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We consider a real semisimple Lie group G with finite center and K a maximal compact
subgroup of G. We prove an Lp −Lq version of Hardy’s theorem for the spherical Fourier
transform on G. More precisely, let a, b be positive real numbers, 1 ≤ p, q ≤ ∞, and f a

K-bi-invariant measurable function on G such that h−1
a f ∈ Lp(G) and eb‖λ‖2

�(f )∈ Lq(a∗+)
(ha is the heat kernel on G). We establish that if ab ≥ 1/4 and p or q is finite, then f = 0
almost everywhere. If ab < 1/4, we prove that for all p, q, there are infinitely many nonzero
functions f and if ab = 1/4 with p = q =∞, we have f = constha.

2000 Mathematics Subject Classification: 22E30, 22E46, 43A30.

1. Introduction. In the usual Fourier analysis on R, it is known, by a theorem of L.

Schwartz, that a function f onR is rapidly decreasing if and only if its Fourier transform

f̂ is rapidly decreasing. A theorem of Hardy [8] measures this rapidity in the following

meaning: for given positive real numbers a and b, suppose that f is a measurable

function such that |f(x)| ≤ conste−ax2
and |f̂ (y)| ≤ conste−by2

. Then f = 0 almost

everywhere if ab > 1/4, f(x) = conste−ax2
if ab = 1/4, and there are infinitely many

nonzero functions f if ab < 1/4.

This theorem has been generalized in other situations as the Heisenberg group [3] and

the Euclidean motion group [15]. In particular, for a semisimple Lie group G, Sitaram

and Sundari proved in [14] a version of Hardy’s theorem when G has one conjugacy

class of Cartan subgroups. Their result has been extended to all semisimple Lie groups

by Cowling et al. in [5], Ebata et al. in [6], and Sengupta in [12].

Another generalization is the Lp−Lq version of Hardy’s theorem, proved by Cowling

and Price in [4]. More precisely, taking 1 ≤ p, q ≤∞ (with p or q finite) and supposing

that for a measurable function f , eax2f(x)∈ Lp(R), eby2 f̂ (y)∈ Lq(R), and ab ≥ 1/4,

then f = 0 almost everywhere. An analogue of this result has been also proved for the

motion group in [7].

In this paper, we consider a real semisimple Lie group G with finite center, G =
K exp(a+)K a Cartan decomposition of G, and ha the heat kernel on G. We establish the

following Lp−Lq version of Hardy’s theorem for the spherical Fourier transform on G.

Let a, b be positive real numbers, 1 ≤ p, q ≤ ∞, and f a K-bi-invariant measurable

function such that h−1
a f ∈ Lp(G) and eb‖λ‖2

�(f )∈ Lq(a∗+).
If p or q is finite and ab ≥ 1/4, then f = 0 almost everywhere.
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In case p = q =∞,

(i) if ab > 1/4, then f = 0 almost everywhere,

(ii) if ab = 1/4, then f = constha.

If ab < 1/4, we prove that for all p, q, there are infinitely many nonzero functions

satisfying the Lp−Lq conditions.

This theorem is exactly the analogue of the result of Cowling and Price in [4]. We

believe that comparing f to the heat kernel and �(f ) to e−b‖λ‖2
is the natural way to

generalize Hardy’s theorem on G, because in the Euclidian case of R, the function e−ax2

is also the heat kernel.

In [11] and in order to give an Lp version of Hardy’s theorem on G, Narayanan and

Ray remark that if they compare f to e−a‖x‖2
and f̂ to e−b‖λ‖2

, they only obtain the

result for p ≥ 2. Then they take the function e−a‖x‖2ϕ1−2/p
0 instead of e−a‖x‖2

to get the

result for all 1≤ p ≤∞, but this condition depends on p. (ϕ0 is the spherical function

defined in Section 2.2.)

To prove our result, we adapt the classical methods as in [4, 6, 14]. We use the fact that

h−1
a f ∈ Lp(G) to give an estimation of �(f ) (Lemma 4.2), then we add the hypothesis

eb‖λ‖2
�(f )∈ Lq(a∗+) to conclude with a Phragmén-Lindelöf-type theorem.

This paper is organized as follows. In Section 2, we introduce some notations and

results for semisimple Lie groups and spherical Fourier transform. In Section 3, we

prove different versions of the Phragmén-Lindelöf theorems, which are crucial for the

proof of the principal results of the paper. We give the Lp − Lq version of Hardy’s

theorem in Section 4.

2. Preliminaries. In this section, we introduce some classical notations and results

about semisimple Lie groups and spherical functions. For details, we refer to [10, 16].

2.1. Notations. Let G be a connected, noncompact real semisimple Lie group with

finite center, and K a fixed maximal compact subgroup of G. Let g and k be the Lie

algebras of G and K, respectively. Take g = k+ p a Cartan decomposition of g and

a a maximal commutative subspace of p. Denote by a∗ the real dual of a and a∗C its

complexification. The associated Killing form defines a scalar product 〈·,·〉 on a.

For λ∈ a∗, let Hλ be the unique element in a such that λ(H)= 〈Hλ,H〉 for all H ∈ a.

If λ,µ ∈ a∗, then 〈λ,µ〉 = 〈Hλ,Hµ〉 defines a scalar product on a∗ which can be extended

to a∗C as a Hermitian product, denoted also by 〈·,·〉. Let ‖·‖ be the associated norm.

For λ ∈ a∗, put gλ = {X ∈ g | [H,X] = λ(H)X; for all H ∈ a}. If λ 	= 0 and gλ 	= {0},
then λ is called a (restricted) root. Let mλ = dimgλ.

As usual, denote by Σ the set of all roots. Let Σ+ be a fixed set of positive roots,

Σ+0 the set of positive indivisible roots, and a+, a∗+ the corresponding Weyl chambers,

respectively, in a and a∗. Denote by a+, a∗+ their usual closures. LetW be the Weyl group

for Σ.

Choose β1, . . . ,βl a basis of a∗ constituted by simple roots in Σ+. Take µ1, . . . ,µl in

a∗ such that for 1 ≤ i, j ≤ l, 〈µi,βj〉 = δij . Then µ1, . . . ,µl is a basis of a∗ and a∗+ =∑l
i=1R

∗+ ·µi.
We have the Cartan decomposition G =K exp(a+)K. For all x ∈G, denote |x| = ‖x+‖,

where x+ is the a+ component of x in the above decomposition.
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One has also the usual Iwasawa decompositionG =K exp(a)N. For all x ∈G, letH(x)
be the unique element in a such that x ∈K expH(x)N.

We normalize the Lebesgue measures dH and dλ, respectively, on a and a∗ such that

the Fourier transform,

�0(f )(λ)=
∫

a
f(H)e−iλ(H)dH, (2.1)

has the inversion formula

�−1
0 (g)(H)=

∫
a∗
g(λ)eiλ(H)dλ (2.2)

defined for g ∈�(a∗) (the Schwartz space on a∗).

2.2. Spherical functions. The spherical functions on G are defined by

ϕλ(x)=
∫
K
e(iλ−ρ)(H(xk))dk, x ∈G, λ∈ a∗C , (2.3)

where dk is the Haar measure on K of total measure 1 and ρ = (1/2)∑α∈Σ+mαα.

These functions satisfy the following properties:

(i) for λ∈ a∗C , the function x�ϕλ(x) is �∞ and K-bi-invariant,

(ii) for x ∈G, the function λ�ϕλ(x) is analytic and W -invariant on a∗C ,

(iii)

∣∣ϕλ(x)∣∣≤ϕi
λ(x) λ∈ a∗C , (2.4)

(iv)

∣∣ϕiλ(expH)
∣∣≤ eλ(H)ϕ0(expH) λ∈ a∗+ , H ∈ a+, (2.5)

(v)

e−ρ(H) ≤ϕ0(expH)≤ const
(
1+‖H‖d)e−ρ(H), H ∈ a+, (2.6)

for some constant d> 0.

2.3. The Harish-Chandra c-function. The Harish-Chandra c-function is given by the

formula

c(λ)=c0

∏
α∈Σ+0

Γ
(
(1/2)

〈
iλ,α0

〉)
Γ
(
(1/2)

〈
iλ,α0

〉+1/2
)

2
√
πΓ
(
(1/4)mα+1/2+(1/2)〈iλ,α0

〉)
Γ
(
(1/4)mα+(1/2)m2α+(1/2)

〈
iλ,α0

〉) ,
(2.7)

where α0 =α/〈α,α〉, the constant c0 is defined by c(iρ)= 1, and Γ is the usual gamma

function.

The c-function satisfies the following result.

Lemma 2.1. Let λ∈ a∗+ and r > 0. Then

∣∣c(rλ)∣∣−2 ≤max
(
rdimN,1

)∣∣c(λ)∣∣−2. (2.8)
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Moreover, there are positive constants D and σ0 such that for all x ≥ σ0,

∣∣c(xλ)∣∣−2 ≥DxdimN. (2.9)

Proof. Inequality (2.8) is an immediate deduction from [16, Proposition IV, page

248].

The proof of (2.9) is based on the fact that |c(xλ)|−2 is a product of terms of the

form Γ(a+iy)/Γ(b+iy) with a> b ≥ 0 and y ∈R, and the fact that

lim
|y|→∞

Γ(a+iy)
Γ(b+iy) |y|

b−a = 1. (2.10)

This implies that

lim
x→∞

∣∣c(xλ)∣∣−2x−dimN = c−1
0

(
22cardΣ+0 −dimNπcardΣ+0

) ∏
α∈Σ+0

〈
λ,α0

〉mα+m2α . (2.11)

Since this limit is positive, then there are σ0 > 0 and D > 0 such that for all x ≥ σ0, we

have inequality (2.9).

2.4. Spherical Fourier transform. We present the following notions:

(i) �(G) is the space of �∞ functions on G with compact support,

(ii) �	(G) is the space of K-bi-invariant elements of �(G),
(iii) Lp(G), 1≤ p <∞, are the spaces of measurable functions f on G such that

‖f‖p =
(∫

G

∣∣f(x)∣∣pdx
)1/p

<∞, (2.12)

(iv) L∞(G) is the space of measurable functions f on G such that

‖f‖∞ = esssup
x∈G

∣∣f(x)∣∣<∞, (2.13)

(v) Lq(a∗+ ,|c(λ)|−2dλ), 1 ≤ q < ∞, are the spaces of measurable functions g on a∗+
such that

‖g‖Lq(a∗+ ,|c(λ)|−2dλ) =
(∫

a∗+

∣∣g(λ)∣∣q∣∣c(λ)∣∣−2dλ
)1/q

<∞, (2.14)

(vi) L∞(a∗+ ,|c(λ)|−2dλ) is the space of measurable functions g on a∗+ such that

‖g‖∞ = ess sup
λ∈a∗+

∣∣g(λ)∣∣<∞. (2.15)

In the Cartan decomposition, the Haar measure on G is given by the formula

∫
G
f(x)dx =

∫
K

∫
a+

∫
K
f
(
k1(expH)k2

)
δ(H)dk1dHdk2, (2.16)

where δ(H)=∏α∈Σ+[2sinhα(H)]mα and f ∈�(G). Note that

0≤ δ(H)≤ e2ρ(H). (2.17)



AN Lp−Lq VERSION OF HARDY’S THEOREM . . . 1761

Let 1≤ p <∞ and let f ∈ Lp(G) be a K-bi-invariant function; then

∫
G

∣∣f(x)∣∣pdx =
∫

a+

∣∣f(expH)
∣∣pδ(H)dH. (2.18)

The spherical Fourier transform on G is defined by

�(f )(λ)=
∫
G
f(x)ϕ−λ(x)dx, f ∈�	(G). (2.19)

The inversion formula is given by

�−1(h)(x)=
∫

a∗+
h(λ)ϕλ(x)

∣∣c(λ)∣∣−2dλ, h=�(f ). (2.20)

We remark that the transform � is injective on the space of K-bi-invariant functions of

L1(G).

2.5. The heat kernel. The heat kernel ha(x) is defined for x ∈G and a> 0 by

ha(x)=
∫

a∗+
e−(1/4a)(‖λ‖

2+‖ρ‖2)ϕλ(x)
∣∣c(λ)∣∣−2dλ, (2.21)

where ha is a positive K-bi-invariant �∞ function on G. Its spherical Fourier transform

is defined for λ∈ a∗ by

�
(
ha
)
(λ)= e−(1/4a)(‖λ‖2+‖ρ‖2). (2.22)

Moreover, �(ha) is analytic on a∗C and defined for λ∈ a∗C by

�
(
ha
)
(λ)= e−(1/4a)(〈λ,λ〉+‖ρ‖2). (2.23)

Anker [1] has proved the following estimate of the heat kernel:

ha
(
exp(H)

)≤ C(1+‖H‖2)d′e−a‖H‖2
e−〈ρ,H〉, (2.24)

where d′ = (dim(G/K)−dim(a))/2 and C is a positive constant depending on a.

In the particular cases when G/K is of rank one or G = SL(3,R), we also have

ha
(
exp(H)

)≥D(1+‖H‖2)d′e−a‖H‖2
e−〈ρ,H〉, (2.25)

where D is a positive constant depending on a.

Note that Anker has conjectured this inequality for all noncompact symmetric spaces.

(See [2] for details and references.)

3. Phragmén-Lindelöf-type results. The proofs of the main results of this paper

depend on the following complex analysis results.

Let Qθ denote the sector in C defined by Qθ = {reiψ : r > 0, ψ ∈]0,θ[} and Q =
Qπ/2 =R∗++iR∗+. Denote by Qθ the usual closure of Qθ .
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Fix γ a positive measurable function on ]0,∞[ verifying the following:

(i) there are an integer k > 0 and a real σ0 > 0 such that

∀r > 0, ∀x ≥ σ0, γ(rx)≤ constmax
(
rk,1

)
γ(x), (3.1)

(ii) there is ε0 > 0 such that

∀σ >σ0, dγ(σ)=
∫ σ+1

σ
γ(x)dx ≥ ε0. (3.2)

Lemma 3.1. Let g be an analytic function on Q continuous on Q. Suppose that for

q ∈ [1,∞[ and a constant M > 0,

∣∣g(z)∣∣≤Meπ�(z2), z ∈Q,∫∞
0

∣∣g(x)∣∣qγ(x)dx ≤M. (3.3)

Then

∫ σ+1

σ

∣∣g(xeiψ)∣∣γ(x)dx ≤ constdγ(σ)σk (3.4)

for all ψ∈ [0,π/2] and sufficiently large σ ∈R+.

Proof. The proof uses the same arguments of Cowling and Price in [4]. Let θ ∈
]0,π/2[ and ε ∈]0,π/2−θ[. Define the function g on Qθ by

gε(z)= g(z)exp
[
iεeiεz(π−2ε)/θ+ iπ

2
·cot(θ)·z2

]
. (3.5)

The function gε(reiψ) is bounded on Qθ and tends to 0 as r → +∞ uniformly in ψ ∈
[0,θ]. Fix σ ≥ σ0 and take S a measurable function on [σ ,σ +1] of L∞-norm 1. Define

F on Qθ by

F
(
reiψ

)=
∫ σ+1

σ
S(x)gε

(
rxeiψ

)
γ(x)dx, (3.6)

then F is analytic on Qθ , continuous on Qθ , and tends to 0 as r → +∞ uniformly in

ψ∈ [0,θ]. By the maximum principle, we have

sup
r>0

0≤ψ≤θ

∣∣F(reiψ)∣∣≤max
(

sup
r>0

∣∣F(reiθ)∣∣,sup
r>0

∣∣F(r)∣∣
)
. (3.7)

Remark that for r > 0, we have |gε(reiθ)| ≤M ; so

∣∣F(reiθ)∣∣≤Mdγ(σ), (3.8)

and then

sup
r>0

∣∣F(reiθ)∣∣≤Mdγ(σ). (3.9)
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We now estimate supr>0 |F(r)|.
(i) For r ∈ [0,1/(σ +1)], we have

∣∣F(r)∣∣≤
∫ σ+1

σ

∣∣gε(rx)∣∣γ(x)dx ≤Meπdγ(σ). (3.10)

(ii) For r ∈]1/(σ +1),+∞[, we have

∣∣F(r)∣∣≤
∫ σ+1

σ

∣∣gε(rx)∣∣γ(x)dx, (3.11)

so, by Hölder’s inequality, we obtain

∣∣F(r)∣∣≤ (dγ(σ))1−1/q
(∫ σ+1

σ

∣∣gε(rx)∣∣qγ(x)dx
)1/q

, (3.12)

and, by the change of variable t = rx, we obtain

∣∣F(r)∣∣≤ (dγ(σ))1−1/qσ−1/q
(∫∞

0

∣∣gε(t)∣∣qγ
(
t
r

)
dt
)1/q

. (3.13)

Using the estimates (3.1) and (3.2) of γ, we get

∣∣F(r)∣∣≤ const(σ +1)kσ−k−1/qdγ(σ)σk. (3.14)

Finally, we deduce that for sufficiently large σ and for all r > 0, θ ∈]0,π/2[,
∣∣F(r)∣∣≤ constdγ(σ)σk,

∣∣F(reiθ)∣∣≤ constdγ(σ)σk. (3.15)

Letting first ε tend to 0, θ tend to π/2, and taking the supremum over all S, we obtain

(3.4) for all ψ∈ [0,π/2].
Lemma 3.2. Let f be an analytic even function on C. Suppose that for 1 ≤ q < +∞

and a constant ν > 0,

∣∣f(z)∣∣≤ consteν�(z
2), z ∈ C,∫∞

0

∣∣f(x)∣∣qγ(x)dx <∞. (3.16)

Then f = 0 on C.

Proof. By the change of variable z �
√
π/ν ·z, we may assume that ν = π . If we

apply Lemma 3.1 to the functions z � f(z) and z � f(z) and use the fact that f is

even, then, for large σ > 0 and for all ψ∈R, we have

∫ σ+1

σ

∣∣f (xeiψ)∣∣γ(x)dx ≤ constdγ(σ)σk. (3.17)
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On the other hand, Cauchy’s integral formula gives

∣∣f (n)(0)∣∣≤ n!
2π

∫ 2π

0

∣∣f (xeiψ)∣∣x−ndψ (3.18)

for all x > 0 and n∈N. Integrating this inequality between a large σ and σ +1, we get

dγ(σ)
∣∣f (n)(0)∣∣≤ n!

2π

∫ σ+1

σ

∫ 2π

0

∣∣f (xeiψ)∣∣x−nγ(x)dψdx, (3.19)

and by Lemma 3.1, we obtain

∣∣f (n)(0)∣∣≤ constσk−n, (3.20)

which implies that f is a polynomial function, the integrability condition of the hypoth-

esis gives that f = 0 on C.

We also need the following Phragmén-Lindelöf theorem [9].

Theorem 3.3. Suppose that F is an entire function on C, where a, C are positive

numbers. If

∣∣F(ζ)∣∣≤ Cea|ζ| (ζ ∈ C), ∣∣F(x)∣∣≤ Ce−a|x| (x > 0), (3.21)

then there is a number C′ such that |F(ζ)| = C′e−aζ .

As a corollary, we have the following lemma.

Lemma 3.4. Let f be an analytic even function on C. Suppose that for a constant

ν > 0,

∣∣f(z)∣∣≤ consteν|z|
2
, z ∈ C,

∣∣f(x)∣∣≤ conste−νx
2
, x ∈R.

(3.22)

Then f = conste−νz2
on C.

Proof. The function f is even and analytic on C; then there is an entire function F
on C such that f(z)= F(z2). Applying Theorem 3.3 to F , we obtain the result.

We conclude this section by the following lemma.

Lemma 3.5. Let f be an analytic function on Cl. Suppose that for all t2 > 0, . . . , tl > 0,

the function z � �→ f(z,t2z, . . . ,tlz) is null on C. Then f = 0 on Cl.

Proof. Fix z ∈ C∗ and t3 > 0, . . . , tl > 0. Note that the analytic function on C defined

by ζ � �→ f(z,ζ,t3z, . . . ,tlz) vanishes on the half-axis R+ ·z, and then it is null on C.

So, for all t3 > 0, . . . , tl > 0, the function (z1,z2) � �→ f(z1,z2, t3z1, . . . , tlz1) is identi-

cally null on C2. By induction, we can conclude that f = 0 on Cl.
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4. The Lp−Lq version of Hardy’s theorem. We begin this section by the following

remark.

Remark 4.1. Let 1≤ p ≤∞ and let f be a K-bi-invariant measurable function on G
such that h−1

a f is in Lp(G). Then the property (2.5) of the spherical functions and the

estimate (2.24) of the heat kernel imply that

�(f )(λ)=
∫

a+
f(expH)ϕ−λ(expH)δ(H)dH (4.1)

is well defined, W -invariant, and analytic on a∗C .

Moreover, we have the following lemma.

Lemma 4.2. Let 1 ≤ p ≤ ∞ and let f be a K-bi-invariant measurable function on G
such that h−1

a f is in Lp(G). Then

∣∣�(f )(λ)
∣∣≤ conste(1/4a)‖η‖

2
(4.2)

for all ξ,η∈ a∗ and λ= ξ+iη.

Proof. Since inequality (4.2) is invariant under the Weyl group which acts transi-

tively on the set of Weyl chambers, it is sufficient to establish it for η in a∗+ .

Let ξ,η∈ a∗+ and λ= ξ+iη.

By the property (2.4) such that |ϕ−λ(x)| ≤ϕ−iη(x), we get

∣∣�(f )(λ)
∣∣≤

∫
a+

∣∣f(expH)
∣∣ϕ−iη(expH)δ(H)dH. (4.3)

Now, to prove (4.2), we distinguish three cases.

First case (1< p <∞). Let p′ be such that 1/p+1/p′ = 1. Since h−1
a f is in Lp(G),

let M = ‖h−1
a f‖p . We have, by Hölder’s inequality,

∣∣�(f )(λ)
∣∣≤M

(∫
a+
hp

′
a (expH)

[
ϕ−iη

]p′(expH)δ(H)dH
)1/p′

. (4.4)

By inequalities (2.5), (2.6), (2.17), and (2.24), we deduce that

hp
′
a (expH)

[
ϕ−iη

]p′(expH)δ(H)

≤ constP
(‖H‖)p′e2(1−p′)〈Hρ,H〉e−p

′(a‖H‖2−〈Hη,H〉),
(4.5)

where P(‖H‖) = (1+‖H‖d)(1+‖H‖2)d′ . Note that P(‖H‖)p′e2(1−p′)〈Hρ,H〉 is bounded

on a+; so

∣∣�(f )(λ)
∣∣≤ const

(∫
a+
e−p

′(a‖H‖2−〈Hη,H〉)dH
)1/p′

. (4.6)

Since

a‖H‖2−〈Hη,H〉= 1
a

∥∥∥∥aH− 1
2
Hη
∥∥∥∥

2

− 1
4a
‖η‖2, (4.7)
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we get

∣∣�(f )(λ)
∣∣≤ conste(1/4a)‖η‖

2
(∫

a+
e−(p

′/a)‖aH−(1/2)Hη‖2
dH

)1/p′

. (4.8)

If we use the fact that
∫

a+
e−(p

′/a)‖aH−(1/2)Hη‖2
dH ≤

∫
a
e−p

′a‖H‖2
dH, (4.9)

we obtain

∣∣�(f )(λ)
∣∣≤ conste(1/4a)‖η‖

2
. (4.10)

Second case (p = 1). We have, for H ∈ a+ and P(‖H‖)= (1+‖H‖d)(1+‖H‖2)d′ as

in the first case, that formula (4.7) gives

∣∣ha(expH)ϕ−iη(expH)
∣∣≤ constP

(‖H‖)e−2〈Hρ,H〉e−a‖H‖
2
e〈η,H〉. (4.11)

By the same arguments used in the first case, we get

∣∣ha(expH)ϕ−iη(expH)
∣∣≤ conste(1/4a)‖η‖

2
, (4.12)

and then

∣∣�(f )(λ)
∣∣≤ conste(1/4a)‖η‖

2
. (4.13)

Third case (p =∞). Since h−1
a f is in L∞(G), letM = ‖h−1

a f‖∞. By the property (2.4),

we have

∣∣�(f )(λ)
∣∣≤M

∫
a+
ha(expH)ϕ−iη(expH)δ(H)dH. (4.14)

Using the spherical Fourier transform of the heat kernel (2.23), we obtain

∣∣�(f )(λ)
∣∣≤ conste(1/4a)‖η‖

2
. (4.15)

Theorem 4.3. Suppose 1 ≤ p, q ≤ ∞ with at least one of them finite. Let f be a

measurable K-bi-invariant function on G such that

∥∥h−1
a f

∥∥
Lp(G) ≤M,

∥∥eb‖λ‖2
�(f )(λ)

∥∥
Lq(a∗+ ,|c(λ)|−2dλ) ≤M, (4.16)

for M > 0, a> 0, and b > 0. If ab ≥ 1/4, then f = 0 almost everywhere.

Proof. First, suppose that 1≤ q <∞ and 1≤ p ≤∞.

In the basis µ1, . . . ,µl of a∗, the second inequality of (4.16) can be written in the form

∫
Rl+

∣∣eb‖x1µ1+···+xlµl‖2
�(f )

(
x1µ1+···+xlµl

)∣∣q

×∣∣c(x1µ1+···+xlµl
)∣∣−2dx1 ···dxl ≤M.

(4.17)
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By the change of variables (x1, . . . ,xl)= x(1, t2, . . . , tl), we have

∫
Rl−1+

(∫∞
0

∣∣eb|x|2‖Λt‖2
�(f )

(
xΛt

)∣∣q∣∣c(xΛt)∣∣−2xl−1dx
)
dt2 ···dtl ≤M, (4.18)

where Λt = µ1+ t2µ2+···+ tlµl. Fubini’s theorem implies that for almost every t2 >
0, . . . , tl > 0,

∫∞
0

∣∣eb|x|2‖Λt‖2
�(f )

(
xΛt

)∣∣q∣∣c(xΛt)∣∣−2xl−1dx <+∞. (4.19)

For such t2, . . . , tl, let g : C→ C be the function defined by

g(z)= e(1/4a)‖Λt‖2z2
�(f )

(
zΛt

)
. (4.20)

By Remark 4.1 and inequality (4.2), we deduce that g is an even analytic function on C,

which verifies

∣∣g(z)∣∣≤ conste(1/4a)‖Λt‖
2�(z2), z ∈ C. (4.21)

Moreover,
∫∞

0

∣∣g(x)∣∣qγ(x)dx <+∞, (4.22)

where γ(x) = |c(xΛt)|−2xl−1. Using (2.9) and (2.8), we can see that γ satisfies the

hypotheses (3.1) and (3.2). So, by Lemma 3.2, we conclude that g = 0 on C, and by

Lemma 3.5, we conclude that �(f )= 0 on a∗C . From the injectivity of the transform �,

we deduce that f = 0 almost everywhere.

Second, let q =∞ and 1≤ p <∞.

We have, by the hypothesis (4.16),

∣∣�(f )
(
xΛt

)∣∣≤Me−b‖Λt‖2x2
, x ∈R. (4.23)

The fact that ab ≥ 1/4 gives

∣∣�(f )
(
xΛt

)∣∣≤Me−(1/4a)‖Λt‖2x2
, x ∈R. (4.24)

By formula (4.2), we have

∣∣�(f )
(
zΛt

)∣∣≤ conste(1/4a)‖Λt‖
2|z|2 , z ∈ C. (4.25)

Hence, by Lemma 3.4, we conclude that

�(f )
(
zΛt

)= C ·e−(1/4a)‖Λt‖2z2
(4.26)

for some constant C , and by Lemma 3.5, we obtain that

�(f )(λ)= C ·e−(1/4a)〈λ,λ〉, λ∈ a∗C . (4.27)

Formula (2.23) implies that f = constha.

Now, the hypothesis ‖h−1
a f‖Lp(G) ≤M implies that f = 0 almost everywhere.
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From the proof of the precedent theorem we deduce the following results.

Theorem 4.4. Let p = q =∞.

(i) If ab > 1/4, then every function f satisfying (4.16) is equal to zero almost every-

where.

(ii) If ab = 1/4, then the only functions verifying (4.16) are of the form f = constha.

Remark 4.5. (i) This theorem is analogous to the classical theorem of Hardy.

(ii) The case ab = 1/4 of this theorem is also proved in [13].

We consider now the case ab < 1/4. We are going to prove that if ab < 1/4, 1 ≤ p,

and q ≤ ∞, then there are infinitely many functions satisfying conditions (4.16). For

this, we need inequality (2.25) which is verified by ht for a < t < 1/4b. This inequality

is proved at least when G/K is of rank one or G = SL(3,R), and conjectured by Anker

for any noncompact symmetric space.

Theorem 4.6. If ab < 1/4, then for all 1≤ p, q ≤∞,

∥∥h−1
a ht

∥∥
Lp(G) <∞,

∥∥eb‖λ‖2
�
(
ht
)
(λ)
∥∥
Lq(a∗+ ,|c(λ)|−2dλ) <∞. (4.28)

Proof. Formulas (2.24) and (2.25) imply that h−1
a ht ≤ conste(a−t)‖H‖2

. Since a < t,
then ‖h−1

a ht‖Lp(G) <∞.

The fact that �(ht)(λ)= e−(1/4t)(〈λ,λ〉+‖ρ‖2) and t < 1/4b gives the result.
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