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Consider an M/G/1 production line in which a production item is failed with some proba-
bility and is then repaired. We consider three repair disciplines depending on whether the
failed item is repaired immediately or first stockpiled and repaired after all customers in the
main queue are served or the stockpile reaches a specified threshold. For each discipline,
we find the probability generating function (p.g.f.) of the steady-state size of the system at
the moment of departure of the customer in the main queue, the mean busy period, and the
probability of the idle period.
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1. Introduction. Consider an M/G/1 queueing system in which some customers

must be reserviced with probability p. These models might be considered in a pro-

duction line, in sending messages through the network, running computer programs,

telephone network congestion, communication problems, and so on. In a production

line, some items might be failed and require repair. When messages are sent through

a network, some may be returned (postmaster) and must be sent again. An operator

running computer programs may encounter some errors and need to run them again.

In a telephone center, some calls may be not completed due to signal failure and must

be reestablished. In these kinds of problems, we must reservice some items.

Optimal operating policies for single-server systems in which the server may be

turned on and off have been studied over a period of more than three decades. Ear-

lier authors include Yadin and Naor [12], Heyman [4], Sobel [9], and Bell [1]. Yadin and

Naor [12] proposed shutdown control for an M/M/1 queue in order to increase the

length of individual idle periods. Soon after, Heyman [4] proved that (0,N) control (i.e.,

the server turns off if the system size is zero and turns on when the system size is

N) is the optimal policy in an M/G/1 queue by considering the start-up and shutdown

cost of a server, a cost per unit time when a server is running and a customer is waiting

cost. This model was modified by Heyman and Marshal [5] by allowing for interarrival

distributions that have increasing rates. These authors found an optimal policy for the

undiscounted infinite horizon problem and bounds on the cost rate. Heyman’s result

was also improved by Bell [1] who proved that for an M/G/1 queue with a given oper-

ating cost structure, shutdown control is the optimal stationary operating policy. More

generally, Sobel [9] showed that almost any type of stationary policy is equivalent to an

(n,N) model, by considering the criterion of average cost rate over an infinite horizon.

http://dx.doi.org/10.1155/S0161171204210389
http://dx.doi.org/10.1155/S0161171204210389
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


1716 M. R. SALEHI-RAD ET AL.

This problem remains an active research area. For example, Kitaev and Serfozo [6]

considered anM/M/1 queueing system with dynamically controlled arrival and service

rates. Their results described natural conditions on the costs under which an optimal

policy for either the discounted-cost or average-cost criterion is a hysteretic policy.

Such a policy increases the service rate and decreases the arrival rate as the queue

length increases. More recently, Deng and Tan [2] studied a single-server two-queue

priority system with changeover times and switching threshold. They considered an

M/M/1 queue, obtained the steady-state joint probability generating function of the

length of the two queues, and then calculated the mean length of queue and mean

delay.

In this note, we consider three alternatives for reservicing in a steady-state M/G/1
queue. These alternatives, denoted as disciplines I, II, and III, are described in Sections

3, 4, and 5. For each discipline, we find the probability generating function (p.g.f.) of the

steady-state size of the system at the moment of departure of the customer in the main

queue, the mean busy period, and the probability of the idle period (the proportion of

time that the server is idle).

In Section 2, we describe the problem. In Sections 3, 4, and 5, for each discipline,

explicit closed formula for the steady-state p.g.f. of the imbedded Markov chains will

be derived. Also, we will find the proportion of time during which the server is idle in

each discipline through finding the mean busy period and using Little’s formula, that is,

E(busy period)/E(idle period) = (1−π∗)/π∗, where π∗ is the probability of the idle

period. The key mathematical tool that we use is Laplace-Stieltjes transform (LST) of a

function, which for function F(·) we denote by F∗(·).

2. Description of the problem. As mentioned, we consider an M/G/1 queueing

model in a steady state in which some items are failed with probability p, and require

reservice. Three disciplines may be considered.

In discipline I, the server reservices a failed item immediately after completion of the

service of the customer in the main queue (MQ), if the item served has failed.

In discipline II, failed items are stockpiled in a failed queue (FQ) and reserviced only

after all customers inMQ are serviced. After completion of reservice of all items in FQ,

the server returns to MQ if there are customers waiting; otherwise the system is idle.

Discipline III is the same as discipline II, except that the server also switches to FQ
if there are N failed items in FQ (threshold N). Again, all items in FQ are reserviced

before returning to MQ.

Let t1, t2, . . . be times at which a service inMQ is completed. We suppose that service

(s) and reservice (s̃) times are independent and have general distributions, denoted by

B1(·) and B2(·) with means 1/µ1 and 1/µ2, respectively. An(s) and Ãn(s̃) are the num-

bers of arrivals in MQ, during servicing and reservicing in MQ and FQ, respectively,

and are distributed as Poisson with parameters λs and λs̃ at the moment of the nth

departure in MQ, respectively. Of course, since these are independent of n, we show

them by A(s) and Ã(s̃).
In discipline I, the imbedded Markov chain isX(tn) (or, for convenience,Xn), the num-

ber of customers remaining in MQ at the completion of the nth customer’s service
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time. In contrast, disciplines II and III are described by the bivariate Markov chain

(X(tn),Y(tn)) (or, for convenience (Xn,Yn)), where Yn is the number of customers

remaining in FQ at the completion of the nth customer’s service time. Thus, for disci-

pline I,

Xn+1 =
(
Xn−1

)
++An+1(s)+

[
Ãn+1(s̃)−1

]
+I{Xn=0}, (2.1)

for discipline II, (Xn+1,Yn+1) becomes

((
Xn−1

)
++An+1(s)+

[
ΣYni=1Ãn+1

(
s̃i
)−1

]
+I{Xn=0},YnI{Xn>0}+Un+1

)
, (2.2)

and, for discipline III, (Xn+1,Yn+1) is given by

((
Xn−1

)
++A(s)+

[
ΣYni=1Ã

(
s̃i
)
IC2∪C3−IC3

]
+,YnIC1+Un+1

)
. (2.3)

In these expressions, (x−1)+ is max{x−1,0}, Un+1 = 1 if the departure has failed and

is otherwise zero, C1 = {Xn > 0, 0≤ Yn <N}, C2 = {Xn > 0, Yn =N}, C3 = {Xn = 0, 0<
Yn ≤N}, and C4 = {Xn = 0, Yn = 0}.

3. The queueing discipline I. In this section, we consider discipline I and find the

p.g.f. of the steady-state size of the system and π∗I = Pr(idle period) through finding

the mean busy period. Three lemmas that are useful for finding the required p.g.f.

stated are below. For proofs, see Salehi-Rad and Mengersen [8].

Lemma 3.1. IfA(s) and Ã(s̃) are the numbers of arrivals during service and reservice

times, respectively, then their p.g.f.’s are Qi(u) = B∗i [λ(1−u)], i = 1,2, where B∗1 (·)
and B∗2 (·) are the LSTs of the distribution functions of the service and reservice times,

respectively.

Lemma 3.2. By Lemma 3.1, E[Pr{Ã(s̃)= 0}]= B∗2 (λ).
Lemma 3.3. If X is a nonnegative integer-valued random variable with p.g.f. P(u),

then

E
[
u(X−1)+]=u−1[P(u)−(1−u)Pr(X = 0)

]
. (3.1)

Now, by developing a proposition, we find the p.g.f. ofXn, denoted by P(u)= E(uXn).
Proposition 3.4. The p.g.f. of Xn in the steady state is

P(u)= (1−u)B�1
[
λ(1−u)][1−p[1−B�2 (λ)]]

(1−p)B�1
[
λ(1−u)]+pC�[λ(1−u)]−uπ0, (3.2)

where C∗(·) is the LST of the convolution of the distribution functions of the service and
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reservice times, and π0 is the probability that the MQ is empty and is equal to

(1−ρ){1−p[1−B∗2 (λ)]}−1. (3.3)

Here, ρ = ρ1+pρ2, ρ1 = λ/µ1, and ρ2 = λ/µ2 and the ρi are traffic intensity in MQ and

FQ, respectively.

Proof. Using the definition of the p.g.f. of a random variable for (2.1) and after a

long computation, (3.2) yields. For finding (3.3), we use Hôpital’s rule and the fact that

P(1)= 1.

Remark 3.5. We can think of the service time of an individual as being the service

time inMQ plus any reservice time (conditional on requiring such reservice), times the

probability p of the item being failed. Then E[service time]= 1/µ1+p/µ2 = 1/µ. Now,

we have anM/G/1 queue with mean service time 1/µ. On the other hand, the mean busy

period in M/G/1 is found by taking the derivative of the functional equation Γ(u) =
B∗[u+λ(1−Γ(u))] (see Takács [11]), withu= 0, in which Γ(u) and B∗(·) are the LSTs of

the distribution functions of the busy period inMQ and service time, respectively, and

is equal to 1/(µ−λ) (see Gross and Harris [3]). Therefore, E(busy period)= ρ/λ(1−ρ).
By using Little’s law (see Stidham [10]) and the fact that the mean idle period (1/λ) is ex-

ponentially distributed, we have E(busy period)/E(idle period) = (1−π∗I )/π∗I , which

yields π∗I = 1−ρ.

4. The queueing discipline II. We now consider discipline II. In this case, since we

store the failed items and then repair them whenMQ is empty, we require two variables.

One of these, Xn, is the number of the customers in MQ at the epochs {tn}, and the

other, Yn, is the number of failed items in the store (FQ), again at the epochs {tn}.
We now have a bivariate imbedded Markov chain (Xn,Yn). (Xn+1,Yn+1) has been given

by (2.2). To evaluate the joint p.g.f. (Xn,Yn) in the steady state, denoted by P(u,v) =
E(uXnvYn), we develop the proposition below.

Proposition 4.1. The joint p.g.f. of (Xn,Yn) in the steady state is

P(u,v)= {(1−p+pv)B∗1 [λ(1−u)]−u}−1

×{(1−p+pv)B∗1 [λ(1−u)][R(v)−G∗(u,p,λ)+(1−u)G∗(0,p,λ)]}π0•
(4.1)

in which

R(v)= Σπj|0vj, j ≥ 0,

πj|0 = Pr
{
Yn = j |Xn = 0

}
,

π0• = Pr
(
Xn = 0

)
,

G∗(u,p,λ)=ψ(1−p+pB∗2 [λ(1−u)]),
ψ(u)=uB∗1

[
λ
(
1−ψ(u))],

(4.2)

whereψ(u) is the p.g.f. of the number of served customers (departures) in a busy period

(here in MQ) (see (Takács [11] and Saaty [7])). π0• is the probability that MQ is empty
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and is equal to

(
1−ρ1

)2[pρ2+
(
1−ρ1

)
G�(0,p,λ)

]−1. (4.3)

It is clear that the number of failed items in FQ is distributed as a binomial distri-

bution with parameters p and K, where K is the number of served customers in a busy

period inMQ and has p.g.f.ψ(u). Expression (4.2) is a functional equation. Takács [11]

has proved the existence and uniqueness of an analytic solution of ψ(u) for |u| ≤ 1

subject to ψ(0) = 0. In addition, he has shown that limψ(u), where u→ 1, equals the

smallest positive real root of the equation B∗1 [λ(1−x)]= x. By solving expression (4.2)

and using the p.g.f. of the binomial distribution, we can find the p.g.f. of Yn, given

Xn = 0, denoted by R(·), in terms of ψ(u).

Proof. Using the definition of the joint p.g.f. of the bivariate random variable for

(2.2), that is, E(uXnvYn) and a long computation, (4.1) yields.

Remark 4.2. Using an ergodicity argument, Remark 3.5, Little’s law, the mean busy

periods in MQ and FQ, and the idle period, we can find π∗II which is Pr(idle period,

discipline II). Moreover, we have

E(busy period)= E(busy period in MQ)+pE(busy period in FQ). (4.4)

The first expression is equal to 1/(µ1−λ). The second expression is p[µ2(1−ρ1)]−1.

Then, by E(busy period)/E(idle period) = (1−π∗II )/π∗II , the probability of the idle pe-

riod is π∗II = (1−ρ1)(1+p2ρ2)−1.

5. The queueing distribution III. Finally, consider discipline III. In this case, the

server has to switch from MQ to FQ if the store is full (threshold N) or if there are

no more items in MQ, and returns to MQ after reservicing all the failed items in FQ,

if there are any items in MQ. As with the other disciplines, we find the joint p.g.f.

(Xn,Yn) in the steady state and π∗III = Pr(idle period, discipline III). However, before

this, we find the probability that the store reaches the threshold N through a remark.

Remark 5.1. When the store is full, the server switches to FQ from MQ. At this

time, the number of departures inMQ is a random variable D distributed as a negative

binomial as follows:

Pr(D = d)=
(
d−1
N−1

)
pN(1−p)d s.t. d=N,N+1, . . . . (5.1)

In other words, Pr(Yn = N) = Pr(D = d), denoted by π•N . We use this note for finding

the joint p.g.f. (Xn,Yn), by developing a proposition given below.

Proposition 5.2. The joint p.g.f. of (Xn,Yn) in the steady state is

P(u,v)= (1−p+pv)B∗1
[
λ(1−u)]

(1−p+pv)B∗1
[
λ(1−u)]−u

{[
R(v)−G∗N(u,p,λ)+(1−u)G∗N(0,p,λ)

]
π0•

+
[
vN−[B∗2 [λ(1−u)]]N]RN(u)π•N}

(5.2)
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in which

R(v)= Σπj|0vj, j = 0,1, . . . ,N,

πj|0 = Pr
{
Yn = j |Xn = 0

}
,

RN(u)= E
(
uXnI{Xn>0} | Yn =N

)= Σφi|Nui, i > 0,

φi|N = Pr
{
Xn = i | Yn =N

}
,

G∗N(u,p,λ)= E
[
uΣ

Yn
i=1Ã(s̃i)

∣∣Xn = 0
]
= R(B∗2 [λ(1−u)]),

(5.3)

where

π0• = 1−ρ1+π•Nρ2

R
[
B∗2 (λ)

]−ρ2E
(
Yn |Xn = 0

) . (5.4)

Proof. By the definition of the joint p.g.f. of (Xn,Yn) for (2.3), we have

P(u,v)= E(uXn+1vYn+1
)

= E
[
u(Xn−1)++A(s)+[ΣYni=1Ã(s̃i)IC2∪C3−IC3 ]+vYnIC1+Un+1

]
= (1−p)E[uXn+A(s)−1vYnIC1

]+pE[uXn+A(s)−1vYn+1IC1

]
+(1−p)E[uXn+ΣNi=1Ã(s̃i)+A(s)−1v0IC2

]+pE[uXn+ΣNi=1Ã(s̃i)+A(s)−1v1IC2

]
+(1−p)E[u[ΣYni=1Ã(s̃i)−1]++A(s)v0IC3

]+pE[u[ΣYni=1Ã(s̃i)−1]++A(s)v1IC3

]
+(1−p)E[uA(s)v0IC4

]+pE[uA(s)v1IC4

]

= (1−p+pv)E[uA(s)]{E[IC4

]+ 1
u
[
E
[
uXnvYnIC1

]+E[uXn+ΣNi=1Ã(s̃i)IC2

]]

+E[u[ΣYni=1Ã(s̃i)−1]+IC3

]}
.

(5.5)

Now, by using the relations between indicator functions, P(u,v) is equal to

(1−p+pv)B∗1
[
λ(1−u)]{π00+ 1

u

{
E
[
uXnvYn

(
1−IC2∪C3∪C4

)]+E[uΣNi=1Ã(s̃i)
]
E
[
uXnIC2

]}

+E
[
u
[ΣYni=1Ã(s̃i)−1]+ (

IC3∪C4−IC4

)]}

= (1−p+pv)B∗1
[
λ(1−u)]

×
{
π00+ 1

u
{
P(u,v)−E[uXnvYnIC2∪C3∪C4

]
+[B∗2 [λ(1−u)]]N[E(uXnIC2∪{Xn=0,Yn=N}

)−E(uXnI{Xn=0,Yn=N}
)]}

+E
[
u
[ΣYni=1Ã(s̃i)−1]+

IC3∪C4

]
−E

[
u
[ΣYni=1Ã(s̃i)−1]+

IC4

]}
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= (1−p+pv)B∗1
[
λ(1−u)]

×
{
π00+ 1

u
{
P(u,v)−E[uXnvYnIC3∪C4

]−E[uXnvYnIC2∪{Xn=0,Yn=N}
]

+E[uXnvYnI{Xn=0,Yn=N}
]+B∗2 [λ(1−u)][RN(u)−π0N

]}

+E
[[
B∗2
[
λ(1−u)]]Yn−(1−u)[B∗2 (λ)]Yn

u

]
π0•−π00

}
.

(5.6)

By using (5.3) and summarizing, the proof is completed.

In order to find π0• in (5.4), we use Hôpital’s rule and the fact that limP(u,1) = 1,

where u→ 1.

Special cases. Two special cases, denoted below by (S1) and (S2), are important.

(S1) If N →∞, then vN−{B∗2 [λ(1−u)]}N → 0 and G∗N(u,p,λ)=G∗(u,p,λ). Thus

P(u,v)= {(1−p+pv)B∗1 [λ(1−u)]−u}−1

×{(1−p+pv)B∗1 [λ(1−u)]
×[R(v)−G∗(u,p,λ)+(1−u)G∗(0,p,λ)]}π0•,

(5.7)

that is, discipline II.

(S2) If p = 0 and v = 1, then

P(u,1)= P(u)= {(1−u)B�1 [λ(1−u)]}{B�1 [λ(1−u)]−u}−1π0, (5.8)

with π0 = 1−λ/µ1 = 1−λE(service time) = 1−ρ1. This is similar to the M/G/1 queue

without any conditions (see Gross and Harris [3]).

Remark 5.3. We now find the proportion of time that the server is idle, that is,

π∗III . For this, first we find the mean busy period (denoted by T ), and then, by using

(1−π∗III)/π∗III = E(T)/E(idle period), we can find π∗III . We can divide the busy period

into four subperiods. The first (denoted by T1) is when the server starts in MQ with

one customer. In the second (T2), the server switches from MQ to FQ for reservicing

the waiting failed items, when the level of FQ is the threshold N. In the third (T3), the

server returns toMQ from FQ for servicing the waiting customers, after reservicing all

of the failed items in FQ. At this time, there are Vn =Xn+ΣNi=1Ã(s̃i) waiting customers

inMQ, where the Xn are the remaining customers from before, that is, ΣDi=1A(si)+1−D
and ΣNi=1Ã(s̃i) are new arrivals during reservicing in FQ. In the fourth period (T4), the

server again switches to FQ after servicing all customers in MQ and the level of the

store (FQ) is Yn, where Yn = 1,2, . . . ,min{N,K∗}, where K∗ is the number of departures

in MQ when the server starts with Vn customers. Now, by this discussion, we have

E(T)= E(T1
)+Pr(D = d)×E(T2

)+E(T3
)+p×E(T4

)
. (5.9)

The means of the subbusy periods are found as below.
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(a) T1 comprises D service times that are i.i.d B1(·) with mean 1/µ1. Thus E(T1) =
E(D)E(s)=N/pµ1.

(b) T2 comprises N reservice times that are i.i.d B2(·) with mean 1/µ2. Thus E(T2)=
NE(s̃)=N/µ2.

(c) T3 is the same as the busy period for an M/G/1 queue when the server starts

with Vn customers. This means that we repeat an M/G/1 queue that starts with one

customer, Vn times. By Remark 4.2, the mean busy period for such a queue is 1/(µ1−λ).
Thus the mean busy period in MQ for the queue that starts with Vn customers is

E(Vn)/(µ1−λ). Now, by using the mean of the negative binomial distribution, we can

compute E(Vn) as follows:

E
(
Vn
)= E

[
Xn+

N∑
i=1

Ã
(
s̃i
)]

= E
[ D∑
i=1

A
(
si
)+1−D

]
+NE[Ã(s̃)]

= E(D)E[A(s)]+1−E(D)+ Nλ
µ2

=Nρ2− N
(
1−ρ1

)
p+1

.

(5.10)

Therefore, E(T3)= [Nρ2−N(1−ρ1)/p+1]/µ1(1−ρ1).
(d) T4 comprises Yn reservice times that are i.i.d B2(·) with mean 1/µ2. Then E(T4)=

E(Yn)E(s̃), where Yn = 1, . . . ,min{N,K∗}. For anM/G/1 queue in which the server starts

with one customer, we know that the mean of the number of the departures in MQ is

1/(1−ρ1) (see Salehi-Rad and Mengersen [8]). However, at the third subbusy period,

the server starts with Vn customers, thus

E
(
K∗
)= E

(
Vn
)

1−ρ1
= Nρ2−N

(
1−ρ1

)
/p+1

1−ρ1
= µ1E

(
T3
)
. (5.11)

Now, we can find E(T4) as follows:

E
(
T4
)= E(s̃)E(Yn)= µ2

−1E
[
E
(
Yn |min

{
N,K∗

})]
, (5.12)

that is, Np/µ2 if min{N,K∗} =N, otherwise E(K∗)p/µ2. Finally, by (5.9) and using (a),

(b), (c), and (d), we can find π∗III .
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