 2.2. For any x ∈R, the entries of Φ(x,λ) are all entire functions of λ.

When n is even, say, n= 2k with k∈N, and J is finite if k≥ 2, there is a special case

of the QDE (2.6), that is, the case studied by Năımark [18] and by Weidmann [19], see

also [2]: for any

1
f0
,f1, . . . ,fk ∈ L(J,C), (2.11)

if we define

F =



0 1 0 ··· ··· ··· ··· 0
...

. . .
. . .

. . .
...

...
. . . 1

. . .
...

... 0
1
f0

. . .
...

... . .
.

f1 0 1
. . .

...
... . .

.
. .

.
. .

. . . .
. . . 0

0 . .
.

. .
. . . . 1

fk 0 ··· ··· ··· ··· ··· 0



, (2.12)

then F belongs to L(J,Mn,n(C)) and satisfies (2.2), thus, can be used as the coefficient

matrix of (2.6). In this case, the quasiderivatives of y associated with F are given by

y[j] =y(j) for j = 0,1, . . . ,k−1,

y[k] = f0y(k),

y[j] = (y[j−1])′ −fj−ky(n−j) for j = k+1, . . . ,n.

(2.13)
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The quasi-differential expressions in y associated with F for n= 2, n= 4, or n= 6 are

of special interest:

Qy =−(f0y ′
)′ +f1y if n= 2,

Qy = [(f0y ′′
)′ −f1y ′

]′ −f2y if n= 4,

Qy = {[−(f0y ′′′
)′ +f1y ′′

]′ +f2y ′
}′ +f3y if n= 6,

(2.14)

while, in general, Qy is equal to

(−1)k
{{···{[(f0y(k)

)′ −f1y(k−1)]′ −f2y(k−2)}′ −···−fk−1y ′
}′ −fky}. (2.15)

Note that (2.11) implies that

f0 �= 0 a.e. on J. (2.16)

We now turn to the BVP consisting of the general QDE (2.6) and a (linear two-point)

BC defined by

AY(a)+BY(b)= 0, (2.17)

where A,B ∈Mn,n(C) such that (A | B)∈M∗
n,2n(C). Note that equivalent linear algebraic

equations of the form (2.17) define the same BC. Each value of λ for which the QDE

(2.6) has a nontrivial solution satisfying the BC (2.17) is called an eigenvalue of the

BVP consisting of (2.6) and (2.17) and such a solution is called an eigenfunction for

this eigenvalue. The vector space spanned by the eigenfunctions for an eigenvalue is

the eigenspace for the eigenvalue, while the dimension of the eigenspace is called the

geometric multiplicity of the eigenvalue. Since (2.6) has exactly n linearly independent

solutions, the geometric multiplicity of any eigenvalue is an integer not smaller than 1

and not larger than n.

Theorem 2.3. A number λ ∈ C is an eigenvalue of the boundary value problem

consisting of (2.6) and (2.17) if and only if

∆(λ) := det
(
A+BΦ(b,λ))= 0. (2.18)

Remark 2.4. Actually, a number λ∗ ∈ C is an eigenvalue for (2.17) of geometric mul-

tiplicity m if and only if A+BΦ(b,λ∗) has rank n−m; in this case, the eigenfunctions

are
∑n
i=1 ciφ1i(·,λ∗), where the vector c = (c1 c2 ··· cn )t ∈ Cn varies over the nonzero

solutions of

(
A+BΦ(b,λ))c= 0. (2.19)

We will call the important function ∆, unique up to a nonzero constant multiple, the

characteristic function of the BVP consisting of (2.6) and (2.17). By Theorem 2.2, ∆ is an

entire function. This yields the following corollary.
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Corollary 2.5. There are only the following four possibilities:

(i) the problem has no eigenvalue;

(ii) the problem has a finite number of eigenvalues;

(iii) the problem has an infinite but countable number of eigenvalues, and the eigen-

values do not have any accumulation point;

(iv) every complex number is an eigenvalue.

The analytic multiplicity (or just multiplicity) of an isolated eigenvalue is the order

of the eigenvalue as a zero of ∆. An eigenvalue is said to be simple if it has multiplicity

1, while the eigenvalues of multiplicity 2 are called double eigenvalues. When we count

the (isolated) eigenvalues of a BVP in a domain in C, their multiplicities will be taken

into account.

Let ‖·‖ be a norm on Mn,n(C). A slightly different form of the following result has

appeared in [13]. It is a consequence of Theorem 2.1, the entireness of ∆, and Rouché’s

theorem in complex analysis.

Theorem 2.6. Let � ⊂ C be a bounded open set such that its boundary does not

contain any eigenvalue of the boundary value problem consisting of (2.6) and (2.17),

and m ≥ 0 the number of eigenvalues of the problem in �. Then, there exists a δ > 0

such that the boundary value problem consisting of (2.6) and any boundary condition

CY(a)+DY(b)= 0 (2.20)

satisfying

‖A−C‖+‖B−D‖< δ (2.21)

also has exactly m eigenvalues in �.

A coefficient matrix F is said to be E-symmetric if

FE+EF∗ = 0, (2.22)

where

E =


0 ··· 0 −1
... . .

.
(−1)2 0

0 . .
.

. .
. ...

(−1)n 0 ··· 0

 . (2.23)

The BC (2.17) is said to be selfadjoint if

AEA∗ = BEB∗. (2.24)

Note that selfadjointness is well defined: the matrix (A | B) in (2.17) satisfies (2.24) if

and only if the coefficient matrix of any equivalent algebraic equation does. Whenw > 0

a.e. on J, the symmetry condition and the selfadjointness condition guarantee that the

BVP consisting of (2.6) and (2.17) can be identified with a selfadjoint operator in the
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weighted Hilbert space L2(J,C;w), see [17, 18, 19, 20]. From this we have the following

theorem.

Theorem 2.7. Assume that F is E-symmetric,w is positive a.e. on J, and the boundary

condition (2.17) is selfadjoint. Then, the following conclusions hold.

(i) The boundary value problem consisting of (2.6) and (2.17) has a discrete spectrum

consisting of an infinite but countable number of all real eigenvalues.

(ii) When the order n≥ 2 is odd, the spectrum is unbounded both from above and from

below.

(iii) When the order n= 2k with k∈N and the leading coefficient fk,k+1 is positive a.e.

on J, then the spectrum is bounded from below but not from above. Thus, the eigenvalues

can be ordered into a sequence

λ1 ≤ λ2 ≤ λ3 ≤ ··· , (2.25)

approaching +∞ so that the number of times an eigenvalue appears in the sequence is

equal to its multiplicity.

(iv) When the order n = 2k with k ∈ N and the leading coefficient fk,k+1 changes its

sign on J, that is, both the set {x ∈ J, fk,k+1(x) > 0} and the set {x ∈ J, fk,k+1(x) < 0}
have positive Lebesgue measures, then the spectrum is unbounded from above and from

below.

3. Spaces of boundary conditions. Recall that the (nth order) complex BCs are rep-

resented by systems of n linearly independent homogeneous equations on Y(a) and

Y(b) with complex coefficients. Two such systems

AY(a)+BY(b)= 0, CY(a)+DY(b)= 0 (3.1)

represent the same complex BC if and only if there exists a matrix T ∈ GL(n,C) such

that

(C|D)= (TA|TB). (3.2)

Thus, the space �C of complex BCs is just the quotient space

GL(n,C)
∖

M∗
n,2n(C). (3.3)

Here we put GL(n,C) on the left in the quotient to indicate that the corresponding

factors are on the left. The complex BC represented by the first system in (3.1) will be

denoted by [A | B]. Note here that square brackets, not parentheses, are used. Usual

bold-faced capital Latin letters, such as A, will also be used to denote BCs. We give the

space Mn,2n(C) of n×2n complex matrices the usual topology on Cn×2n, then M∗
n,2n(C)

is an open subset of Mn,2n(C). In this way, �C inherits a topology, the quotient topology.

Theorem 3.1. The space �C of nth-order complex boundary conditions is a con-

nected and compact complex manifold of complex dimension n2.

Proof. The space �C is also the space of complex n-planes in C2n through the

origin, so it is the well-known Grassmann manifold Gn(C2n), see [10, 11].
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Remark 3.2. Note that �C \ {[I|0],[0|− I]} is not compact. This is the reason for

including in �C the degenerated BCs [I|0] and [0|−I].
When n= 2, �C has the following canonical atlas of local coordinate systems:

�C
1,2 =

{
[I|B]; B ∈M2,2(C)

}
,

�C
1,3 =

{[
1 a12 0 b12

0 a22 −1 b22

]
; a12,a22,b12,b22 ∈ C

}
,

�C
1,4 =

{[
1 a12 b11 0

0 a22 b21 −1

]
; a12,a22,b11,b21 ∈ C

}
,

�C
2,3 =

{[
a11 1 0 b12

a21 0 −1 b22

]
; a11,a21,b12,b22 ∈ C

}
,

�C
2,4 =

{[
a11 1 b11 0

a21 0 b21 −1

]
; a11,a21,b11,b21 ∈ C

}
,

�C
3,4 =

{
[A|−I]; A∈M2,2(C)

}
;

(3.4)

when n= 3, �C has the following canonical atlas of local coordinate systems:

�C
1,2,3 =

{
[I|B]; B ∈M3,3(C)

}
,

�C
1,2,4 =


1 0 a13 0 b12 b13

0 1 a23 0 b22 b23

0 0 a33 −1 b32 b33

 ;

a13,a23,a33,
b12,b13,b22,

b23,b32,b33 ∈ C

 , . . . ,
�C

4,5,6 =
{
[A|−I]; A∈M3,3(C)

}
,

(3.5)

and so forth. Coordinate systems of the form indicated by (3.4) and (3.5) are the so-

called canonical coordinate systems on �C. In general, for each subset N ⊂ N2n with

exactly n elements, we will use �C
N to denote the corresponding canonical coordinate

system on �C.

Given a BC [A | B], one can bring it into the standard form of the elements in a

canonical coordinate system using the Gauss elimination. More precisely, one applies

only row operations to the matrix (A | B) such that each of some n columns has exactly

one nonzero entry; all these nonzero entries in the left-half block equal 1 and are in the

top rows, while the ones in the right-half block equal −1 and are in the remaining rows;

and any two of these nonzero entries are in different rows. These columns of the new

matrix will be called the normalized columns, while the other columns will be called the

unnormalized columns. Such a procedure will be called a normalization of [A | B].
Similarly, the space �R of (nth-order) real BCs is just

GL(n,R)
∖

M∗
n,2n(R), (3.6)

and we have the following result.
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Theorem 3.3. The space �R of nth-order real boundary conditions is a connected

and compact real-analytic manifold of dimension n2.

The space �R has an atlas of canonical coordinate systems similar to the canonical

coordinate systems on �C, and their notation is clear.

Under the Grassmann manifold structures on �C and �R, different types of BCs (e.g.,

the coupled BCs, the degenerated BCs, and the separated BCs) are naturally related to

each other. Moreover, by applying Theorem 2.6 to each of the canonical coordinate sys-

tems on �C, one deduces the following general version of the continuous dependence

of eigenvalues on BC.

Theorem 3.4. Let �⊂ C be a bounded open set whose boundary does not contain any

eigenvalue for a boundary condition A∈�C, and m≥ 0 the number of the eigenvalues

for A in �. Then, there exists a neighborhood � of A in �C such that there are exactly

m eigenvalues in � for any boundary condition in �.

Remark 3.5. Theorem 3.4 implies that if λ∗ is a simple eigenvalue for a BC A∈�C,

then there is a continuous function Λ : �→ C defined on a connected neighborhood �

of A in �C such that

(i) Λ(A)= λ∗;

(ii) for any X∈ �, Λ(X) is a simple eigenvalue for X.

Any two such functions agree on the common part (still a neighborhood of A in �C)

of their domains. So, by the continuous simple eigenvalue branch through λ∗ we will

mean any such function.

In general, by a continuous eigenvalue branch we mean a continuous function Λ :

� → C defined on a connected open set � ⊂ �C such that for each A ∈ �, Λ(A) is an

eigenvalue for A.

We may restrict our attention to the space �R of real BCs. There is a result for �R

similar to Theorem 3.4. Moreover, the concepts of continuous eigenvalue branch over

�R and continuous simple eigenvalue branch over �R have their clear meanings.

The concept of continuous eigenvalue branch has appeared in [13, 15, 16]. The fol-

lowing result illustrates the importance of the concept of continuous simple eigenvalue

branch in addition to implying existence of eigenvalues.

Theorem 3.6. If the quasi-differential equation (2.6) has real coefficients, then the

values of a continuous simple eigenvalue branch over �R are either all real or all nonreal.

Proof. See [15, Theorem 3.8].

Next, we consider the selfadjoint BCs. First, we want to show that they form a closed

subset of �C.

Lemma 3.7. The space �C of complex selfadjoint boundary conditions is a closed

subset of �C, and the space �R of real selfadjoint boundary conditions is a closed subset

of �R. Hence, �C and �R are compact spaces.

Proof. Let {[Ai|Bi]; i ∈ N} ⊂ �C such that [Ai|Bi] → [A∞|B∞] ∈ �C as i → +∞.

We can assume that [A∞|B∞],[A1|B1],[A2|B2], . . . all belong to the same canonical
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coordinate system on �C. So, we can actually assume that (A∞|B∞),(A1|B1),(A2|B2), . . .
are all in the standard form of that coordinate system. Thus, as i→+∞, Ai → A∞ and

Bi → B∞ in Mn,n(C). From AiEA∗i = BiEB∗i for each i ∈ N, we then obtain A∞EA∗∞ =
B∞EB∗∞, that is, [A∞|B∞] ∈ �C. Therefore, �C is closed. Similarly, �R is also closed.

For eachm∈N, setNm = {1, . . . ,m}. LetA∈Mn,n(C) and i∈Nn\{(n+1)/2}. We will

say that B’s ith column and its (n+1−i)th column form a symmetric pair. Denote by

A(i) the matrix whose ith column is the (n+1−i)th column of A, (n+1−i)th column

is the ith column of A multiplied by (−1)n+1, and the other columns are the same as

those of A. The next result shows that in many canonical coordinate systems on �C

checking the selfadjointness amounts to the same work.

Lemma 3.8. Let i∈Nn such that i �= (n+1)/2. Then, a boundary condition [A | B] is

selfadjoint if and only if [A(i)|B] is, and if and only if [A | B(i)] is.

Proof. For any m ∈ Nn, we set m′ = n+1−m. Now, let j,l ∈ Nn. Then, the (j,l)-
entry of AEA∗ is given by

m �=i, m �=i′∑
1≤m≤n

(−1)m
′
aj,m′al,m+(−1)i

′
aj,i′al,i+(−1)iaj,ial,i′

=
m �=i,m �=i′∑

1≤m≤n
(−1)m

′
a(i)j,m′a(i)l,m+(−1)iaj,i′

[
(−1)n+1al,i

]+(−1)i
′[
(−1)n+1aj,i

]
al,i′

=
n∑

m=1

a(i)j,m′a(i)l,m,

(3.7)

which equals the (j,l)-entry ofA(i)E(A(i))∗. Therefore, AEA∗ =A(i)E(A(i))∗, and hence

[A | B] is selfadjoint if and only if [A(i)|B] is. Similarly, [A | B] is selfadjoint if and only

if [A | B(i)] is.

For illustration, we list the following applications of Lemma 3.8: when n= 3,

1 0 a13 b11 b12 0

0 1 a23 b21 b22 0

0 0 a33 b31 b32 −1

∈�C⇐⇒

1 0 a13 0 b12 b11

0 1 a23 0 b22 b21

0 0 a33 −1 b32 b31

∈�C,

a11 0 1 0 b12 b13

a21 1 0 0 b22 b23

a31 0 0 −1 b32 b33

∈�C⇐⇒

1 0 a11 0 b12 b13

0 1 a21 0 b22 b23

0 0 a31 −1 b32 b33

∈�C,

a11 0 1 b11 b12 0

a21 1 0 b21 b22 0

a31 0 0 b31 b32 −1

∈�C⇐⇒

1 0 a11 0 b12 b11

0 1 a21 0 b22 b21

0 0 a31 −1 b32 b31

∈�C,

(3.8)
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and when n= 4,
1 0 a13 a14 0 b12 0 b14

0 1 a23 a24 0 b22 0 b24

0 0 a33 a34 −1 b32 0 b34

0 0 a43 a44 0 b42 −1 b44

∈�C

⇐⇒


1 0 a13 a14 0 0 −b12 b14

0 1 a23 a24 0 0 −b22 b24

0 0 a33 a34 −1 0 −b32 b34

0 0 a43 a44 0 −1 −b42 b44

∈�C,


1 a12 0 a14 b11 b12 0 0

0 a22 1 a24 b21 b22 0 0

0 a32 0 a34 b31 b32 0 −1

0 a42 0 a44 b41 b42 −1 0

∈�C

⇐⇒


1 0 −a12 a14 0 0 −b12 −b11

0 1 −a22 a24 0 0 −b22 −b21

0 0 −a32 a34 −1 0 −b32 −b31

0 0 −a42 a44 0 −1 −b42 −b41

∈�C,

(3.9)

and so forth.

We will see that the space of selfadjoint BCs in the even-order case is different from

that in the odd-order case. For example, the space of real selfadjoint BCs is connected

in the even-order case, while it has two connected components in the odd-order case.

So, now, we discuss these two cases separately.

Selfadjoint boundary conditions of an even order. Let n= 2k with k∈N.

First, we have a fact on the ranks of the left- and right-half blocks in a selfadjoint BC.

Lemma 3.9. For any [A | B]∈�C, rankA≥ k and rankB ≥ k.

Proof. Let l= rankA, then l≥ 1 since rank(A | B)=n and |detA| = |detB|. Assume

that l < k, then we can assume further that the last n−l rows of A are 0. Thus,

AEA∗ =
(
C 0

0 0

)
= BEB∗ (3.10)

for some l×lmatrix C , and the lastn−l rows of B are linearly independent (so, rankB ≥
n− l). Normalize [A | B] so that n− l columns of B are normalized. Note that after

this normalization, the last n− l rows of A can remain 0, which will be assumed. We

normalize [A | B] such that the number of symmetric pairs of unnormalized columns

in B is minimum. Since n− l > k, there is an integer j ∈ Nk such that both B’s jth
column and its (n+1−j)th column are normalized. We can assume that

bk,j = bn,n+1−j =−1. (3.11)

For each integerm∈Nn\{j,n+1−j}, we have the following: if one of B’smth column

and its (n+1−m)th column is normalized, then either bk,n+1−m = 0 or bn,m = 0; if both
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of these two columns are unnormalized, then we must have bn,m = 0 by our choice of

the normalization. Thus, the (k,n)-entry of BEB∗ is given by

n∑
m=1

(−1)n+1−mbk,n+1−mbn,m = (−1)jbk,jbn,n+1−j = (−1)j, (3.12)

contradicting (3.10). Therefore, rankA≥ k. Similarly, rankB ≥ k.

Direct calculations show that the selfadjointness equation AEA∗ = BEB∗ can be eas-

ily solved (which we will do in general soon) if every symmetric pair of columns in A or

in B has one (and hence only one) normalized column. Naturally, one wonders if every

selfadjoint BC can be normalized into such a form. The next result gives an affirmative

answer.

Lemma 3.10. Every [A | B]∈�C has a normalization such that each symmetric pair

of columns in A or in B has one (and hence only one) normalized column.

Proof. Since rankA≥ k, we can begin the normalization of [A | B] by normalizing

k columns of A. Note that the nonzero entries of these columns are in the first k rows.

We can assume that the number of symmetric pairs of unnormalized columns in A is

minimum. If that minimum number is 0, then for each integer j ∈ Nk, one of A’s jth
column and its (n+1−j)th column is normalized, and hence

AEA∗ =
(
C D
H 0

)
(3.13)

for some k×k matrices C , D, and H. Otherwise, for each integer j ∈Nk such that both

A’s jth column and its (n+1−j)th column are unnormalized, we must have

ai,j = ai,n+1−j = 0 (3.14)

for i= k+1, k+2, . . . ,n, and hence (3.13) also holds. Thus, we can always assume that

(3.13) holds.

Note that the last row of AEA∗ is just a rearrangement of the last row of A, with

some entries signs changed. If the lower half of B now has a rank less than k, then

we can assume that the last row of B is 0, and hence so is BEB∗. Then, AEA∗ = BEB∗
implies that the last row of A is also 0, which is impossible. So, the rows in the lower

half of B are linearly independent.

We now continue the normalization of [A | B] by normalizing exactly k columns

in B without destroying the k normalized columns in A used above and such that the

number of symmetric pairs of unnormalized columns in B is minimum. If the minimum

number is not 0, then k ≥ 2 and, for some integer m ∈ Nk, both B’s mth column and

its (n+1−m)th column are normalized. Hence, we can assume that

bk+1,m = bn,n+1−m =−1. (3.15)

Thus, we must have bk+1,j = 0 for each j �=m such that B’s jth column is normalized,
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bn,j = 0 for each j �= n+1−m such that B’s jth column is normalized, and bk+1,j =
bk+1,n+1−j = 0 for each integer j ∈Nk such that both B’s jth column and its (n+1−j)th
column are unnormalized. So the (k+1,n)-entry of BEB∗ is (−1)m. By (3.13), AEA∗ �=
BEB∗, contradicting the selfadjointness. Therefore, after our normalization, [A | B]
does not have any symmetric pair of unnormalized columns in B.

Similarly, A does not have any symmetric pair of unnormalized columns after the

above normalization of [A | B].
A subset N ⊂ N2n with exactly n elements is called a preferred subset if for any

i∈Nk, exactly one of i and n+1−i is in N and exactly one of n+i and 2n+1−i is in

N. If N is a preferred subset of N2n, then the canonical coordinate system �C
N on �C is

called a preferred coordinate system. For example, when n= 2, �C
1,3, �C

1,4, �C
2,3, and �C

2,4

are preferred, while �C
1,2 and �C

3,4 are not. With this concept in mind, Lemma 3.10 just

says that every selfadjoint BC is in a preferred coordinate system on �C.

By Lemma 3.8, solving the selfadjointness equation AEA∗ = BEB∗ in any preferred

coordinate system on �C is equivalent to solving it in �C
I , where

I= {1,2, . . . ,k,n+1,n+2, . . . ,3k
}
. (3.16)

If we set

A=
(
I AU

0 AL

)
, B =

(
0 BU

−I BL

)
, (3.17)

where AU,AL,BU,BL ∈Mk,k(C), then

AEA∗ =
(
(−1)kAUEk+EkA∗U EkA∗L

(−1)kALEk 0

)
,

BEB∗ =
(

0 (−1)k+1BUEk
−EkB∗U (−1)k+1BLEk−EkB∗L

) (3.18)

since

E =
(

0 Ek
(−1)kEk 0

)
(3.19)

with Ek having its clear meaning. Note that E−1
k = (−1)k+1Ek = E∗k . So, in �C

I , the selfad-

jointness condition is equivalent to that

AUEk and BLEk are Hermitian, BU = EkA∗L Ek. (3.20)

For each subset N ⊂N2n with exactly n elements, set

�CN =�C
N∩�C. (3.21)
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Let Hk be the space of k×k Hermitian complex matrices. Then,

�CI =

[
I CEk 0 EkA∗L Ek
0 AL −I DEk

]
; C,D ∈Hk, AL ∈Mk,k(C)

�R4k2
(3.22)

and hence is a local coordinate system on �C. For each preferred subset N of N2n, we

have similar conclusions about �CN . For any two preferred subsets M and N of N2n,

�CM ∩�CN �= ∅, and the transformations between them are rational. In conclusion, we

have proved the following results.

Theorem 3.11. The space �C of 2kth-order complex selfadjoint boundary conditions

is a connected, compact, and real-analytic 4k2-dimensional real submanifold of �C. It

has an atlas of 22k local coordinate systems with rational transformations among them.

Remark 3.12. The space of selfadjoint extensions of the minimal operator corre-

sponding to the QDE (2.6) is parameterized by the unitary matrices in dimension 2k
and has a dimension of 4k2−1, see [18]. Thus, generically, a selfadjoint extension is

represented by a 1-parameter family of selfadjoint BCs.

If N is a preferred subset of N2n, then �CN is called a canonical coordinate system on

�C. As illustrations, we give the elements in the typical canonical coordinate system �CI
for the first two even values of n:

[
1 a12 0 a22

0 a22 −1 b22

]
(3.23)

with a12,b22 ∈R and a22 ∈ C if n= 2, and


1 0 a13 a14 0 0 −a44 a34

0 1 a23 −a13 0 0 a43 −a33

0 0 a33 a34 −1 0 b33 b34

0 0 a43 a44 0 −1 b43 −b33

 (3.24)

with a13,a33,a34,a43,a44,b33 ∈ C and a14,a23,b34,b43 ∈ R if n = 4. In general, C ∈
Mk,k(C) makes CEk ∈Hk if and only if

ci,j = (−1)i−j+k+1ck+1−j,k+1−i ∀i,j ∈Nk, (3.25)

that is, if and only if C has the form


c1,1 ··· c1,k−1 c1,k

... . .
.

c2,k−1 −c1,k−1

ck−1,1 . .
.

. .
. ...

ck,1 −ck−1,1 ··· (−1)k−1c1,1

 , (3.26)
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while EkA∗L Ek is given by


(−1)k+1an,n ··· (−1)3ak+2,n (−1)2ak+1,n

... ···
...

...

(−1)2k−1an,k+2 ··· (−1)k+1ak+2,k+2 (−1)kak+1,k+2

(−1)2kan,k+1 ··· (−1)k+2ak+2,k+1 (−1)k+1ak+1,k+1

 . (3.27)

As a consequence of our analysis for Theorem 3.11, we have the following fact which

is a refinement of Lemma 3.9.

Corollary 3.13. For any 2kth-order complex selfadjoint boundary condition [A | B],
rankA= rankB ≥ k.

Proof. By Lemma 3.8, we can assume that [A | B]∈ �CI . Using (3.17), from (3.20) we

obtain that rankAL = rankB∗U = rankBU, so rankA= k+rankAL = k+rankBU = rankB.

In a linear system representing a BC, usually there are equations involving only Y(a),
equations involving only Y(b), and equations involving both Y(a) and Y(b). They will

be called equations at a, equations at b, and coupled equations, respectively. In order

to reach the minimum number of coupled equations, we need to apply row operations

to the system so that the nonzero rows of the Y(a)-coefficient matrix and of the Y(b)-
coefficient matrix are linearly independent and the two sets of rows have the minimum

overlap. In the form given by (3.22), we need to apply row operations to the last k rows

of the matrix (A | B) so that the nonzero rows of AL are linearly independent (and at

the same time giving up the form of the I block in A), and then to the first k rows of

(A | B) so that the nonzero rows of EkA∗L Ek are linearly independent (and meanwhile

loosing the form of the −I block in B). For example, the minimum number of coupled

equations in the selfadjoint BC


1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 −1

0 0 1 0 −1 0 0 0

0 0 1 0 0 −1 0 0

=


1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 −1

0 0 1 0 −1 0 0 0

0 0 0 0 1 −1 0 0

 (3.28)

is 2. Thus, by Lemma 3.8 and the fact that rankAL = rank(EkA∗L Ek), we have proven the

following results, special cases of which have appeared in [5, 6].

Corollary 3.14. The minimum number of coupled equations in a complex selfad-

joint boundary condition of an even order is always even. In any form of the boundary

condition achieving this minimum number, the number of equations at the left-end point

is equal to the number of equations at the right-end point. Moreover, for any even integer

m satisfying 0≤m≤ 2k, there are 2kth-order complex selfadjoint boundary conditions

whose minimum numbers of coupled equations are m.

By Lemma 3.8 and (3.22), the space �C,s
2k of 2kth-order complex separated selfadjoint

BCs is a connected, compact, and real-analytic 2k2-dimensional real submanifold of �C.
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It has an atlas of 22k local coordinate systems with rational transformations among

them. The canonical coordinate systems on �C,s
2k are �C,sN = �C,s

2k ∩�CN , where N varies

over the set of preferred subsets of N2n.

All the above arguments can be restricted to the space �R to obtain results about

the real selfadjoint BCs. Here we first state the following theorem.

Theorem 3.15. The space �R of 2kth-order real selfadjoint boundary conditions is

a connected, compact, and real-analytic (2k2+k)-dimensional submanifold of �R. It has

an atlas of 22k local coordinate systems with rational transformations among them.

As in the complex case, the canonical coordinate systems on �R are �RN =�R∩�R
N ,

where N varies over the set of preferred subsets of N2n.

The only other thing that we mention is the space �R,s
2k of 2kth-order real separated

selfadjoint BCs. By Lemma 3.8 and (3.22), �R,s
2k is a connected, compact, and real-analytic

(k2+k)-dimensional submanifold of �R. It has an atlas of 22k local coordinate systems

with rational transformations among them. The canonical coordinate systems on �R,s
2k

are �R,sN =�R,s
2k ∩�RN , where N varies over the set of preferred subsets of N2n.

Selfadjoint boundary conditions of an odd order. Let n= 2k+1 with k∈
N. Now, for any nth-order complex selfadjoint BC [A | B], each of A and B has a middle

column—its (k+1)th column which does not belong to any symmetric pair.

As in the even-order case, first we have the following two lemmas on the ranks of the

left- and right-half blocks in a selfadjoint BC and normalizations of selfadjoint BCs.

Lemma 3.16. For any (2k+1)th-order [A | B]∈�C, rankA≥ k+1 and rankB ≥ k+1.

Therefore, there is no separated selfadjoint boundary condition of an odd order.

Proof. Here we only show that rankA ≥ k+1, while similar arguments give that

rankB ≥ k+1.

Let l = rankA, then l ≥ 1. To reach a contradiction, we assume that l ≤ k. We can

assume further that the last n− l rows of A are 0. Hence, (3.10) holds for some l× l
matrix C , and the last n−l rows of B are linearly independent.

If bi,k+1 = 0 for i= l+1, l+2, . . . , n, then a normalization of B as that in the proof of

Lemma 3.9 implies a contradiction, since the middle column of B cannot be normalized

and n− l ≥ k+ 1. Thus, we must have that bi,k+1 �= 0 for some integer i satisfying

l+1≤ i≤n.

Now, normalize B such that its middle column is normalized (first), and the number

nB of symmetric pairs of unnormalized columns is minimum for such a normalization.

By part of the arguments in the proof of Lemma 3.9 (putting the nonzero entries of the

symmetric pair of normalized columns used into the right rows), we must have that

(l = k and) nB = 0. We can assume that bn,k+1 = −1. Then, the (n,n)-entry of BEB∗

equals (−1)k+1, still contradicting (3.10). Therefore, we have shown that rankA≥ k+1.

Lemma 3.17. Every odd-order [A | B]∈�C has a normalization such that the middle

column of A is normalized and each symmetric pair of columns in A or in B has one (and

hence only one) normalized column.
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Proof. If the middle column of A is zero, we normalize k columns of A such that

the number of symmetric pairs of unnormalized columns is minimum. Then,

AEA∗ =
(
C D
H 0

)
(3.29)

for some k×k matrix C , k× (k+1) matrix D, and (k+1)×k matrix H. If bi,k+1 = 0

for i = k+1, k+2, . . . , n, then we normalize k+1 columns of B such that the number

of symmetric pairs of unnormalized columns is minimum, and obtain a nonzero entry

in the lower right (k+1)× (k+1) block of BEB∗, which is impossible. So, we can as-

sume that bn,k+1 �= 0. Then, we normalize k+1 columns of B with its middle column

normalized, and the number of symmetric pairs of unnormalized columns is minimum

for such a normalization. We can assume further that bn,k+1 = −1 and the minimum

number is 0. Then, the (n,n)-entry of BEB∗ is (−1)k+1, which is impossible. Therefore,

the middle column of A is nonzero.

Normalize k+1 columns of A such that its middle column is normalized and the

number nA of symmetric pairs of unnormalized columns of A is minimum for such a

normalization. Then,

AEA∗ =

C D̂ D
Ĥ d 0

H 0 0

= BEB∗ (3.30)

for some k×k matrices C , D, and H, k×1 matrix D̂, 1×k matrix Ĥ, and constant d.

Moreover, the last row of AEA∗ is just a rearrangement of the last row of A, with some

entries signs changed. As in the even-order case, the last k rows of B are then linearly

independent.

If the rank of 
bk+2,1 . . . bk+2,k bk+2,k+2 . . . bk+2,n

...
...

...
...

...
...

bn,1 . . . bn,k bn,k+2 . . . bn,n

 (3.31)

is less than k, then we can assume that

bn,1 = ··· = bn,k = bn,k+2 = ··· = bn,n = 0. (3.32)

Thus, bn,k+1 �= 0, and hence the (n,n)-entry of BEB∗ is

(−1)k+1bn,k+1bn,k+1 �= 0, (3.33)

contradicting (3.30) above. Therefore, we can always normalize k columns of B such

that its middle column is unnormalized and the number nB of symmetric pairs of

unnormalized columns is minimum for such a normalization.

If nB > 0, then k≥ 2, and there is an m∈Nk such that both B’s mth column and its

(n+1−m)th column are normalized. We can assume that

b2k,m = bn,n+1−m =−1. (3.34)
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Thus, the lower right 2×2 block of BEB∗ is

 (−1)k+1b2k,k+1b2k,k+1 (−1)k+1b2k,k+1bn,k+1+(−1)m

(−1)m+(−1)k+1bn,k+1b2k,k+1 (−1)k+1bn,k+1bn,k+1

 �= 0, (3.35)

contradicting (3.30). Therefore, nB = 0, and

BEB∗ =
(

0 K
L M

)
+(−1)k+1(bi,k+1bj,k+1

)
n×n (3.36)

for some (k+1)×k matrix K, k×(k+1) matrix L, and k×k matrix M .

Then, by some arguments similar to those in the previous paragraph, we must also

have nA = 0.

As in the even-order case, a subset N ⊂ N2n with exactly n elements is called a

preferred subset if k+1 ∈ N; and for any i ∈ Nk, exactly one of i and n+1− i is in N
and exactly one of n+ i and 2n+1− i is in N. If N is a preferred subset of N2n, then

the canonical coordinate system �C
N on �C is called a preferred coordinate system. For

example, when n = 3, �C
1,2,4, �C

1,2,6, �C
2,3,4, and �C

2,3,6 are preferred, while �C
1,2,3, �C

1,2,5,

�C
1,4,5, �C

1,5,6, �C
3,4,5, �C

3,5,6, and �C
4,5,6 are not. With this new definition, Lemma 3.17 just

says that every odd-order selfadjoint BC is in a preferred coordinate system on �C.

By Lemma 3.8, solving the selfadjointness equation AEA∗ = BEB∗ in any preferred

coordinate system on �C is equivalent to solving it in �C
J , where

J= {1,2, . . . ,k+1,n+1,n+2, . . . ,3k+1
}
. (3.37)

If we set

A=

I 0 AU

0 1 AM

0 0 AL

 , B =

 0 bU BU

0 bM BM

−I bL BL

 , (3.38)

where AU,AL,BU,BL ∈Mk,k(C), bU,bL ∈Mk,1(C), AM,BM ∈M1,k(C), and bM is a constant,

then

AEA∗ =

(−1)k+1AUEk+EkA∗U EkA∗M EkA∗L
(−1)k+1AMEk (−1)k+1 0

(−1)k+1ALEk 0 0

 ,

BEB∗ =

 0 0 (−1)kBUEk
0 0 (−1)kBMEk

−EkB∗U −EkB∗M (−1)kBLEk−EkB∗L



+(−1)k+1

bUb∗U bUbM bUb∗L
bMb∗U bMbM bMb∗L
bLb∗U bLbM bLb∗L

 ,

(3.39)
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since

E =

 0 0 Ek
0 (−1)k+1 0

(−1)k+1Ek 0 0

 . (3.40)

So, AEA∗ = BEB∗ can be rewritten as

AUEk+
(
AUEk

)∗ = bUb∗U , AM = (−1)k+1bMb∗UEk, (3.41)

BU = (−1)k+1bUb∗L Ek−EkA∗L Ek, bM ∈ S1, (3.42)

BM = (−1)k+1bMb∗L Ek, BLEk+
(
BLEk

)∗ = bLb∗L . (3.43)

In particular, both AUEk−(1/2)bUb∗U and BLEk−1/2bLb∗L are skew-Hermitian matrices.

For each subset N of N2n with exactly n elements, set

�CN =�C
N∩�C. (3.44)

Let Wk be the space of k×k skew-Hermitian complex matrices. Then, the elements of

�CJ are given by


I 0 CEk+ (−1)k+1

2
bUb∗UEk 0 bU (−1)k+1bUb∗L Ek−EkA∗L Ek

0 1 (−1)k+1bMb∗UEk 0 bM (−1)k+1bMb∗L Ek

0 0 AL −I bL DEk+ (−1)k+1

2
bLb∗L Ek

 (3.45)

with C,D ∈Wk, AL ∈Mk,k(C), bU,bL ∈Mk,1(C), and bM ∈ S1. Thus,

�CJ �R4k2+4k×S1 (3.46)

and hence is a local cylindrical coordinate system on �C. For each preferred subset N of

N2n, we have similar conclusions about �CN . For any two preferred subsets M and N of

N2n, �CM ∩�CN �= ∅, and the transformations between them are rational. In conclusion,

we have proved the following results.

Theorem 3.18. The space �C of (2k+1)th-order complex selfadjoint boundary con-

ditions is a connected, compact, and real-analytic (2k+1)2-dimensional real submanifold

of �C. It has an atlas of 22k local cylindrical coordinate systems with rational transfor-

mations among them.

There is also a remark in the odd-order case similar to Remark 3.12 in the even-order

case. We omit the details.



GEOMETRIC ASPECTS OF HIGH-ORDER EIGENVALUE PROBLEMS 667

If N is a preferred subset of N2n, then �CN is called a canonical cylindrical coordinate

system on �C. As illustrations, we give the elements in the typical canonical cylindrical

coordinate system �CJ for the first two odd values of n:


1 0 −1

2
b1b1+ir 0 b1 −a33−b1b3

0 1 −b1b2 0 b2 −b2b3

0 0 a33 −1 b3 −1
2
b3b3+is

 (3.47)

with r ,s ∈R, a33,b1,b3 ∈ C, and b2 ∈ S1 if n= 3, and



1 0 0 a14
1
2
b1b1+ir 0 0 b1 a55−b1b5 −a45+b1b4

0 1 0
−1
2
b2b2+is a14+b2b1 0 0 b2 −a54−b2b5 a44+b2b4

0 0 1 −b2b3 b1b3 0 0 b3 −b3b5 b3b4

0 0 0 a44 a45 −1 0 b4 b44
1
2
b4b4+ix

0 0 0 a54 a55 0 −1 b5
−1
2
b5b5+iy b44+b5b4


(3.48)

with a14,a44,a45,a54,a55,b1,b2,b4,b44,b5 ∈ C, r ,s,x,y ∈ R, and b3 ∈ S1 if n = 5. In

general, given v = (v1 v2 ··· vk )t ∈ Mk,1(C), a k× k complex matrix C makes CEk −
(1/2)vv∗ ∈Wk if and only if

ci,j = (−1)i−j+kck+1−j,k+1−i+(−1)jvivk+1−j ∀i,j ∈Nk, (3.49)

that is, if and only if C has the form



c1,1 ··· c1,k−1
(−1)k

2
v1v1+ir1

... . .
. (−1)k−1

2
v2v2+ir2 c1,k−1+(−1)kv2v1

ck−1,1 . .
.

. .
. ...

−1
2
vkvk+irk ck−1,1+(−1)2vkvk−1 ··· (−1)kc1,1+(−1)kvkv1


(3.50)

with r1,r2, . . . ,rk ∈R, while

(−1)k+1v∗Ek =
(
−vk ··· (−1)k−1v2 (−1)kv1

)
(3.51)
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and (−1)k+1bUb∗L Ek−EkA∗L Ek is given by


(−1)kan,n ··· (−1)2ak+3,n −ak+2,n

(−1)k+1an,2k ··· (−1)3ak+3,2k (−1)2ak+2,2k
... ···

...
...

(−1)2k−1an,k+2 ··· (−1)k+1ak+3,k+2 (−1)kak+2,k+2



+


−b1bn ··· (−1)k−1b1bk+3 (−1)kb1bk+2

−b2bn ··· (−1)k−1b2bk+3 (−1)kb2bk+2
... ··· ...

...

−bkbn ··· (−1)k−1bkbk+3 (−1)kbkbk+2

 ,
(3.52)

where we have abbreviated the middle column of B as (b1 b2 ··· bn )t .
As a consequence of our analysis for Theorem 3.18, we have the following fact which

is a refinement of Lemma 3.16.

Corollary 3.19. For any (2k+1)th-order complex selfadjoint boundary condition

[A | B], rankA= rankB ≥ k+1.

Proof. By Lemma 3.8, we can assume that [A | B] ∈ �CJ . Since bM �= 0 by (3.42), we

can apply only row operations to [A | B] such that bU = 0. Then, [A | B] has the form

I aU AU 0 0 BU

0 1 AM 0 bM BM

0 0 AL −I bL BL

 , (3.53)

where aU is a k×1 matrix. Now, AEA∗ = BEB∗ implies that EkA∗L = (−1)kBUEk. So,

rankAL = rankBU, (3.54)

and rankA= k+1+rankAL = k+1+rankBU = rankB.

By Lemma 3.8, (3.53), (3.54), and the discussions right before Corollary 3.14, we have

the following results that are similar to those in Corollary 3.14.

Corollary 3.20. The minimum number of coupled equations in a complex selfad-

joint boundary condition of an odd order is always odd. In any form of the boundary

condition achieving this minimum number, the number of equations at the left-end point

is equal to the number of equations at the right-end point. Moreover, for any odd integer

m satisfying 1 ≤m ≤ 2k+1, there are (2k+1)th-order complex selfadjoint boundary

conditions whose minimum numbers of coupled equations are m.

Finally, we restrict our attention to the space �R of real selfadjoint BCs of the odd

ordern. LetN be a preferred subset ofN2n. By Lemma 3.8 and (3.42), if [A | B]∈ �CN∩�R

has the normalized form corresponding to (3.45), then (A,B are real, and) bk+1,k+1 =±1.
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Thus,

�RN,± =:
{
[A | B]∈ �CN∩�R; bk+1,k+1 =±1 when [A | B] is normalized

}�R2k2+k

(3.55)

are local coordinate systems on �R. There are 22k+1 such local coordinate systems on

�R, to be called the canonical coordinate systems on �R.

Theorem 3.21. The space �R of (2k+1)th-order real selfadjoint boundary conditions

is a compact and real-analytic (2k2+k)-dimensional submanifold of �R. It has an atlas

of 22k+1 local coordinate systems with rational transformations among them and exactly

two connected components.

Proof. The only thing left is to determine the number of connected components in

�R. If [A | B]∈ �RJ,± is in the form (3.53), then from EkAtL = (−1)kBUEk we obtain that

detA= detAL = (−1)kdetBU = (−1)kbM detB. (3.56)

Hence, on each canonical coordinate system on �R, either we always have that detA=
detB or we always have that detA = −detB. On the other hand, if [A | B] ∈ �R has

detA �= 0, then detB �= 0, and [A | B] can be normalized into the form in (3.45), that

is, either [A | B] ∈ �RJ,+ or [A | B] ∈ �RJ,−, depending on detA = (−1)kdetB or detA =
(−1)k+1 detB. So, all the canonical coordinate systems always satisfying detA = detB
overlap, and all the other canonical coordinate systems also overlap. When two canon-

ical coordinate systems overlap, their common part is open and hence must have a BC

[A | B] with detA �= 0 by dimension counting. Thus, on any two overlapping canonical

coordinate systems, either we always have that detA = detB or we always have that

detA = −detB. So, the canonical coordinate systems always satisfying detA = detB
form a connected component of �R, and all the other canonical coordinate systems

form another connected component. Therefore, �R has exactly two connected compo-

nents.

We will denote by �R− the connected component of �R containing �RJ,−, and �R+ the

other component of �R.

4. Group actions and λ-hypersurfaces. In this section, we first discuss some Lie

group actions on spaces of BCs. Then, for a given QDE of order n, we characterize

the set of complex BCs that have a complex number λ as an eigenvalue of geometric

multiplicity n, the set of complex BCs that have λ as an eigenvalue, and the set of real

BCs that have a real number λ as an eigenvalue. The determination of the latter two

sets uses the Lie group actions to be discussed. Moreover, we also present a topological

description of each of the latter two sets. Finally, we give an example to indicate that

the set of real selfadjoint BCs having a real number λ as an eigenvalue is complicated

in general.

Given (
G H
K L

)
∈ GL(2n,R), (4.1)
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where G,H,K,L∈Mn,n(R), the well-defined map

[A | B] � �→ [AG+BK|AH+BL] (4.2)

is a diffeomorphism of �R (onto itself). Thus, the group GL(2n,R) acts on �R from the

right.

For K=C or R, consider the real Lie subgroup

GKn =
{
M ∈ GL(n,K); MEM∗ = E} (4.3)

of GL(n,K). The Lie algebra of GKn is

�Kn =
{
M ∈ gl(n,K); ME+EM∗ = 0

}
. (4.4)

Direct calculations show the following: for n= 2k with k∈N,

(
I 0

0 (−1)kEk

)−1

E
(
I 0

0 (−1)kEk

)
=
(

0 −Ik
Ik 0

)
, (4.5)

which implies that GR2k is a conjugate of the real symplectic group

Sp(2k,R)=
{
M ∈ GL(n,R); M

(
0 −Ik
Ik 0

)
Mt =

(
0 −Ik
Ik 0

)}
, (4.6)

and GC2k is a conjugate of the symplectic group

Sp(2k)=
{
M ∈ GL(n,C); M

(
0 −Ik
Ik 0

)
M∗ =

(
0 −Ik
Ik 0

)}
, (4.7)

while for n= 2k+1 with k∈N,

T−1ET =

−Ik 0 0

0 (−1)k+1 0

0 0 Ik

 , (4.8)

where

T =

 Ik 0 Jk
0 1 0

(−1)kEk 0 (−1)k+1Dk

 (4.9)

with

Jk =


0 ··· 0 1
... . .

.
1 0

0 . .
.

. .
. ...

1 0 ··· 0

 , Dk =


−1 0 ··· 0

0 (−1)2
. . .

...
...

. . .
. . . 0

0 ··· 0 (−1)k

 , (4.10)
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which yields that GR2k+1 is a conjugate of the special pseudo-orthogonal group

SO(p,q)=
{
M ∈ GL(n,R); M

(−Ip 0

0 Iq

)
Mt =

(−Ip 0

0 Iq

)}
, (4.11)

and GC2k+1 is a conjugate of the special pseudo-unitary group

SU(p,q)=
{
M ∈ GL(n,C); M

(−Ip 0

0 Iq

)
M∗ =

(−Ip 0

0 Iq

)}
, (4.12)

where p = k+ (1+(−1)k)/2 and q = k+ (1−(−1)k)/2. Therefore, GRn and GCn are con-

nected. Moreover,

GR2 = Sp(2,R)= SL(2,R),

GC2 = Sp(2)= {zK; z ∈ S1, K ∈ SL(2,R)
}
,

(4.13)

which have been used in [15].

The subgroup {(
G 0

0 L

)
; G,L∈GRn

}
(4.14)

of GL(2n,R) actually acts on �R as onto diffeomorphisms, and also on �R,s as onto

diffeomorphisms when n is even. Moreover, for any G ∈ GL(n,R), the action of

diag(G,I)=:

(
G 0

0 I

)
(4.15)

on �R leaves �R
N invariant, where N = I if n is even and N = J if n is odd, and it also

leaves the space �R,s of separated real BCs invariant; and for any Ψ ∈ GRn, the action

of diag(Ψ ,I) on �R leaves the open and dense subset �RN of �R invariant, where N = I
if n is even and N = J if n is odd. When there is no confusion, the image of a real BC

[A | B] under the action of diag(G,I) will be abbreviated as [A | B]•G, while the image

of a subset � of �R will be written as �•G. Note that when n is even, �R,s•G =�R,s for

any G ∈GRn.

Proposition 4.1. If n is odd, then (�R−)•G =�R− and (�R+)•G =�R+ for any G ∈GRn.

Proof. Our claim is true for G = I. Fix an arbitrary G ∈ GRn. The connectedness of

GRn and the openness of �R± imply that (�R±)•G ⊆ �R±. Hence, the claim is true for G.

Similarly, the Lie group GL(2n,C) acts on �C from the right, the real Lie subgroup{
diag(G,H); G,H ∈GCn

}
(4.16)

of GL(2n,C) acts on �C, and the meanings of [A | B]•G and �•G in this general situation

are obvious. Note that when n is even, �C,s•G =�C,s for any G ∈GCn.

We will always let (2.6) be the given QDE. Recall that its matrix form is (2.9). We have

the following results about the values of its fundamental matrix Φ.
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Proposition 4.2. (i) For any λ∈C and x ∈ [a,b], Φ(x,λ)∈ GL(n,C).
(ii) Assume that F is E-symmetric and w is real-valued, then Φ(x,λ) ∈ GCn for any

λ∈R and x ∈ [a,b].
Proof. (i) This is because Φ(·,λ) is a fundamental solution of (2.9).

(ii) Under our assumptions, F+(−i)nλW is �Cn-valued for every λ∈R. Thus, the claim

follows from the fact that Φ(a,λ)= I ∈GCn.

Now, we start our discussions on various sets of BCs having certain eigenvalues. First,

generalizing [15, Theorem 4.1], we have the following result.

Theorem 4.3. Let λ ∈ C. Then, among all the complex boundary conditions, [Φ(b,
λ)|−I] is the unique one that has λ as an eigenvalue of geometric multiplicity n.

Proof. The proof is very similar to that of [15, Theorem 4.1], and hence we omit it.

We will call the complex curve

λ � �→ [
Φ(b,λ)|−I], λ∈ C, (4.17)

in �C
N ⊂ �C the complex characteristic curve for the QDE (2.6) and denote it by �C,

where N = {n+1,n+2, . . . ,2n}, while the analytic real curve

λ � �→ [
Φ(b,λ)|−I], λ∈R, (4.18)

will be called the real characteristic curve for the QDE and given the notation �R. Note

that �R ⊂�R
N ⊂�R if F+(−i)nλW is real-valued for every λ∈R. Moreover, �R ⊂ �CN ⊂

�C when F is E-symmetric and w is real-valued.

Theorem 4.3 implies that any complex BC not on �C only has eigenvalues of geomet-

ric multiplicities less than or equal to n−1. Note that �C has complex dimension n2,

while �C ⊂�C is just an analytic subset of complex dimension 1. So, it is very rare for a

complex BC to have an eigenvalue of geometric multiplicity n. Moreover, �C has (real)

dimension n2 ≥ 4. Thus, it is also very rare for a complex selfadjoint BC to have an

eigenvalue of geometric multiplicity n. Similarly, since �R has dimension 2k2+k≥ 3 if

n= 2k or n= 2k+1, it is still very rare for a real selfadjoint BC to have an eigenvalue

of geometric multiplicity n.

Next, we want to determine all the complex BCs that have a fixed λ∈ C as an eigen-

value. Let 	Cλ be the set of these BCs, that is,

	Cλ =
{
[A | B]∈�C; det

(
A+BΦ(b,λ))= 0

}
. (4.19)

Then, 	Rλ has its obvious meaning. For K = C or R and λ ∈ K, we will call 	Kλ the λ-

hypersurface in �K. When λ∈R such that Φ(b,λ) is real,

	Rλ = 	R•Φ(b,λ)=
{[
AΦ(b,λ)|B]; [A | B]∈ 	R

}
= {[A | BΦ(b,λ)−1]; [A | B]∈ 	R

}
,

(4.20)
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where

	R = {[A | B]∈�R; det(A+B)= 0
}
. (4.21)

Similarly, for any λ∈ C,

	Cλ = 	C•Φ(b,λ)=
{[
AΦ(b,λ)|B]; [A | B]∈ 	C

}
= {[A | BΦ(b,λ)−1]; [A | B]∈ 	C

}
,

(4.22)

where

	C = {[A | B]∈�C; det(A+B)= 0
}
. (4.23)

Therefore, we have proven the following generalization of [15, Theorem 4.3].

Theorem 4.4. (i) The complex characteristic curve determines all the eigenvalues for

each complex boundary condition in the explicit manner given in (4.22) and (4.23); when

F + (−i)nλW is real-valued for every λ ∈ R, the real characteristic surface determines

all the real eigenvalues for each real boundary condition in the explicit manner given in

(4.20) and (4.21).

(ii) Each 	Cλ is the image of 	C under a diffeomorphism of �C given by a Lie group

action, which sends 	R to the corresponding 	Rλ when both λ and Φ(b,λ) are real.

Remark 4.5. From the point of view of differential topology, the subsets 	Cλ , λ∈ C,

of �C are the same as 	C. This means that the shapes of the sets 	Cλ do not depend on

the actual QDE in question. There are similar statements about the subsets 	Rλ , where

λ∈R such that Φ(b,λ) is real, of �R.

Remark 4.6. The subsets 	Cλ , λ ∈ C, of �C are solely determined by Φ(b,λ), and

no more information about the QDE is needed. Moreover, the way in which Φ(b,λ)
determines 	Cλ is independent of the QDE in question. In other words, the eigenvalues

for the complex BCs are determined by the QDE via an intermediate and geometric

object—the complex characteristic curve �C. There are similar statements about the

subsets 	Rλ , λ ∈ R, of �R and the real characteristic curve �R when F + (−i)nλW is

real-valued for every λ ∈ R. These observations imply the following generalization of

[15, Corollary 4.6].

Corollary 4.7. (i) Let λ∗ and λ# be two complex numbers. If there is a complex

boundary condition having λ∗ and λ# as eigenvalues of geometric multiplicity n, then

any complex boundary condition having one of λ∗ and λ# as an eigenvalue must have

both of them as eigenvalues.

(ii) When F+(−i)nλW is real-valued for every λ∈R, the result in (i) is still true if only

real boundary conditions and real eigenvalues are considered.

For an example illustrating this corollary, see [15, example after Corollary 4.6].

Remark 4.8. Theorem 4.4 raises the following question: how can one determine the

QDE (2.6), that is, its coefficient function matrix F and its weight function w, using the

geometric properties of the complex or real characteristic curve?
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Remark 4.9. Note that each 	Cλ is an algebraic variety in �C = G2n,n(C). Thus, if

2 ≤ i < 2n2 and G1, . . . ,Gi are in GL(n,C), then the intersection of 	C•G1, . . . ,	C•Gi is

generically of (real) dimension 2n2− i−1; if G1,G2, . . . , and G2n2 are in GL(n,C), then

the intersection of 	C•G1,	C•G2, . . . , and 	C•G2n2 is generically empty. Hence, given

a QDE, it is very “rare” for a fixed set of 2n2 complex numbers to be eigenvalues of

a complex BC at the same time. Similarly, given a QDE with F + (−i)nλW being real-

valued for every λ∈R, it is also very “rare” for a fixed set of n2+1 real numbers to be

eigenvalues of a real BC at the same time.

Now, we give a topological description of the sets 	Cλ ⊂ �C, λ ∈ C, and 	Rλ ⊂ �R,

λ∈R. For this purpose, we only need to look at 	C and 	R, by (4.20) and (4.22).

We first consider 	R. Note that

	R∩�R
n+1,n+2,...,2n =

{
[A+I|−I]; A∈Mn,n(R), detA= 0

}
(4.24)

can be regarded as a cone in Mn,n(R) with vertex A= 0 and generating set


R = {A∈Mn,n(R); 1≤ rankA≤n−1, ‖A‖Rn2 = 1
}
, (4.25)

that is,

	R∩�R
n+1,n+2,...,2n =

{
[ξA+I|−I]; A∈
R, ξ ≥ 0

}
. (4.26)

Let 1 ≤m ≤ n−1. The matrices in Mn,n(R) with rank m can be divided into disjoint

subcollections parameterized by the subspace of Rn spanned by the rows of such a

matrix. Fix an orthonormal basis {v1, . . . ,vm} of an m-dimensional subspace V of Rn

consisting of row vectors. For any m linearly independent column vectors

c1 =


c11

c21

...

cn1

 , . . . ,cm =

c1m

c2m
...

cnm

 , (4.27)

we have an element 
c11v1+···+c1mvm
c21v1+···+c2mvm

...

cn1v1+···+cnmvm

 (4.28)

of the subcollection corresponding to V , and every element of the subcollection can be

uniquely written in this form. To get a linearly independent vector, just pick a nonzero

vector; to get two linearly independent vectors, first take a nonzero vector c1 and then

pick a nonzero vector not in the subspace spanned by c1, and so on so forth. The square

of the norm of the element given by (4.28) is ‖c1‖2
Rn +···+‖cm‖2

Rn . For 1 ≤ l ≤ n−2,

topologically,

Sn−1 \Rl = Sn−1 \Sl−1 �Rn−1 \Rl−1 � Sn−1−l×R+×Rl−1 � Sn−l−1×Rl. (4.29)
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Thus, topologically,


R � G1
(
Rn
)×Sn−1

∪G2
(
Rn
)×Sn−1×R+×(Sn−1 \R)

∪G3
(
Rn
)×Sn−1×R+×(Sn−1 \R)×R+×(Sn−1 \R2)

∪···∪Gn−1
(
Rn
)×Sn−1×R+×(Sn−1 \R)

×R+×···×(Sn−1 \Rn−3)×R+×(Sn−1 \Rn−2)
� G1

(
Rn
)×Sn−1

∪G2
(
Rn
)×Sn−1×Sn−2×R2

∪G3
(
Rn
)×Sn−1×Sn−2×Sn−3×R5

∪···∪Gn−1
(
Rn
)×Sn−1×···×S1×R(n2−n−2)/2.

(4.30)

Note also that 	R \�R
n+1,n+2,...,2n has a dimension less than that of 	R. For example,

	R∩(�R
1,2,...,n \�R

n+1,n+2,...,2n
)={[I|B]; B ∈Mn,n(R), detB=0, det(I+B)= 0

}
; (4.31)

since detB = 0 and det(I+B) �= 0 when B = 0, while detB �= 0 and det(I+B) = 0 when

B =−I, we see that none of the polynomials detB and det(I+B) is a factor of the other,

and hence the part of 	R\�R
n+1,n+2,...,2n in �R

1,2,...,n has a dimension less than that of 	R.

Thus, 	R \�R
n+1,n+2,...,2n is in the limit set of 	R∩�R

n+1,n+2,...,2n, that is,

	R \�R
n+1,n+2,...,2n =

{
lim
ξ→+∞

[ξA+I|−I]; A∈
R
}
. (4.32)

Let A be the matrix given by (4.28) and assume that its i1th row ai1 , . . . , imth row aim
are linearly independent. Then, there is a matrix C⊥ ∈M∗

n−m,n consisting of row vectors

annihilating c1, . . . ,cm (corresponding to row operations bringing the remaining n−m
rows of A all to 0) such that for any ξ ∈R,

[ξA+I|−I]=


ξai1+ ii1

...

ξaim+ iim
C⊥

∣∣∣∣∣∣∣∣∣∣∣

−ii1
...

−iim
−C⊥

 , (4.33)

where ii is the ith row of I for 1≤ i≤n. Thus,

lim
ξ→+∞

[ξA+I|−I]=


ai1
...

aim
C⊥

∣∣∣∣∣∣∣∣∣∣∣

0
...

0

−C⊥

=


v1

...

vm
C⊥

∣∣∣∣∣∣∣∣∣∣∣

0
...

0

−C⊥

 , (4.34)

that is, the limit is uniquely determined by the subspaces V and spanR{c1, . . . ,cm}.
Hence, topologically,

	R \�R
n+1,n+2,...,2n � G1

(
Rn
)2∪G2

(
Rn
)2∪···∪Gn−1

(
Rn
)2. (4.35)
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Next, we consider 	C. As above,

	C∩�C
n+1,n+2,...,2n =

{
[A+I|−I]; A∈Mn,n(C), detA= 0

}
(4.36)

can be regarded as a cone in Mn,n(C) with vertex A= 0 and generating set


C = {A∈Mn,n(C); 1≤ rankA≤n−1, ‖A‖Cn2 = 1
}
, (4.37)

and topologically,


C � G1
(
Cn
)×S2n−1

∪G2
(
Cn
)×S2n−1×R+×(S2n−1 \C)

∪G3
(
Cn
)×S2n−1×R+×(S2n−1 \C)×R+×(S2n−1 \C2)

∪···∪Gn−1
(
Cn
)×S2n−1×R+×(S2n−1 \C)

×R+×···×(S2n−1 \Cn−3)×R+×(S2n−1 \Cn−2)
� G1

(
Cn
)×S2n−1

∪G2
(
Cn
)×S2n−1×S2n−3×R3

∪G3
(
Cn
)×S2n−1×S2n−3×S2n−5×R8

∪···∪Gn−1
(
Cn
)×S2n−1×···×S3×Rn2−2n.

(4.38)

For a topological manifold M , a topological M-bottle is a quotient space N that one

obtains from M×[0,1] via modeling M×{0} by an equivalence relation on M to form

a subset of N, to be called the top of N, and modeling M×{1} by another equivalence

relation on M to form a topological submanifold of N, to be called the bottom of N.

In this case, M×(0,1) is called the side of N. With the concept of topological bottle in

hand, what we have proven above can be summarized in the following theorem.

Theorem 4.10. (i) The hypersurface 	R in �R is a topological 
R-bottle with a point

top and a bottom given by (4.35), while the map gluing its side to its bottom is specified

by (4.34). Moreover, a topological description of 
R is given by (4.30).

(ii) The complex hypersurface 	C in �C is a topological 
C-bottle with a point top and

a bottom

	C \�C
n+1,n+2,...,2n � G1

(
Cn
)2∪G2

(
Cn
)2∪···∪Gn−1

(
Cn
)2, (4.39)

while the map gluing its side to its bottom is also specified by (4.34). Moreover, a topo-

logical description of 
C is given by (4.38).

Finally, for each real number λ, we can consider the subset of BCs in �R (or �C)

that have λ as an eigenvalue, to be called the λ-subset in �R (or �C). When n is odd, we

define the λ-subsets in �R− and �R+ similarly, and each λ-subset in �R is the union of the

corresponding λ-subsets in �R− and �R+. When F is E-symmetric and w is real-valued,

by Proposition 4.2(ii), we can characterize the λ-subsets in �C using 	C∩�C just as we

characterized 	Cλ using 	C. There is a similar statement for the λ-subsets in �R when

n is even. It is quite involved to characterize the λ-subsets in �R when n is odd, and
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it is even more involved to describe the λ-subsets in �C or �R topologically. We plan

to do these in a forthcoming publication. Here we only give an example showing that

when n is odd, the λ-subsets in �R+ are complicated in general, even their dimensions

can differ for different values of λ.

Example 4.11. Let n= 3. Consider the QDE

Qy = λy on (0,1), (4.40)

with E-symmetric coefficient matrix

F =

0 1 0

0 0 1

0 0 0

 . (4.41)

Since F is real, so is Φ(1,0). Thus, by Proposition 4.1, (�R+)•Φ(1,0) = �R+. Hence, by

Theorem 2.3, 0 is an eigenvalue for each selfadjoint BC in �R+, that is, the 0-subset in

�R+ is �R+ and hence has dimension 3. Direct calculations show that the characteristic

function for the general BC
1 0 −1

2
d2 0 d −c−de

0 1 −d 0 1 −e
0 0 c −1 e −1

2
e2

 (4.42)

in �R+ is

∆(λ)= 0+p(c,d,e)λ+higher terms in λ, (4.43)

where p is a polynomial of degree 4. So, when λ �= 0 is real and sufficiently close to 0,

the λ-subset in �R+ has a dimension less than or equal to 2.
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