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We study the effects of the axial component of the shear stress on unsteady pipeline flows.
We show that the axial component of the shear stress should be introduced in the modeling
of unsteady flows, and as a numerical model, we propose a one-dimensional momentum
equation in which a term containing the second derivative of the velocity with respect to
space is introduced. The momentum equation and the continuity equation are converted
into a system suitable for the application of upstream difference approximations. Numerical
results are presented, and their correspondence with experimental results is examined to
see how our model captures phenomena observed experimentally.
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1. Introduction. A small disturbance in a liquid pipeline flow may result in an un-

expectedly rapid increase of the pressure. Such a burst of the pressure is called water-

hammer, and it is one of phenomena peculiar to unsteady pipeline flows. On the other

hand, the generation of the high pressure due to waterhammer becomes a pressure

wave, and it propagates with the sound speed. The rapid transmission of a pressure

wave is another phenomenon characteristic of unsteady pipeline flows. In this paper,

we show how these phenomena can be treated mathematically. In particular, we intro-

duce a new model to capture phenomena observed experimentally and show how it can

be analyzed numerically.

In Section 2, we introduce some experimental results to illustrate unsteady pipeline

flows. A pipeline was connected to a water tank at one end and a valve was set at the

other end. The valve was set open initially to allow a uniform flow to form. Then the

valve was closed suddenly, and waterhammer was generated. We present the temporal

change of the pressure which was measured in the transition. In Section 3, we propose

a new model to analyze unsteady liquid pipeline flows numerically. We show that an

expression derived from the Darcy-Weisbach equation corresponds to the radial com-

ponent of the shear stress in a steady radially symmetric laminar flow, and that the axial

component should be retained in the modeling of unsteady flows. In Section 4, we turn

to a numerical aspect of the problem. We show how upstream difference approxima-

tions can be applied to the momentum equation and the continuity equation. We also

present some numerical results and examine their correspondence with experimental

results introduced in Section 2.

2. Description of unsteady pipeline flows. In this section, we present some results

obtained in an experimental study of unsteady pipeline flows. Three pipes of lengths

L1 = 26.87 m, L2 = 16.9 m, and L3 = 10.6 m were connected to form a pipeline. The
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Figure 2.1. Outline of the experimental pipeline.

total length L = L1+L2+L3 of the pipeline was 54.37 m. The diameter D and the wall

thickness e of each of those pipes were equal to 0.05 m and 0.003 m, respectively. It

was connected to a water tank at one end, which we call the upstream end, and a valve

was set at the other end, which we call the downstream end. The first pipe of length

L1 was set horizontally, and its height h1, relative to the valve, was 3.3 m. The height

h2 of the water level of the tank, relative to the upstream end, was 2.99 m. The total

height h = h1+h2 of the water level of the tank, relative to the valve, was 6.29 m. An

outline of the pipeline is shown in Figure 2.1. There was actually a part of the pipeline

between the first pipe and the tank. It stretches vertically from the end of the first pipe,

and then bends perpendicularly, as shown in the figure. However, its effect is negligible

as far as unsteady flows are concerned, and we may regard it as a part of the tank.

Initially, the valve was set open to allow a uniform flow to form. Then the valve

was suddenly closed, and the initial uniform flow turned to an unsteady flow. In the

meantime, the temporal change of the pressure was measured at the point 0.1 m up-

stream from the valve, that is, x = 54.27 m. Figures 2.2 and 2.3 show two experimental

results with different values of the velocity V0 (m/s) of the initial uniform flow: (a)

V0 = 0.089 m/s (Figure 2.2) and (b) V0 = 0.122 m/s (Figure 2.3). We set the moment the

pressure head starts rising to be the initial time t = 0 s. In those figures, the pressure p
(Pa) is represented in terms of the pressure head H (m). The relationship between the

pressure and the pressure head is represented by the following equation:

p = ρg(H−z). (2.1)

Here ρ (kg/m3) is the density of the fluid, g (m/s2) is the gravitational acceleration, and

z (m) is the height of the point on the pipeline where the pressure is measured.

In both cases, the pressure head rapidly increases from the initial level which ap-

proximately equals the height h = 6.29 m of the water level of the tank relative to the

valve after the valve was closed. By t = 0.02 s, the pressure head becomes as high as

18 m and 22 m in cases (a) and (b), respectively. In general, the relationship between
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Figure 2.2. Temporal change of the pressure head for V0 = 0.089 m/s.
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Figure 2.3. Temporal change of the pressure head for V0 = 0.122 m/s.

the change of the pressure head ∆H (m) and the change of the velocity ∆V (m/s) is

represented by the following equation [15]:

∆H =−a
g
∆V. (2.2)

Here a (m/s) denotes the wave speed, that is, the velocity of the pressure wave. The

wave speed is theoretically given by

a=
√
K/ρ√

1+(KD/eE)(1−µ2
) , (2.3)
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where K (Pa) is the bulk modulus of the elasticity of the fluid, e (m) is the pipe wall

thickness, E (Pa) is Young’s modulus of elasticity, and µ is Poisson ratio; −µ is the ratio

of the lateral unit strain to the axial unit strain of the pipe. Theoretical values of the

parameters are K = 2.03×109 Pa, E = 196×109 Pa, and µ = 0.3. For ρ = 1000 kg/m3, we

find that the theoretical value of a is approximately equal to 1324.54 m/s, and for this

value of a (m/s), theoretical values of ∆H obtained by substituting ∆V = −0.089 m/s

and ∆V = −0.122 m/s in (2.2) are approximately ∆H = 12.02 m and ∆H = 16.48 m,

respectively. Note that these predicted values of the increase of the pressure head

based on (2.2) match well with the values obtained experimentally: (a) ∆H ≈ 18−6.29=
11.71m and (b) ∆H ≈ 22−6.29= 15.71m. After the waterhammer occurs, the pressure

head remains almost constant approximately until t = 0.07 s, and then it decreases

rapidly. The pressure head decreases to −5 m in case (a), and −10 m in case (b), and the

pressure head starts increasing after it reaches the lowest level.

We can interpret what happened inside the pipeline as follows. Immediately after

the valve was closed, the pressure wave starts propagating upstream. As soon as the

pressure wave reaches the upstream end, the high pressure developed over the entire

stretch of the pipeline exerts the force on the fluid toward the tank, and then the reverse

flow is generated. The generation of the reverse flow at the upstream end propagates

downstream towards the valve. As the reverse flow is generated, the pressure starts

decreasing. Thus the pressure over the entire stretch of the pipe returns to the origi-

nal level, when the generation of the reverse flow reaches the valve. Our experimental

results show that it took 0.07 s to reach this stage. Meanwhile, the reverse flow still

continues even after the pressure over the entire stretch of the pipeline returns to the

original level, and the pressure starts decreasing further at the valve. The low pressure

built at the valve also becomes a wave and propagates upstream towards the tank. As

soon as the wave reaches the upstream end, the low pressure developed over the entire

stretch exerts the force on the fluid towards the valve, and the fluid starts moving to-

wards the valve. The generation of the flow towards the downstream end starts at the

upstream end, and propagates towards the valve, and the as soon as the flow is gen-

erated the pressure returns to the original level. The generation and the propagation

of the pressure waves are repeated and the state of the flow approaches the stationary

state. In the following sections, we illustrate how such unsteady pipeline flows can be

analyzed numerically.

3. Introduction of the turbulent effect into the modeling of liquid pipeline flows.

We turn to an analytical aspect in studies of unsteady pipeline flows. In particular, we

propose a new model for a turbulent flow. In studies of unsteady liquid pipeline flows,

the momentum equation

Vt+VVx+gHx+ fV |V |
2D

= 0 (3.1)

and the continuity equation

Ht+V
(
Hx− dzdx

)
+ a

2

g
Vx = 0 (3.2)
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are often analyzed numerically. Here x (m) represents the distance from the origin of a

one-dimensional coordinate set along the pipeline, and t (s) represents time. The velo-

city and the pressure head of the flow are denoted by V (m/s) and H (m), respectively.

The subscripts x and t denote the partial differentiation with respect to x and t, re-

spectively. The Darcy-Weisbach friction factor is denoted by f . The last term in the

right-hand side of the momentum equation represents the shear stress, which was de-

veloped from the Darcy-Weisbach equation for steady flows [15].

In a three-dimensional xyz-space, the shear stress exerted on a Newtonian fluid in

the x-direction is given in terms of the expression

ν
(
∂2u
∂x2

+ ∂
2u
∂y2

+ ∂
2u
∂z2

)
, (3.3)

where u is the x-component of the velocity, and ν (m2/s) is the kinematic viscosity

whose value for water is 10−6 m2/s. Suppose that the flow is radially symmetric. In the

cylindrical coordinates (x,r ,θ), where

y = r cosθ, z = r sinθ, (3.4)

the shear stress can be represented in terms of the following expression:

ν
(
∂2u
∂x2

+ ∂
2u
∂r 2

+ 1
r
∂u
∂r

)
. (3.5)

Moreover, when the velocity is independent of x, the first term is dropped, and it be-

comes

ν
(
∂2u
∂r 2

+ 1
r
∂u
∂r

)
. (3.6)

On the other hand, the x-component of the velocity of the Poiseuille flow, a steady

radially symmetric laminar flow, is given by

u=u0

(
1− 4r 2

D2

)
, (3.7)

where u0 is a constant. Its average ū over a cross section is given by

ū= 4u0

πD2

∫ D/2
0

(
1− 4r 2

D2

)
dr = 4u0

3πD
. (3.8)

Now the shear stress can be represented by

ν
(
∂2u
∂r 2

+ 1
r
∂u
∂r

)
=−4νu0

D2
=−3πν

D
ū. (3.9)
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Thus, in a steady radially symmetric laminar flow, the shear stress is proportional to the

average velocity. Meantime, for the experimental results shown in Section 2, the velocity

of the initial flows are greater than 0.08 m/s. If we set ν = 10−6 m2/s, the Reynolds

number

Re= DV
ν

(3.10)

is at least 4×104, for the diameter D of the pipeline was 0.05 m. In general, a pipeline

flow whose Reynolds number is greater than 1/3×104 is a turbulent flow, and the initial

flows in the experiment should be turbulent. When the flow is turbulent, the shear stress

is known to be proportional to the square of the average velocity [12].

The foregoing discussion suggests that the fourth term on the left-hand side of (3.1),

fV |V |/2D, corresponds to the radial component of the shear stress of a steady flow.

For an unsteady flow, the term proportional to the second derivative of the velocity

component with respect to x must be retained, and the momentum equation should

become

Vt+VVx+gHx+ fV |V |
2D

−ν0Vxx = 0. (3.11)

Here ν0 is a constant that represents a generalized kinematic viscosity called the eddy

viscosity. In the following section, we illustrate how the system of partial differential

equations (3.2) and (3.11) can be analyzed numerically to evaluate the velocity and the

pressure head.

4. Numerical analysis of unsteady pipeline flows. In this section, we show how the

system of the partial differential equations (3.2) and (3.11) can be solved numerically.

We also present some numerical results to show how the effects of the axial component

of the shear stress appear. In order to solve the system of partial differential equations

(3.2) and (3.11) numerically, we convert it to a form for which upstream difference

approximations are suitable [7]. The change of variables

Y = 1√
a2+g2

(aV −gH), Z = 1√
a2+g2

(aV +gH) (4.1)

converts (3.2) and (3.11) to the following system which is suitable for upstream differ-

ence approximations:

Yt+(V −a)Yx =Q−(V), (4.2)

Zt+(V +a)Zx =Q+(V). (4.3)

Here the functions Q±(V) are defined by

Q±(V)= 1√
a2+g2

(
− afV |V |

2D
+aν0Vxx±gV dzdx

)
. (4.4)
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For a typical pipeline flow, the wave speed a is greater than 103 m/s, whereas the mag-

nitude of the velocity is at most 10.0 m/s, and it may be assumed that V −a < 0 and

V+a> 0. Then a forward difference approximation can be applied to (4.2) and a back-

ward difference approximation can be applied to (4.3) efficiently [2]. Divide the interval

[0,L] into N equally spaced intervals, and let ∆x denote the length of the intervals:

∆x = L
N
. (4.5)

Let xi = i∆x (i = 0,1,2, . . . ,N). Choose ∆t > 0 and let tj = j∆t (j = 0,1,2, . . .). Denote

approximate solutions V and H of the system (3.2) and (3.11) at (x,t)= (xi,tj) by Vi,j
and Hi,j , respectively. Suppose that Yi,j and Zi,j are given by

Yi,j = 1√
a2+g2

(
aVi,j−gHi,j

)
,

Zi,j = 1√
a2+g2

(
aVi,j+gHi,j

)
.

(4.6)

Then Yi,j and Zi,j are approximate solutions of the system (4.2) and (4.3) at (x,t) =
(xi,tj). Then we obtain the following difference equations:

Yi,j+1−Yi,j
∆t

+(Vi,j−a)Yi+1,j−Yi,j
∆x

=Q−(Vi,j),
Zi,j+1−Zi,j

∆t
+(Vi,j+a)Zi,j−Zi−1,j

∆x
=Q+(Vi,j).

(4.7)

The functions Q−(Vi,j) and Q+(Vi,j) now become

Q±(V)= 1√
a2+g2

(
− afiVi,j

∣∣Vi,j∣∣
2D

+aν0
(
Vxx

)
i,j±gVi,j

(
dz
dx

)
i

)
, (4.8)

where

(
Vxx

)
i,j =




Vi,j−2Vi+1,j+Vi+2,j

(∆x)2
, i= 0,

Vi−1,j−2Vi,j+Vi+1,j

(∆x)2
, 1≤ i≤N−1,

Vi−2,j−2Vi−1,j+Vi,j
(∆x)2

, i=N,

(
dz
dx

)
i
=




z
(
xi+1

)−z(xi)
∆x

, i= 0,

z
(
xi+1

)−z(xi−1
)

2∆x
, 1≤ i≤N−1,

z
(
xi
)−z(xi−1

)
∆x

, i=N.

(4.9)
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In order to obtain our numerical results, we introduced the effect of pressure gradient

into the friction term, and set

fi = fs+fd
∣∣∣∣(Hx)i−

(
dz
dx

)
i

∣∣∣∣. (4.10)

Here fs denotes the Darcy-Weisbach friction factor, and fd denotes the factor of the

friction due to the divergence of the gradient of the pressure head from the slope of

the pipe. For Q−(Vi,j), (Hx)i is given by

(
Hx
)
i =

Hi+1,j−Hi,j
∆x

, (4.11)

and for Q+(Vi,j), it is given by

(
Hx
)
i =

Hi,j−Hi−1,j

∆x
. (4.12)

The height z of a point on the pipeline is given as the following function of x:

z =




h1, 0≤ x <M1,

h1
M2−x
L2

, M1 ≤ x <M2,

0, M2 ≤ x ≤M3,

(4.13)

where

Mi =
i∑
j=1

Lj. (4.14)

Our interest is to see how the axial component of the shear stress affects numerical

results. On the other hand, the eddy viscosity varies from one problem to another, and

horizontal eddy viscosities range up to 1011 times the kinematic viscosity [3]. Here we

tried our model setting ν0 = 5.0 m2/s and V0 = 0.122 m/s. Then, in order to find an

appropriate value of fd, we tested 201 evenly spaced points in the interval [10,50]
when the other parameter values were fixed, and selected the one in which the error

between the numerical solution and the experimental data was minimized. Thus, we

set the following values of the parameters:

fs = 0.02, fd = 26.6, ν0 = 5.0m2/s

N = 800, ∆t = 0.00001s, T = 0.015s.
(4.15)

Here T is the time it takes for the valve to close completely. The values of the other

parameters were as described before. Approximate solutions were computed with the

initial value

V(x,0)= V0,

H(x,0)= h1+h2−xfsV0

∣∣V0

∣∣
2gD

, 0≤ x ≤ L, (4.16)

and appropriate boundary conditions.
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Figure 4.1. Temporal change of the pressure head: V0 = 0.089 m/s.
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Figure 4.2. Temporal change of the pressure head: V0 = 0.122 m/s.

Figures 4.1, 4.2, 4.3, and 4.4 show the numerical results based on the system (3.1)

and (3.2), and the system (3.2) and (3.11) for V0 = 0.089 m/s and V0 = 0.122 m/s, re-

spectively. They show the temporal change of the pressure head at x = 54.27 m which

corresponds to the position where the pressure was measured experimentally to obtain

the results shown in Figures 2.2 and 2.3. In those figures, numerical solutions of the

system without the axial component of the shear stress, the system (3.1) and (3.2), and
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Figure 4.3. Pressure head: V0 = 0.122 m/s, 0≤ t ≤ 0.08.

Time (s)

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

P
re

ss
u

re
h

ea
d

(m
)

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

Numerical result: (3.1) and (3.2)
Numerical result: (3.2) and (3.11)
Experimental result

Figure 4.4. Pressure head: V0 = 0.122 m/s, 0.08≤ t ≤ 0.16.

the corresponding experimental results introduced in Section 2 are also shown. Some

parts of Figure 4.2 are enlarged, and shown in Figures 4.3 and 4.4. In the following

section, we discuss the significance of those numerical results.
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5. Conclusion. Figure 4.3 shows that both the numerically computed pressure heads

increased almost to 21 m by 0.02 s. Meanwhile, the pressure head based on the system

(3.2) and (3.11) increased to 22 m by 0.05 s and stayed at this level for a while, whereas

the pressure head based on the system (3.1) and (3.2) stayed below the other one. Then

they started decreasing. Figure 4.4 shows that the pressure head based on the system

(3.2) and (3.11) decreased to −7.5 m by 0.12 s and that it stayed at that level until it

started increasing again approximately at t = 0.13 s. On the other hand, the pressure

head based on the system (3.1) and (3.2) stayed above the other one. Note that the pres-

sure head based on the system (3.2) and (3.11) was closer to the experimental result

when it stayed above or close to 21 m between t = 0.02 s and t = 0.07 s, or when it

stayed below or close to −6.5 m between t = 0.11 s and t = 0.15 s. In summary, the sys-

tem (3.2) and (3.11) captured the characteristics of an unsteady pipeline flow observed

experimentally.

In addition to waterhammer and propagation of pressure waves, another phenom-

enon characteristic of unsteady pipeline flows is a formation of two-phase flow of

the mixture of liquid and liquid-vapor due to an extreme decrease of the pressure.

When the pressure decreases to a certain level, called vapor pressure, liquid-vapor

can be generated in a liquid flow, and the two-phase flow can form. Vapor pressure

is known to be 32 hPa, and it corresponds to the pressure head H =−10 m. Numerical

techniques to capture the phenomena have been developed for the past two decades

[1, 4, 5, 6, 8, 9, 10, 11, 13, 14]. In analysis of the two-phase flows which arise from liquid

flows, it is important to know precisely when the pressure decreases to vapor pressure,

for that is when a liquid flow starts turning to a two-phase flow. We have demonstrated

a value of our new model also in this respect.
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