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We study periodic rings that are finitely generated as groups. We prove several structure
results. We classify periodic rings that are free of rank at most 2, and also periodic rings R
such that R is finitely generated as a group and R/t(R) � Z. In this way, we construct new
classes of periodic rings. We also ask a question concerning the connection to periodic rings
that are finitely generated as rings.
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1. Introduction. We work with associative rings which do not necessarily have iden-

tity. A ring R is called periodic if its multiplicative semigroup is periodic, that is, the

semigroup generated by any element is finite. This is equivalent to the fact that for

any x ∈ R, there exist positive integers m < n such that xm = xn. For other charac-

terizations of periodic rings, see [7]. A systematic study of periodic rings was initiated

in [5]. Examples of periodic rings are finite rings, nil rings, Boolean rings, and matrix

rings over algebraic extensions of finite fields. There have been two main directions

of study concerned with periodic rings. The first one was to find sufficient conditions

for the commutativity of a periodic ring. The interest in this direction goes back to [6].

For more recent developments, see also [1, 4] and the references indicated therein. The

second direction of study was to find structure results for periodic rings; see [2, 3, 7, 8].

The structure of periodic rings is far from being understood, and this is due, of course,

to the fact that the class of periodic rings is very large. However, apart from the exam-

ples mentioned above and the ones constructed from them (like, for instance, taking

finite direct products of periodic rings), there are not many other known classes. We

are interested in the following general problem.

Problem 1.1. Describe periodic rings R such that the underlying abelian group

(R,+) is finitely generated.

Of course, a solution to this problem is up to knowing finite rings, so when we work

on this problem, we assume that somehow we know finite rings. In this paper, we give

some partial answer to this question. We will see that the class of such rings is quite

complex itself. In particular, we will obtain new examples of periodic rings.

We show that if the periodic ring R has identity and (R,+) is finitely generated,

then R is necessarily finite. We obtain some structure results for periodic rings whose

underlying additive groups are free; in particular, we classify all such rings where (R,+)
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is free of rank 1 or 2. For rank at most 2, these rings are all commutative. We give

examples of noncommutative periodic R such that (R,+) is free of rank 3. We also

investigate some periodic rings R such that (R,+) has nontrivial torsion and torsion-

free components. We end by discussing some facts about periodic rings that are finitely

generated as rings.

2. Preliminary results. Our main problem has an easy solution in the case where

the periodic ring R has identity.

Proposition 2.1. Let R be a periodic ring with identity such that (R,+) is finitely

generated. Then R is finite.

Proof. Let 1R be the identity element of R. Then there exists a positive integer n
such that n1R = 0, since otherwise, Z � Z1R is a subring of R; thus it is periodic, a

contradiction. Hence, for any x ∈ R, we have nx = (n1R)x = 0, showing that (R,+) is

torsion. Since (R,+) is finitely generated, we conclude that R must be finite.

For the rest of the paper, we deal with rings which do not necessarily have identity.

Proposition 2.2. Let R be a periodic ring such that (R,+) is finitely generated. Then

R fits into an extension F → R→ S, where F is a finite ring and S is a periodic ring such

that (S,+) is torsion-free.

Proof. Write (R,+) � Zn⊕t(R) for some nonnegative integer n, where t(R) is the

torsion part ofR. Then t(R) is an ideal ofR. Indeed, ifx ∈ t(R), letn be a positive integer

such that nx = 0. Then for any r ∈ R, we have nrx = nxr = 0, so rx,xr ∈ t(R). The

proof is finished if we take F = t(R) and S = R/t(R).
The previous result shows that describing periodic rings with finitely generated un-

derlying abelian group reduces to knowing the finite rings, the periodic rings which are

free of finite rank as groups, and computing some ring extensions. Now we focus our

attention on periodic rings R such that (R,+)� Zn for some n.

Lemma 2.3. Let R be a periodic ring such that (R,+) is torsion-free. Then any element

of R is nilpotent.

Proof. Let x ∈ R, x ≠ 0. Since R is periodic, there exist n1,p > 0 such that xn+p =
xn for any n≥n1. Also, there exist n2,q > 0 such that (2x)n+q = (2x)n for any n≥n2.

Then for n≥max(n1,n2), we have that

2n+pqxn = 2n+pqxn+pq = (2x)n+pq = (2x)n = 2nxn, (2.1)

so (2n+pq−2n)xn = 0, which shows that xn = 0 since R is torsion-free.

As a first consequence, we obtain the structure of periodic rings that are free of

rank 1.

Corollary 2.4. Let R be a periodic ring such that (R,+) � Z. Then R has trivial

multiplication.
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Proof. Let R = Zx and let x2 = ax for some a ∈ Z. Then xn = an−1x for any n.

Since x is nilpotent, we must have a= 0, and then x2 = 0. We conclude that R has trivial

multiplication.

Lemma 2.3 needs no assumption on (R,+) being finitely generated. If (R,+) is free

of finite rank, then we have more precise information about the nilpotency index of its

elements.

Lemma 2.5. Let R be a periodic ring such that (R,+) � Zm. Then xm+1 = 0 for any

x ∈ R.

Proof. Let x ∈ R, x ≠ 0, and let n ≥ 2 be the smallest positive integer for which

xn = 0. Then the sum Zx+Zx2+···+Zxn−1 is direct. Indeed, if a1x+a2x2+···+
an−1xn−1 = 0, then multiplying this relation by xn−2, we get a1 = 0. Then multiplying

byxn−3, we see thata2 = 0, and, continuing, we see that all coefficients must be 0. Hence

Zx⊕Zx2⊕···⊕Zxn−1 � Zn−1 is a subgroup of Zm, and this implies that n−1≤m. In

particular, xm+1 = 0.

3. Periodic rings R with (R,+) free of rank 2. In the following result, we classify

periodic rings which are free of rank 2 as groups.

Theorem 3.1. Let R be a periodic ring such that (R,+) � Z2. Then either R has

trivial multiplication or there exist a,b ∈ Z, b ≠ 0, such that b2|a3 and R = Zx⊕Zy , with

multiplication defined by

x2 = ax+by, y2 = a
3

b2
x+ a

2

b
y, xy =yx =−a

2

b
x−ay. (3.1)

In particular, any such ring R is commutative.

Proof. Assume that the multiplication of R is not trivial. Let x,y ∈ R such that

R = Zx⊕Zy , and let

x2 = ax+by, y2 = cx+dy, xy =mx+ny (3.2)

for some integers a, b, c, d, m, n. By Lemma 2.5, we have that u3 = 0 for any u∈ R.

We first prove that xy = yx, for if we assume that xy ≠ yx, then xx2 = x2x
implies that ax2+bxy = ax2+byx, so b = 0. Then x2 = ax, so 0 = x3 = ax2 = a2x;

therefore a= 0 and x2 = 0. Similarly, we get y2 = 0. On the other hand, if we multiply

xy =mx+ny by x to the left, we obtainnxy = 0; so eithern= 0 or xy = 0. If xy ≠ 0,

then n = 0, and hence xy =mx implies that mxy = 0; so m = 0. But then xy = 0,

a contradiction. Thus xy must be zero. Since x and y play a symmetric role in the

relations, the assumption that yx ≠ xy would similarly imply that yx = 0. But then

xy = yx = 0, which is a final contradiction. We conclude that xy = yx, so R must be

commutative.

If we write the associativity conditions x(xy) = x2y and (xy)y = xy2 (the other

possible combinations follow from these two and the commutativity) and expressthem
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in terms of the generators x, y , we get the conditions

bc =mn, n2+mb = an+bd, m2+cn= ac+dm. (3.3)

On the other hand, 0= x3 = ax2+bxy = a2x+aby+bmx+bny shows that

a2+bm= 0, b(a+n)= 0. (3.4)

Similarly, y3 = 0 requires

d2+cn= 0, c(m+d)= 0. (3.5)

Since u3 = 0 for any u∈ R, we must have x2y = xy2 = 0 (to see this, it is enough to

look at (x+y)3 = (x+2y)3 = 0), and these relations require as above the conditions

am+bc = 0, an+bd= 0, ac+dm= 0, bc+dn= 0. (3.6)

Collecting all the above conditions, we obtain the following system:

bc =mn, n2+mb = an+bd, m2+cn= ac+dm,
a2+bm= 0, b(a+n)= 0, d2+cn= 0, c(m+d)= 0,

am+bc = 0, an+bd= 0, ac+dm= 0, bc+dn= 0.

(3.7)

If c = 0, we successively get that each of d, m, a, n must be 0, and this means that

x2 = by, y2 = 0, xy =yx = 0, (3.8)

which is a set of relations as in the statement (we take a= 0, and then obviously b2|a3).

If b = 0, we similarly obtain a set of relations as in the statement (with the role of x
and y interchanged).

We consider the case where b ≠ 0, c ≠ 0. Then we see that n=−a,m=−d, bc = ad,

a2 = bd, and d2 = ac. In particular, a,d ≠ 0. Hence d = a2/b, and then c = d2/a =
a3/b2. These require the condition b2|a3 (which also implies that b|a2). We obtain a

set of relations as in the statement.

Finally, we note that the relations define indeed a periodic ring structure. This follows

from the proof above, which shows the associativity and also the fact that u3 = 0 for

any u, so u3 =u6.

The theorem above shows that any periodic ring R which is free of rank 2 as a group

must be commutative. The next example provides a class of noncommutative periodic

rings that are free of rank 3 as groups.

Example 3.2. Let A= Z〈X,Y 〉 be the free algebra in two indeterminates, and let B =
(X,Y) be the ideal of A generated by X and Y . For any a∈ Z, the ideal I = (X2,Y 2,YX−
aXY) of A is also an ideal of B, and the factor ring R = B/I is generated by x, y (the

classes of X, Y in the factor ring) subject to the relations

x2 = 0, y2 = 0, yx = axy. (3.9)
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Note that (R,+)= Zx⊕Zy⊕Zxy � Z3, and R is commutative if and only if a= 1. The

ring R is periodic since obviously u3 = 0 for any u∈ R.

4. Periodic rings R with R/t(R) � Z. Proposition 2.2 shows that any periodic ring

which is finitely generated as a group fits into an extension of a finite ring and a torsion-

free ring. Computing such extensions is in general a difficult task, and one can expect

quite complicated structure of periodic rings which are neither-finite nor torsion-free.

Evidence for this is the following result, where we take a first step into discussing such

extensions.

Theorem 4.1. Let R be a periodic ring which is finitely generated as a group. Then

R/t(R) � Z (as groups) if and only if there exist a finite ring T , elements x ∈ R, a ∈ T ,

a morphism of right T -modules ϕ : T → T , and a morphism of left T -modules ψ : T → T
such that R = Zx⊕T , T is a subring of R, the multiplication of R is induced by

x2 = a, xt =ϕ(t), tx =ψ(t), (4.1)

and the following conditions are satisfied:

ψ(s)t = sϕ(t), at =ϕ2(t), ta=ψ2(t), ψϕ =ϕψ. (4.2)

Proof. Assume that R/t(R) � Z. Let R = Zx⊕T , where x ∈ R and T is the torsion

part of (R,+). We have seen in Proposition 2.2 that T is an ideal of R; in particular, it

is a finite subring. Thus there exist group morphisms ϕ,ψ : T → T such that xt =ϕ(t)
and tx = ψ(t) for any t ∈ T . Since R/T is periodic and (R/T ,+) � Z, we have, from

Corollary 2.4, that R/T has trivial multiplication, and so x2 ∈ T . Denote x2 = a.

The associativity condition (xt)s = x(ts) (resp., (st)x = s(tx)) for any s,t ∈ T is

equivalent to ϕ (resp., ψ) being a morphism of right (resp., left) T -modules. The asso-

ciativity conditions (sx)t = s(xt), x2t = x(xt), tx2 = (tx)x, and (xt)x = x(tx) are

equivalent to ψ(s)t = sϕ(t), at =ϕ2(t), ta =ψ2(t), and ψϕ =ϕψ. Thus R is of the

form required in the statement.

Conversely, if R = Zx⊕T , with the given conditions satisfied, then we see from above

that R is indeed a ring (the associativity conditions are satisfied). It remains to show

that R is periodic. This follows immediately from the fact that for any r =mx+t, with

m ∈ Z and t ∈ T , we have r 2 =m2x2+mxt+mtx+t2 ∈ T , so there exist p < q with

(r 2)p = (r 2)q, which means that r 2p = r 2q.

The structure theorem above shows that describing R effectively depends heavily on

the structure of the finite ring T . In the case where T is a ring with identity, we can give

a more precise description. Indeed, in this case, the mapsϕ andψmust be of the form

ϕ(t) = tb, ψ(t) = ct for some b,c ∈ T . The relations ψ(s)t = sϕ(t), at =ϕ2(t), and

ta=ψ2(t) are equivalent to cst = stb, at = tb2, and ta= c2t for any s,t ∈ T , and these

are clearly equivalent to b = c, a= b2, and b ∈ Z(T). Thus we obtain the following class

of periodic rings. We take R = Zx⊕T , where T is a finite ring with identity. We also take

an element b ∈ Z(T). Then we define on R a multiplication such that T is a subring,

x2 = b2, and xt = tx = bt for any t ∈ T . Then R is a periodic ring with R/t(R)� Z. Note

that R does not have identity, and R is commutative if and only if so is T .
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5. Periodic rings that are finitely generated as rings. It is interesting to discuss

another finiteness condition on a periodic ring.

Problem 5.1. Describe periodic rings that are finitely generated as rings.

The following result shows that in the commutative case, Problems 1.1 and 5.1 are

equivalent.

Proposition 5.2. Let R be a commutative periodic ring. Then R is finitely generated

as a ring if and only if the group (R,+) is finitely generated.

Proof. Let {r1,r2, . . . ,rp} be a finite set generating R as a ring. Therefore, since R is

commutative, the group (R,+) is generated by the elements of the form rm1
1 rm2

2 ···rmpp
with nonnegative integers m1,m2, . . . ,mp (and not all of them being zero in the case

whereR does not have identity). SinceR is periodic, there are positive integersn1,n2, . . . ,
np such that {rmi |m> 0} = {rmi | 0<m≤ni} for any i. Therefore, (R,+) is generated

by {rm1
1 rm2

2 ···rmpp |m1 ≤ n1, m2 ≤ n2, . . . ,mp ≤ np}, so (R,+) is finitely generated.

Conversely, if (R,+) is finitely generated, then obviously R is finitely generated as a

ring.

We do not have any example of a periodic ring which is finitely generated as a ring,

but not finitely generated as an abelian group. Therefore, we ask the following.

Question 5.3. If R is a periodic ring which is finitely generated as a ring, is (R,+)
finitely generated?
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