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We generalize min-neighborhood groups to arbitrary T -neighborhood groups, where T is a
continuous triangular norm. In particular, we point out that our results accommodate the
previous theory on min-neighborhood groups due to T. M. G. Ahsanullah. We show that
every T -neighborhood group is T -uniformizable, therefore, T -completely regular. We also
present several results of T -neighborhood groups in conjunction with TI-groups due to
J. N. Mordeson.
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1. Introduction. Menger in [19] introduces an important class of T -uniformities

(T being a continuous t-norm) that is generated by a probabilistic metric [21]. Moti-

vated by the Menger’s T -uniformities, Höhle [13] brought into light in his celebrated

article the idea of probabilistic metrization of fuzzy uniformities. While developing his

theory, he showed that a fuzzy T -uniformity is probabilistic metrizable if and only

if it is Hausdorff-separated and has a countable base. He also pointed out that when

T = min is considered, his fuzzy T -uniformity reduces to min-fuzzy uniformity of R.

Lowen—a fuzzy uniformity widely used over the years. One of the interesting features

of this min-fuzzy uniformity [16] is that it gives rise to a fuzzy neighborhood space

[17]; an interesting and very well-behaved class of fuzzy topological spaces [15], used by

many authors in a wide variety of ways. Among the prominent classes of so called fuzzy

neighborhood spaces are, for instance, Katsaras linear fuzzy neighborhood spaces [14],

fuzzy metric neighborhood spaces [18], fuzzy neighborhood groups, rings, modules,

algebras, and commutative division rings [1, 2, 3, 4, 5].

Very recently, following the famous articles of Menger [19], Höhle [13], Frank [9],

Hashem and Morsi [10, 11, 12] introduced a class of fuzzy topological spaces [15] as

they put it: fuzzy T -neighborhood spaces herein called T -neighborhood spaces—a nat-

ural generalization of min-fuzzy neighborhood spaces of Lowen [17]. Our main target

here in this article is to generalize the notion of min-fuzzy neighborhood groups in-

troduced in [2]. We show that every T -neighborhood group is a T -uniform space, and

therefore, a T -complete regular space in the sense of Hashem and Morsi [12]. We also

generalize the two important characterization theorems, which give necessary and suf-

ficient condition for a T -neighborhood system and a group structure to be compatible,

and a prefilter to be a T -neighborhood prefilter.

As an application, we present some results on T -neighborhood groups in conjunction

with Mordeson’s TI-groups [7], which we believe will open the opportunities to look

into further work on fuzzy algebraic structures in connection with the T -neighborhood

groups.
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2. Preliminaries. Let T be a continuous two-place function (known as continuous

triangular norm or t-norm) mapping from the closed unit square to the closed unit in-

terval satisfying certain conditions. In other words, T : I×I → I, (α,β)�αTβ, satisfying

the following conditions:

(Ta) 0T0= 0, αT1=α for all α∈ I;
(Tb) αTβ= βTα for all (α,β)∈ I×I;
(Tc) if α≤ β and γ ≤ δ, then αTγ ≤ βTδ for all α,β,γ,δ∈ I;
(Td) (αTβ)Tγ =αT(βTγ) for all α,β,γ ∈ I.
Definition 2.1 [6, 16]. A nonempty subset � ⊂ IG is called a prefilterbase if and

only if the following conditions are true:

(PB1) 0 �∈�;

(PB2) for all ν1,ν2 ∈�, there exists ν ∈� such that ν ≤ ν1∧ν2.

If � is a prefilterbase in IG, then by its saturation we understand the following col-

lection:

�∼ = {ν :G �→ I; ∀ε > 0 ∃νε ∈�
 νε−ε≤ ν
}
. (2.1)

Definition 2.2 [10, 11, 12]. A T -neighborhood space is an I-topological space [15]

(G,−) whose closure operator “−” is induced by some indexed family Ω = (Ω(x))x∈G
of prefilterbases in IG defined by

ξ̄(x)= inf
ν∈Ω(x)

sup
z∈G

ξ(z)Tν(z) ∀ξ ∈ IG, x ∈G. (2.2)

Theorem 2.3 [10, 11, 12]. A family Ω = (Ω(x))x∈G of prefilterbases in IG is a T -

neighborhood base in G if and only if it satisfies the following two properties for all

x ∈G:

(TB1) for all ν ∈Ω(x), ν(x)= 1;

(TB2) for all ν ∈ Ω(x), there exists a family (νyε ∈ Ω(y))(y,ε)∈G×I0 which satisfies for

all (y,ε)∈G×I0,

sup
z∈G

[
νx,ε(z)Tνz,ε(y)

]≤ ν(y)+ε. (2.3)

The family Ω is said to be a T -neighborhood basis for (G,−), and every ν ∈ Ω(x)
is called T -neighborhood at x. This I-topology is denoted by tT (Ω). However, from

now on we will be calling the triple (G,−, t(Ω)) the T -neighborhood space with Ω a

T -neighborhood base in G.

Theorem 2.4 [10, 11, 12]. Let (G1,−, t(Ω1)) and (G2,−, t(Ω2)) be T -neighborhood

spaces with T -neighborhood bases Ω1 and Ω2, respectively. Then a function f :G1 →G2

is continuous at x ∈G1

⇐⇒∀µ ∈Ω2
(
f(x)

)
, f−1(µ)∈Ω1(x)∼,

⇐⇒∀µ2 ∈Ω2
(
f(x)

) ∀ε > 0 ∃µ1 ∈Ω1(x)
 µ1−ε≤ f−1(µ2
)
,

⇐⇒ [f−1(σ)
]
(x)≤ [f−1(σ̄ )

]
(x) ∀σ ∈ IG2 .

(2.4)



T -NEIGHBORHOOD GROUPS 705

If Λ,Γ ∈ IG×G and ν ∈ IG, then T -section of Λ over ν is given by

Λ〈ν〉T (x)= sup
y∈G

ν(y)TΛ(y,x) ∀x ∈G. (2.5)

The T -composition of Λ and Γ is defined as

Λ◦T Γ(x,y)= sup
z∈G

[
Γ(x,z)TΛ(z,y)

] ∀(x,y)∈G×G. (2.6)

Γ is called symmetric if Γ s = Γ , that is, Γ(y,x)= Γ(x,y), for all (x,y)∈G×G.

Definition 2.5 [10, 11, 12]. A subset �⊂ IG×G is called a T -uniform base on a set

G if and only if the following properties are fulfilled:

(TUB1) � is a prefilterbase;

(TUB2) for all x ∈G, for all ν ∈�,ν(x,x)= 1;

(TUB3) for all β∈�, for all ε > 0, there exists βε ∈� such that βε ◦T βε−ε≤ β;

(TUB4) for all β∈�, for all ε > 0, there exists βε ∈� such that βε−ε≤ β.

The collection � of fuzzy subsets of G×G is called T -quasi-uniform base on a set

G if and only if it fulfills the preceding conditions (TUB1), (TUB2), and (TUB3), while

� is called T -quasi-uniformity if and only if �̃ = �. A T -uniformity � is a saturated

T -uniform base �.

Theorem 2.6 [10, 11, 12]. If � is a T -quasi-uniform base on a set G, then for all

x ∈G, the family

Σ(x)= {β〈1x〉 | β∈�∼}= {β〈1x〉 | β∈�
}∼

(2.7)

is a T -neighborhood system on G.

Proposition 2.7 [10, 11, 12]. Let (G,�) be a T -quasi-uniform space. Then the closure

of the T -neighborhood space (G,t(�)) is given by

µ̄ = inf
σ∈�

σ〈µ〉T ∀µ ∈ IG. (2.8)

Theorem 2.8 [10, 11, 12]. If (G,τ) is a topological space and �τ = (�τ(x))x∈G is its

associated neighborhood system in G, then (G,−, t(Ωτ)), a generated topological space,

generated by τ , is a T -neighborhood space with a T -neighborhood basis Ω = (Ω(x))x∈G,

where for all x ∈G,

Ω1 :=Ω1(x)=
{
1M :G �→ I; M ∈�τ(x)

}⊂ IG;

Ω2 :=Ω2(x)=
{
1M :G �→ I; x ∈M ∈ τ}⊂ IG;

Ω3 :=Ω3(x)=
{
ν :G �→ I; ν is l.s.c. in x and ν(x)= 1

}⊂ IG.
(2.9)

Just for the sake of convenience, we provide the proof of the following proposition.

Proposition 2.9. A function f : (G,�τ)→ (G′,�′
τ′) between two topological spaces

is continuous at a point x ∈G if and only if f : (G,t(Ωτ))→ (G′, t(Ω′τ′)) is continuous at

x ∈G between two generated T -neighborhood spaces.
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Proof. Let f : (G,�τ) → (G,�τ′) be continuous at x ∈ G and µ′ ∈ Ω′τ′(f (x)); in

view of Theorem 2.4, we show that f−1(µ′)∈ Ω̃τ(x).
Choose M′ ∈ �′

τ(f (x)) such that µ′ = 1M′ . This implies that there exists an M ∈
�τ(x) such that f(M)⊂M′, and hence for all ε > 0,

1M(x)−ε= 1−ε≤ 1f−1(M′)(x)= f−1(µ′). (2.10)

With µ = 1M , one obtains µ−ε≤ f−1(µ′) implying that f−1(µ′)∈ Ω̃τ(x).
Conversely, we show that the function f : (G,�τ)→ (G′,�′

τ′) is continuous at x ∈G.

If U ∈ �′
τ′(f (x)), then 1U ∈ Ω′τ′(f (x)) implies f−1(1U) ∈ Ω̃τ(x) by continuity of f

between the generated spaces.

Thus, for all ε > 0, there is a µ = µε ∈Ωτ(x) such that

µ−ε≤ f−1(1U). (2.11)

This implies that for all ε > 0, there exists a Vε ∈�τ(x) such that 1Vε = µ = µε and

1Vε−ε≤ 1f−1(U). (2.12)

Now Vε ∈�τ(x) implies x ∈ Vε if and only if 1Vε(x)= 1. Therefore,

0< 1−ε= 1Vε(x)−ε≤ 1f−1(U)(x) �⇒ 1f−1(U)(x) > 0 �⇒ 1f−1(U)(x)

= 1⇐⇒ x ∈ f−1(U).
(2.13)

This means that Vε ⊆ f−1(U) implies f−1(U)∈�τ(x). That is, f is continuous at x ∈G.

Theorem 2.10 [11]. Let (G,−) be an I-topological space. Then (G,−) is a T -neigh-

borhood space if and only if αTµ =αTµ̄ for all µ ∈ IG and for all α∈ I.
Definition 2.11 [12]. An I-topological space (X,τ) is called T -completely regular

if τ is the initial I-topology for the family of all continuous functions from (X,τ) to

(�+, tT (��)).
Here, �+ stands for the collection of all distance distribution functions from �+ to

the unit interval I, and the pair (�+, tT (��)) is the T -neighborhood space induced by

the well-known Höhle’s probabilistic T -metric ��. For details, we refer to [12, 13].

Theorem 2.12 [12]. T -complete regularity is equivalent to T -uniformizability.

3. Some results on T -neighborhood spaces

Theorem 3.1. Let (G1,−, t(Ω1)) and (G2,−, t(Ω2)) be two T -neighborhood spaces

with bases Ω1 = (Ω1(x))x∈G1 and Ω2 = (Ω2(x))x∈G2 in G1 and G2, respectively. Then

their T -product (G1 ×G2,−⊗T ,t(Ω1)⊗T t(Ω2)) is the T -neighborhood space with base

Ω =Ω1⊗T Ω2 defined by

Ω(x,y)= {ν1⊗T ν2 | ν1 ∈Ω1(x), ν2 ∈Ω2(y)
}
, (3.1)
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where ν1⊗T ν2 is given as

ν1⊗T ν2(x,y)= ν1(x)Tν2(y) ∀(x,y)∈G1×G2. (3.2)

Moreover,

ν1⊗T ν2 = ν1⊗T ν2 ∀ν1 ∈ IG1 , ν2 ∈ IG2 . (3.3)

Conversely, if

ν1⊗T ν2 = ν1⊗T ν2 ∀ν1 ∈ IG1 , ν2 ∈ IG2 , (3.4)

then both the I-topological spaces (G1,−) and (G2,−) are T -neighborhood spaces.

Proof. First we show that for all (x,y)∈G1×G2, Ω(x,y) is a prefilterbase.

(PB1) Obviously, Ω≠∅ and 0 �∈Ω.

(PB2) Let ξ1,ξ2 ∈ Ω(x,y), then there are ν1,ν2 ∈ Ω1(x) and µ1,µ2 ∈ Ω2(y) such that

ξ1 = ν1⊗T µ1 and ξ2 = ν2⊗T µ2.

Now, ξ1∧ξ2 = (ν1⊗T µ1)∧(ν2⊗T µ2). For any (x,y)∈G1×G2,

ξ1(x,y)∧ξ2(x,y)=
(
ν1⊗T µ1

)
(x,y)∧(ν2⊗T µ2

)
(x,y)

= (ν1(x)Tµ1(y)
)∧(ν2(x)Tµ2(y)

)
≥ (ν1(x)∧ν2(x)

)
T
(
ν1(y)∧µ2(y)

)
= (ν1∧ν2

)
(x)T

(
µ1∧µ2

)
(y).

(3.5)

Therefore, ξ1 ∧ ξ2(x,y) ≥ ν(x)∧µ(y) for some ν ∈ Ω1(x) and µ ∈ Ω2(y), since

both Ω1(x) and Ω2(y) are prefilterbases in G1 and G2, respectively.

This implies that ξ1∧ξ2(x,y) ≥ ν⊗T µ(x,y) = ξ(x,y) and ξ ∈ Ω(x,y), and hence

ξ ≤ ξ1∧ξ2, proving that Ω(x,y) is a prefilterbase in G1×G2.

Now we prove the conditions of Theorem 2.3.

(TB1) If x ∈ G and ξ ∈ Ω(x,x), then for some ν ∈ Ω1(x) and µ ∈ Ω2(x), we have

ξ(x,x)= ν⊗T µ(x,x), ν(x)Tµ(x)= 1T1= 1.

(TB2) Let (x,y) ∈ G1×G2, ξ ∈ Ω(x,y), and ε ∈ I0. Then there exists ν ∈ Ω1(x) and

µ ∈Ω2(y) such that ξ = ν⊗T µ.

Consequently, there is a family (νy1ε ∈ Ω1(y1))(y1,ε)∈G1×I0 , a T -kernel for ν which

satisfies for all (y1,ε)∈G1×I0,

sup
z1∈G1

[
νx,ε

(
z1
)
Tνz1,ε

(
y1
)]≤ ν(y1

)+ε. (3.6)

Also, there is a family (µy2ε ∈ Ω2(y2))(y2,ε)∈G2×I0 , a T -kernel for µ which satisfies for

all (y2,ε)∈G2×I0,

sup
z2∈G2

[
µy,ε

(
z2
)
Tµz2,ε

(
y2
)]≤ µ(y2

)+ε. (3.7)
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Now for all (y1,y2)∈G1×G2,

(
ν⊗T µ

)(
y1,y2

)+δ= [ν(y1
)
Tµ
(
y2
)]+δ≥ (ν(y1

)+ε)T(µ(y2
)+ε) (3.8)

with ε= εT,δ > 0.

This yields that

(
ν⊗T µ

)(
y1,y2

)+δ
≥ sup
z1∈G1

[
νx,ε

(
z1
)
Tνz1,ε

(
y1
)]
T sup
z2∈G2

[
µy,ε

(
z2
)
Tµz2,ε

(
y2
)]

= sup
(z1,z2)∈G1×G2

[(
νx,ε

(
z1
)
Tµy,ε

(
z2
))
T
(
νz1,ε

(
y1
)
Tµz2,ε

(
y2
))]

= sup
(z1,z2)∈G1×G2

[((
νx,ε⊗T µy,ε

)(
z1,z2

))
T
((
νz1,ε⊗T µz2,ε

)(
y1,y2

))]

�⇒ sup
(z1,z2)∈G1×G2

[
νx,ε⊗T µy,ε

(
z1,z2

)
Tνz1,ε⊗T µz2,ε

(
y1,y2

)]

≤ ν⊗T µ
(
y1,y2

)+δ.

(3.9)

In order to prove the final part, we proceed as follows. Let ν1 ∈ IG1 , ν2 ∈ IG2 , and

(x,y)∈G1×G2.

Then in view of Definition 2.2, we have

ν1⊗T ν2(x,y)= inf
ξ1∈Ω1(x)

inf
ξ2∈Ω2(y)

sup
z1∈G1

sup
z2∈G2

(
ν1⊗T ν2

)(
z1,z2

)
T
(
ξ1⊗T ξ2

)(
z1,z2

)

= inf
ξ1∈Ω1(x)

inf
ξ2∈Ω2(y)

sup
z1∈G1

sup
z2∈G2

{
ν1
(
z1
)
Tν2

(
z2
)}
T
{
ξ1
(
z1
)
Tξ2

(
z2
)}

= inf
ξ1∈Ω1(x)

inf
ξ2∈Ω2(y)

sup
z1∈G1

sup
z2∈G2

ν1
(
z1
)
Tξ1

(
z1
)
Tν2

(
z2
)
Tξ2

(
z2
)

= inf
ξ1∈Ω1(x)

sup
z1∈G1

ν1
(
z1
)
Tξ1

(
z2
)
T inf
ξ2∈Ω2(y)

sup
z2∈G2

ν2
(
z2
)
Tξ2

(
z2
)

= ν1(x)Tν2(y)= ν1⊗T ν2(x,y).
(3.10)

To prove the converse part, we proceed as follows. Since

ν1⊗T ν2 = ν1⊗T ν2 ∀ν1 ∈ IG1 , ν2 ∈ IG2 , (3.11)

in view of Theorem 2.10, we have

(
αTν1⊗T ν2

)
(x)= (αTν1⊗T ν2

)
(x)

=α(x)T(ν1⊗T ν2
)
(x)

=α(x)T(ν1(x)Tν2(x)
)
.

(3.12)

Since this holds for all x and for all ν1 and ν2, with ν2 = 1, we have

(
αTν1⊗T ν2

)
(x)= (αTν1⊗T ν2

)
(x)=α(x)T(ν1(x)T1

)
=α(x)Tν1(x)=

(
αTν1

)
(x)= (αTν1

)
(x),

(3.13)
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so (G1,−) is a T -neighborhood space. Similarly, with ν1 = 1, we see that (G2,−) is a

T -neighborhood space. This completes the proof.

Proposition 3.2. Let (G1,−, t(Ω1)) and (G2,−, t(Ω2)) be T -neighborhood spaces.

Then the projections

pr1 :
(
G1×G2,−⊗T ,t

(
Ω1
)⊗T t(Ω2

))
�→ (G1,−, t

(
Ω1
))
,

(
x1,x2

) � �→ x1,

pr2 :
(
G1×G2,−⊗T ,t

(
Ω1
)⊗T t(Ω2

))
�→ (G2,−, t

(
Ω2
))
,

(
x1,x2

) � �→ x2,
(3.14)

are continuous.

Proof. Let ν ∈Ω1(x1) and ε > 0. Then

pr−1
1

(
ν1
)(
x1,x2

)=ν1
(
pr1

(
x1,x2

))=ν1
(
x1
)
T1≥ν1

(
x1
)
Tν2

(
x2
)≥ν1⊗T ν2

(
x1,x2

)−ε
�⇒ ν1⊗T ν2−ε≤ pr−1

1

(
ν1
)
�⇒ pr−1

1

(
ν1
)∈Ω(x1,x2

)∼.
(3.15)

This implies that pr1 : (G1×G2,−⊗T ,t(Ω1)⊗T t(Ω2))→ (G1,−, t(Ω1)), (x1,x2)� x1, is

continuous, and similarly, one can prove that pr2 : (G1 ×G2,−⊗T ,t(Ω1)⊗T t(Ω2)) →
(G2,−, t(Ω2)), (x1,x2)� x2, is continuous.

Definition 3.3. A T -neighborhood space (G,−, t(Ω)) is said to be a TN-regular

space if and only if for all z ∈ G, for all µ ∈ Ω(z), and for all ε > 0, there exists a

ν ∈Ω(z) closed such that

ε+µ(z)≥ inf
ρ∈Ω(z)

sup
t∈G
ν(t)Tρ(t)

(= ν̄(z)). (3.16)

Theorem 3.4. Every T -quasi-uniform space (G,Ψ) is TN-regular.

Proof. Suppose that z ∈G, ψ∈ Ψ , and ε > 0, and choose ψε ∈ Ψ such that

ψε ◦T ψε ≤ψ+ε. (3.17)

If t ∈G, then by using Proposition 2.7,

ψε〈z〉T (t)= inf
ψ′ε∈Ψ

sup
y∈G

ψε〈z〉(y)Tψ′ε(y,t)≤ sup
y∈G

ψε(z,y)Tψε(y,t)

=ψε ◦T ψε(z,t)≤ψ(z,t)+ε
=ψ〈z〉(t)+ε.

(3.18)

Hence the result follows.

4. T -neighborhood groups. In what follows, we consider (G,·) as a multiplicative

group with e as the identity element. If µ : G → I, then µ−1(x) is defined as µ−1(x) =
µ(−x), and µ is said to be symmetric if and only if µ = µ−1.
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Definition 4.1. Let (G,·) be a group and (G,−, t(Ω)) a T -neighborhood space with

T -neighborhood base Ω on G. Then the quadruple (G,·,−, t(Ω)) is called a T - neighbor-

hood group if and only if the following properties are satisfied:

(TG1) the mapping m : (G×G,−⊗T ,t(Ω)⊗T t(Ω)) → (G,−, t(Ω)), (x,y) � xy , is con-

tinuous;

(TG2) the inversion mapping r : (G,−, t(Ω))→ (G,−, t(Ω)), x� x−1, is continuous.

A group structure and a T -neighborhood system is said to be compatible if and only

if (TG1) and (TG2) are fulfilled.

Remarks 4.2. A T -neighborhood group may not be a fuzzy topological group in the

sense of Foster [8] since we have used T -neighborhood topology, which differ from the

product fuzzy topology.

Proposition 4.3. Let (G,·) be a group and (G,−, t(Ω)) a T -neighborhood space with

a T -neighborhood base Ω. Then the quadruple (G,·,−, t(Ω)) is a T -neighborhood group

if and only if the mapping

h :
(
G×G,−⊗T ,t(Ω)⊗T t(Ω)

)
�→ (G,−, t(Ω)), (x,y) � �→ xy−1, (4.1)

is continuous.

Proof. Observe that the conditions (TG1) and (TG2) are equivalent to the following

single condition:

(TG3) the mapping h : (G×G,−⊗T ,t(Ω)⊗T t(Ω))→ (G,−, t(Ω)), (x,y)� xy−1, is con-

tinuous.

In fact, if we let f(x,y) = (x,y−1), then by (TG2), f is continuous and hence in

conjunction with (TG1), one obtains the continuity ofh. On the other hand, (TG3)⇒(TG2)

for x → ex−1 = x−1 is then continuous; while (TG1) follows from (TG3) and (TG2),

because (x,y)→ x(y−1)−1 = xy is then continuous.

Proposition 4.4. Let (G,·) be a group and (G,−, t(Ω)) a T -neighborhood space with

Ω a T -neighborhood base in G. Then

(a) the mapping m : (G×G,·,−⊗T ,t(Ω)⊗T t(Ω)) → (G,·,−, t(Ω)), (x,y) � xy , is

continuous at (e,e)∈G×G if and only if for all µ ∈Ω(e), for all ε > 0, there exists

ν ∈Ω(e) such that

ν�T ν ≤ µ+ε; (4.2)

(b) the inversion mapping r : (G,·,−, t(Ω))→ (G,·,−, t(Ω)), x� x−1, is continuous at

e∈G if and only if for all µ ∈Ω(e), for all ε > 0, there exists ν ∈Ω(e) such that

ν ≤ µ−1+ε. (4.3)

Proof. (a) In view of Theorem 2.4, continuity at (e,e)∈G×G is equivalent to

∀µ ∈Ω(e) �⇒m−1(µ)∈ (Ω(e)⊗T Ω(e))∼
⇐⇒∀µ ∈Ω(e), ∀ε > 0, ∃ν = νε ∈Ω(e)
 ν⊗T ν ≤m−1(µ)+ε. (4.4)
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Butm(ν⊗T ν)(z)=sup(x,y)∈m−1(z) ν(x)Tν(y)=supxy=z ν(x)Tν(y)= ν�T ν(z). Thus,

in this case, continuity at (e,e)∈G×G is in fact equivalent to

ν�T ν ≤ µ+ε. (4.5)

(b) This follows almost in the same way as in (a).

Corollary 4.5. If (G,·,−, t(Ω)) is a T -neighborhood group, then the mapping (4.1)

is continuous at (e,e)∈G×G if and only if for all µ ∈Ω(e) and for all ε > 0, there exists

a ν ∈Ω(e) such that

ν�T ν−1 ≤ µ+ε. (4.6)

Proof. This follows at once from the composition of (a) and (b) in Proposition 4.4.

Proposition 4.6. Let (G,−, t(Ω)) be a T -neighborhood space and A ⊂ G. Then

(A,−, t(Ω|A)) is a T -neighborhood space, a subspace of the T -neighborhood space

(G,−, t(Ω)).

Proof. The proof follows by easy verification.

Theorem 4.7. The triple (G,·,τ) is a topological group if and only if the quadruple

(G,·,−, t(Ωτ)), where Ω is the generated T -neighborhood basis, is a T -neighborhood

group.

Proof. With the help of Proposition 2.9, it follows that the mapping

h :
(
G×G,�τ×�τ

)
�→ (G,�τ), (x,y) � �→ xy−1, (4.7)

is continuous if and only if

h :
(
G×G,t(Ωτ)⊗T t(Ωτ)) �→ (G,t(Ωτ)), (x,y) � �→ xy−1, (4.8)

is continuous, where Ω is the basis for the generated T -neighborhood spaces.

Lemma 4.8. Let (G,·,−, t(Ω)) be a T -neighborhood group and a∈G. Then

(1) the left translation �a : (G,·,−, t(Ω))→ (G,·,−, t(Ω)), x� ax, and the right trans-

lation �a : (G,·,−, t(Ω))→ (G,·,−, t(Ω)), x� ax, are homeomorphisms;

(2) the inner automorphism 	a : (G,·,−, t(Ω))→ (G,·,−, t(Ω)), z� aza−1, is an iso-

morphism;

(3) ν ∈ Ω(e)∼ if and only if �a(ν) ∈ Ω(a)∼ if and only if �a(ν) ∈ Ω(a)∼. In other

words, if Ω is saturated, then ν ∈Ω(e) if and only if 1{a} �T ν = a�T ν ∈Ω(a) if

and only if ν�T a∈Ω(a);
(4) ν ∈Ω(a)∼ if and only if �−a(ν)∈Ω(e)∼ if and only if �−a(ν)∈Ω(e)∼. In other

words, if Ω is saturated, then ν ∈Ω(a) if and only if 1{a−1}�T ν = a−1�ν ∈Ω(e)
if and only if ν�T a−1 ∈Ω(e);

(5) if ν ∈Ω(e), then ν−1 ∈Ω(e);
(6) ν�T ν−1 is symmetric.
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Proof. (1) follows at once from the definitions while (2) follows from the fact that

	a =�a ◦�−a =�−a◦�a for all a∈G.

(3) Let ν ∈Ω(e)∼ ⊂Ω(e), that is, ν ∈Ω(a−1a)=Ω(�−1
a (a)). Since �−1

a is continuous,

then in view of Theorem 2.4, �a(ν) = (�−1
a )−1(ν) ∈ Ω(a)∼ implies �a(ν) ∈ Ω(a)∼.

Conversely, let �a(ν) ∈ Ω(a)∼ ⊂ Ω(a) implies �a(ν) ∈ Ω(a) implies �a(ν) ∈ Ω(a) =
Ω(ae)=Ω(�a(e)), and since �a :G→G is continuous injection again by Theorem 2.4,

ν =�−1
a (�a(ν))∈Ω(e)∼. For the calculations of the other part, see [7, Theorem 5.1.1].

(4) follows from (3) while (5) follows from the fact that the inversion mapping r :G→
G, x� x−1 is a homeomorphism.

(6) We have ν�T ν−1 = (ν�T ν−1)−1. If x ∈G, then

(
ν�T ν−1)−1(x)= (ν�T ν−1)(x−1)= sup

ab=x−1
ν(a)Tν

(
b−1)

= sup
st−1=x−1

ν(s)Tν(t)= sup
ts−1=x

ν(t)Tν(s)

= sup
ts−1=x

ν(t)Tν
((
s−1)−1

)

= sup
ts−1=x

ν(t)Tν−1(s−1)

= ν�T ν−1(x).

(4.9)

This completes the proof.

Definition 4.9. A T -neighborhood space (G,−, t(Ω)) is called homogeneous space

if and only if for all (a,b) ∈ G×G, there exists a homeomorphism f : (G,−, t(Ω)) →
(G,−, t(Ω)) such that f(a)= b.

Theorem 4.10. Every T -neighborhood group is a homogeneous space.

Proof. This follows from the fact that for all a,b ∈G×G, the function

�a−1b :G �→G, x � �→ xa−1b, (4.10)

is a homeomorphism.

Lemma 4.11. Let (G,·) be a group, and let, for all µ ∈ IG, µL : G×G → I, (x,y) �
µL(x,y)= µ(x−1y) (resp., µR :G×G→ I, (x,y)� µR(x,y)= µ(yx−1)) be the vicinities

L-associated (resp., R-associated) with µ.

Then for all µ,θ,ν ∈ IG, (x,y)∈G×G, and triangular norm T : I×I → I, the following

hold:

(1) µL〈θ〉T = θ�T µ (resp., µR〈θ〉T = µ�T θ);

(2) µLTνL = (µTν)L (resp., µRTνR = (µTν)R);

(3) (µsL)= (µL)s ;
(4) µL�T νL = (ν�T µ)L (resp., µR�T νR = (ν�T µ)R).

Proof. (1) For all (x,θ,µ)∈G×IG×IG,

µL〈θ〉T (x)= sup
y∈G

[
θ(y)TµL(y,x)

]= sup
y∈G

[
θ(y)Tµ

(
y−1x

)]

= θ�T µ(x)
(
by [7, Theorem 5.1.1]

)
.

(4.11)
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(2) and (3) are obvious.

(4) For all (x,y)∈G×G,

µL�T νL(x,y)= sup
z∈G

[
νL(x,z)TµL(z,y)

]= sup
z∈G

[
ν
(
x−1z

)
Tµ
(
z−1y

)]

= sup
st=x−1zz−1y=x−1y

[
ν(s)Tµ(t)

]= (ν�T µ)(x−1y
)

= (ν�T µ)L(x,y).
(4.12)

Theorem 4.12. Every T -neighborhood group is a T -uniform space.

Proof. If (G,·,−, t(Ω)) is a T -neighborhood group, then (G,−, t(Ω)) is a T -neighbor-

hood space with the T -neighborhood basis Ω.

We consider the following collection:

Ω = {µL | µ ∈Ω(e)}⊂ IG×G. (4.13)

We claim that Ω is a T -uniform basis.

(TUB1) Clearly Ω is a prefilterbasis.

(TUB2) If ψ∈Ω, then there exists a µ ∈Ω(e) such that ψ= µL, and for all x ∈G,

ψ(x,x)= µL(x,x)= µ(e)= 1. (4.14)

(TUB3) If ψ∈Ω, then there exists a µ ∈Ω(e) such that ψ= µL.
Thus, by virtue of Proposition 4.4(a), for all ε > 0, we can find νε ∈Ω(e) such that

νε�T νε−ε≤ µ. (4.15)

If we let νεL =ψε, then one obtains

ψε�T ψε−ε= νεL�T νεL−ε=
(
νε�T νε

)
L−ε≤ µL

�⇒ψε�T ψε−ε≤ψ.
(4.16)

(TUB4) If ψ ∈ Ω, then there is a µ ∈ Ω(e) such that ψ = µL. Consequently, by

Proposition 4.4(b), for all ε > 0, there exists a νε ∈Ω(e) such that

νε−ε≤ µ−1. (4.17)

Therefore, νεL−ε≤ (µ−1)L = (µL)−1 implies ψε−ε≤ψs .
This shows in accordance with Definition 2.5 that Ω is a T -uniform basis, which in

turn gives rise to a left T -uniformity �L =Ω∼.

In fact, we have for all x ∈G,

�L(x)=
{
µL
〈
1x
〉 | µ ∈Ω(e)}∼ = {�x(µ) | µ ∈Ω(e)∼}=Ω(x)∼, (4.18)

which is a T -neighborhood system on G and that (G,t(Ω) = t(�L)) is a T -uniform

space. Similarly, one can obtain right T -uniformity.

Theorem 4.13. Every T -neighborhood group is T -completely regular.
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Proof. This follows from the preceding theorem in conjunction with Theorem 2.12

because every T -neighborhood group is T -uniformizable and every T -uniformizable

space is T -completely regular.

Theorem 4.14. Let (G,·) be a group, (G,−, t(Ω)) a T -neighborhood space with T -

neighborhood base Ω in G. Then the quadruple (G,·,−, t(Ω)) is a T -neighborhood group

if and only if the following are true:

(1) for all a∈G,Ω(a)∼ = {�a(µ) | µ ∈Ω(e)}∼ (resp., for all a∈G,Ω(a)∼ = {�a(µ) |
µ ∈Ω(e)}∼);

(2) for all µ ∈Ω(e), for all ε > 0, there exists a ν ∈Ω(e) such that

ν�T ν ≤ µ+ε, (4.19)

that is, the mapping m : (x,y)� xy is continuous at (e,e)∈G×G;

(3) for all µ ∈Ω(e), for all ε > 0, there exists a ν ∈Ω(e) such that

ν ≤ µ−1+ε, (4.20)

that is, the mapping r : x� x−1 is continuous at e∈G;

(4) for all µ ∈Ω(e), for all ε > 0, and for all a∈G such that

a�T ν�T a−1 ≤ µ+ε, (4.21)

that is, the mapping 	a : x� axa−1 is continuous at e∈G.

Proof. Let (G,·,−, t(Ω)) be a T -neighborhood group. Then the conditions (1), (2),

(3), and (4) are clearly true.

To prove the converse part, we remark that from Corollary 4.5, it follows that the

mapping h :G×G→G; (x,y)� xy−1 is continuous at (e,e), and since the translations

�a and �a are continuous at a and e, respectively, the continuity of m follows from

the following chain:

G×G �a−1 ×�b−1
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→ G×G m

��������������������������������������������������������→G 	b�����������������������������������������������������������������→G �ab−1
�����������������������������������������������������������������������������������������������������������������������������������������������→ G, (4.22)

where (a,b)→ (e,e)→ e→ e→ ab−1.

Theorem 4.15. Let (G,·) be a group and � a collection of nonempty subsets of IG,

that is, ∅ �=�⊂ IG such that

(1) � is a prefilterbasis and µ(e)= 1 for all µ ∈�;

(2) for all µ ∈�, for all ε > 0, there exists a ν ∈� such that ν−ε≤ µ−1;

(3) for all µ ∈�, for all ε > 0, there exists a ν ∈� such that ν�T ν−ε≤ µ;

(4) for all µ ∈ �, for all a ∈ G, for all ε > 0, there exists ν ∈ � such that a�T ν�T
a−1−ε≤ µ.

Then there exists a unique T -neighborhood system compatible with the group structure

of G such that � is a T -neighborhood basis at e∈G.

Proof. For all µ ∈�, let µL :G×G→ I be the vicinities L-associated with µ. Evidently,

µL(a,a)= µ(a−1a)= µ(e)= 1.
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We let

�= {µL | µ ∈�
}⊂ IG×G. (4.23)

We show that � is a T -quasi-uniform basis for a T -quasi-uniformity. We verify Definition

2.5 upto (TUB3).

(TUB1) � is a prefilterbasis; for 0 �∈ � which is clearly true, since � is a prefilterbasis.

Next, let λ, ξ ∈�, then λ= µL for some µ ∈� and ξ = ηL for some η∈�. Since �

is a prefilterbasis, there exists a θ ∈� such that θ ≤ µ∧η and θL ≤ µL∧ηL = λ∧ξ,

proving that � is indeed a prefilterbasis.

(TUB2) For all x ∈ G, and ψ ∈ �, we have ψ = µL for some µ ∈ � and ψ(x,x) =
µL(x,x)= µ(e)= 1 by (1).

(TUB3) Let ψ∈�. Then there exists a µ ∈� such that ψ= µL.
Now by (3), for all ε > 0, we can find a ν ∈� such that

ν�T ν−ε≤ µ. (4.24)

But then by virtue of Lemma 4.11(4), we get νL�T νL−ε≤ µL. So, if we putψε = νL, then

ψε�T ψε−ε≤ψ. (4.25)

This completes the proof that � is a T -quasi-uniform basis which in turn gives rise to

a T -quasi-uniformity and hence a T -quasi-uniform space. Then in view of the Theorem

2.6, since every T -quasi-uniform space is a T -neighborhood space, in this case, we have

the T -neighborhood system as given by the family

{
µL
〈
1x
〉
T | µL ∈�∼}= {µL〈1x〉T | µL ∈�

}∼
= {1x�T µ | µ ∈�

}∼
= {1x�µ | µ ∈�

}∼.
(4.26)

Thus one obtains the T -neighborhood system with the following family: Ω(x) =
{1x�T µ | µ ∈�}, a basis for the system in question.

Theorem 4.16. Let (G,·,−, t(Ω)) be a T -neighborhood group. Then for all µ :G→ I,

µ̄ = inf
{
µ�T ν | ν ∈Ω(e)∼

}= inf
{
µ�T ν | ν ∈Ω(e)

}∼. (4.27)

Proof. Observe that every T -neighborhood group is a T -quasi-uniform space.

Therefore, by virtue of Theorem 2.6, we can write, in particular, that

µ̄ = inf
{
νL〈µ〉T | ν ∈Ω(e)∼

}
. (4.28)

Then by using Lemma 4.11(1), we have the following:

µ̄ = inf
{
µ�T ν | ν ∈Ω(e)∼

}= inf
{
µ�T ν | ν ∈Ω(e)

}∼. (4.29)
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Corollary 4.17. In a T -neighborhood group (G,·,−, t(Ω)), the following property

holds:

µ̄ = inf
{
ν�T µ | ν ∈Ω(e)∼

}= inf
{
ν�T µ | µ ∈Ω(e)

}∼. (4.30)

Proof. This follows at once from the preceding results.

Theorem 4.18. If (G,·,−, t(Ω)) is a T -neighborhood group, then (G,−, t(Ω)) is T -

regular.

Proof. Let µ ∈Ω(e) and ε > 0. Since the map (x,y)� xy−1 is continuous at (e,e)∈
G×G, in view of Corollary 4.5, we can find a ν ∈Ω(e) such that

ν�T ν−1 ≤ µ+ε. (4.31)

Then using Theorem 4.16, we obtain

µ̄(x)= inf
ω∈Ω(e)

ν�T ω−1 ≤ ν�T ν−1 ≤ µ(x)+ε, (4.32)

which ends the proof.

Proposition 4.19. If (G,·,−, t(Ω)) is a T -neighborhood group, then for all µ,ν ∈ IG,

we have the following:

(i) µ̄�T ν̄ ≤ µ�T ν ;

(ii) µ−1 = µ̄−1;

(iii) x�T µ�T y = x�T µ̄�T y for all x,y ∈G.

Proof. (i) If z ∈G, then we have

µ̄�T ν̄(z)= sup
xy=z

µ̄(x)T ν̄y = sup
(x,y)∈m−1(z)

[
µ̄⊗T ν̄

]
(x,y)

=m[µ̄⊗T ν̄](z)=m[µ⊗T ν](z)
≤m[µ⊗T ν](z)= µ�T ν(z).

(4.33)

(ii) and (iii) follow immediately.

Lemma 4.20. If (G,·) and (G′,·) are groups and f :G→G′ is a group homomorphism,

then

f
(
x�T a−1�T µ

)= f(x)�T f (a)−1�T f (µ). (4.34)

Proof. This follows the same way as in [2, Lemma 2.15]; see also [7].

Theorem 4.21. Let (G,·,−, t(Ω)) and (H,·,−, t(Ξ)) be T -neighborhood groups with

bases Ω and Ξ in G and H, respectively. If f :G→H is a group homomorphism, then f
is continuous if and only if it is continuous at one point.

Proof. Let f : G→H be continuous at the point a ∈ G. We need to show that f is

continuous at each x ∈G. Let ξ ∈ Ξ(f (x)) and ε > 0. Then we have f(x)−1�T ξ ∈ Ξ(e)
and hence f(a)�T f (x)−1�T ξ ∈ Ξ(f (a)). Then by Theorem 2.4, the continuity at one
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point a ∈ G yields that f−1(f (a)�T f (x)−1�T ξ) ∈ Ω(a)∼, which in turn implies that

there exists a σ = σε ∈Ω(a) such that

σ −ε≤ f−1(f(a)�T f (x)−1�T ξ
)
. (4.35)

Now we have µ := x�T a−1�T σ ∈Ω(x).
Thus, one obtains

µ(z)−ε= x�T a−1�T σ(z)−ε= σ
(
ax−1z

)−ε
≤ f(a)�T f (x)−1�T ξ

(
f
(
ax−1z

))
= f (ax−1)�T ξ(f (ax−1)f(z))
= ξ(f(z))= f−1(ξ)(z),

(4.36)

that is, µ−ε≤ f−1(ξ), which implies that f−1(ξ)∈Ω(x)∼.

Now we present some results on T -neighborhood groups in conjunction with Morde-

son’s TI-group.

5. Application of T -neighborhood groups in TI-groups

Definition 5.1 [7, 20]. An I-subset µ of G is called a TI-subgroup of G if it fulfills

the following conditions:

(G1) µ(e)= 1;

(G2) µ(x−1)≥ µ(x), for all x ∈G;

(G3) µ(xy)≥ µ(x)Tµ(y), for all x,y ∈G.

We denote the set of all TI-subgroups of G by TI(G) and that of the set of all normal

TI-subgroups by NTI-subgroups, while by NI-subgroup we mean normal I-subgroups,

the one introduced by Rosenfeld [20] in which case T =min is used.

Proposition 5.2. Let (G,·,−, t(Ω)) be a T -neighborhood group and µ ∈ TI(G). Then

µ̄t(Ω) ∈ TI(G).
Proof. In view of [7, Theorem 5.1.4], it suffices to prove that

µ̄t(Ω)�T
(
ν̄t(Ω)

)−1 ≤ µ̄t(Ω). (5.1)

Since µ ∈ TI(G), we have µ�T µ−1 ≤ µ. Then by an easy calculation, one obtains

µ�T µ−1 = h(µ⊗T µ−1), (5.2)

which in conjunction with Theorem 3.1, yields the following:

(
µ̄t(Ω)

)�T (µ̄t(Ω))−1 = h
[(
µ̄t(Ω)

)⊗T (µ̄t(Ω))−1
]
≤ µ̄t(Ω), (5.3)

which proves that µ̄t(Ω) ∈ TI(G).
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Proposition 5.3. If (G,·,−, t(Ω)) is a T -neighborhood group and µ ∈NTI(G), then

µ̄t(Ω) ∈NTI(G).
Proof. Since µ ∈ NI(G), we have I x(µ) = x �T µ �T x−1 = µ, where Ix : G → G,

z� xzx−1 is an inner automorphism. But then using Proposition 4.19(iii), we obtain

x�T µ̄�T x−1 = x�T µ�x−1 = µ̄. (5.4)

Hence the result follows from [7, Theorem 5.2.1(N5)].
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