ON THE CLASS OF QS-ALGEBRAS

MICHIRO KONDO

Received 19 September 2003

We consider some fundamental properties of *QS*-algebras and show that (1) the theory of *QS*-algebras is logically equivalent to the theory of *Abelian groups*, that is, each theorem of *QS*-algebras is provable in the theory of Abelian groups, and conversely, each theorem of Abelian groups is provable in the theory of *QS*-algebras; and (2) a *G*-part G(X) of a *QS*-algebra X is a normal subgroup generated by the class of all elements of order 2 of X when it is considered as a group.

2000 Mathematics Subject Classification: 06F35, 03G25, 03C07.

1. Introduction. In [3], the notion of *Q*-algebras is introduced and some fundamental properties are established. The algebras are extensions of the BCK/BCI-algebras which were proposed by Y. Imai and K. Iséki in 1966. It is usually important to generalize the algebraic structures. Neggers and Kim [4] introduced a class of algebras which is related to several classes of algebras such as BCK/BCI/BCH-algebras. They call them *B*-algebras, and they proved that every group (X; \circ , 0) determines a *B*-algebra (X; *, 0), which is called the *group-derived B-algebra*. Conversely, in [2], we prove that every *B*-algebra is group-derived and hence that the class of *B*-algebras which is also a generalization of BCK/BCI-algebras and obtained several results. Here, we consider some fundamental properties of *QS*-algebras and show that

- the theory of *QS*-algebras is logically equivalent to the theory of *Abelian groups*, that is, each theorem of *QS*-algebras is provable in the theory of Abelian groups and conversely each theorem of Abelian groups is provable in the theory of *QS*-algebras;
- (2) a subset G(X) called *G*-part of a *QS*-algebra *X* is a normal subgroup which is generated by the class of all elements of order 2.

2. Preliminaries. A *QS*-algebra is a nonempty set *X* with a constant 0 and a binary operation "*" satisfying the following axioms:

(QS1) x * x = 0, (QS2) x * 0 = x, (QS3) (x * y) * z = (x * z) * y, (QS4) (x * y) * (x * z) = y * z, for all x, y, z in X. **EXAMPLE 2.1.** (1) Let $X = \{0, 1, 2\}$ be a set with an operation * defined as follows:

Then (X; *, 0) is a *QS*-algebra.

(2) Let *X* be the set of all integers. Define a binary operation * on *X* by

$$x * y := x - y. \tag{2.2}$$

Then (X; *, 0) is a *QS*-algebra.

We note that these examples are both Abelian groups and the operation * corresponds to the minus operation "–". In the case of (1), *X* can be considered as the set \mathbb{Z}_3 of integers of modulo 3 and the operation * as a minus "–" modulo operation. It seems that any Abelian group gives an example of a *QS*-algebra. In fact, we can prove the fact.

THEOREM 2.2. Let $(X; \cdot, -1, e)$ be an Abelian group. If $x * y = x \cdot y^{-1}$ is defined and 0 = e, then (X; *, 0) is a QS-algebra.

PROOF. We only show that the conditions (QS3) and (QS4) of *QS*-algebras are satisfied. For the case of (QS3), since *X* is an Abelian group,

$$(x * y) * z = (x \cdot y^{-1}) \cdot z^{-1}$$

= $x \cdot (y^{-1} \cdot z^{-1})$
= $x \cdot (z^{-1} \cdot y^{-1})$
= $(x \cdot z^{-1}) \cdot y^{-1}$
= $(x * z) * y$. (2.3)

For the case of (QS4), we also have

$$(x * y) * (x * z) = (x \cdot y^{-1}) \cdot (x \cdot z^{-1})^{-1}$$

= $(x \cdot y^{-1}) \cdot (z \cdot x^{-1})$
= $x \cdot x^{-1} \cdot z \cdot y^{-1}$ (2.4)
= $z \cdot y^{-1}$
= $z * y$.

The theorem means that every Abelian group $(X; \cdot, -1, e)$ determines a *QS*-algebra (X; *, 0); in other words, any Abelian group can be considered as a *QS*-algebra. Conversely, we will show in the next section that any *QS*-algebra determines an Abelian group, that is, every *QS*-algebra can be considered as an Abelian group. Hence, we are able to conclude that in this sense, the class of *QS*-algebras coincides with the class of Abelian groups.

3. Abelian groups can be derived from *QS*-algebras. We show that every *QS*-algebra determines an Abelian group. In order to do so, it is sufficient to construct an Abelian group from any *QS*-algebra. We need some lemmas to prove that.

Let (X; *, 0) be a *QS*-algebra.

LEMMA 3.1. For all $x, y, z \in X$, if x * y = z, then x * z = y.

PROOF. Suppose that x * y = z. Then, since *X* is a *QS*-algebra, we have x * z = (x * 0) * (x * y) = y * 0 = y.

It follows from the above that the condition (QS4)' is established in any *QS*-algebra: (QS4)' (x * z) * (y * z) = x * y.

COROLLARY 3.2. If x * y = 0, then x = y.

Let $B(X) = \{x \in X \mid 0 * x = 0\}$. A *QS*-algebra *X* is called *p*-semisimple if $B(X) = \{0\}$ (cf. [1]). We can show that every *QS*-algebra is *p*-semisimple.

COROLLARY 3.3. Every QS-algebra is p-semisimple.

PROOF. Suppose that *X* is a *QS*-algebra. For all elements $x \in X$, since

$$x \in B(X) \iff 0 * x = 0$$

$$\iff x = 0 \quad \text{(by Corollary 3.2)},$$
(3.1)

we can conclude that *X* is *p*-semisimple.

REMARK 3.4. It is proved in [1] that every *associative QS*-algebra is *p*-semisimple. The corollary above means that the assumption of associativity is superfluous.

LEMMA 3.5. 0 * (x * y) = y * x.

PROOF.
$$0 * (x * y) = (x * x) * (x * y) = y * x.$$

COROLLARY 3.6. 0 * (0 * x) = x.

LEMMA 3.7. x * (0 * y) = y * (0 * x).

PROOF. Since

$$0 * (x * (y * (0 * x))) = (y * (0 * x)) * x \quad (by \text{ Lemma 3.5})$$

= (y * x) * (0 * x) \quad (by (QS3))
= y * 0 \quad (by (QS4)')
= y, (3.2)

we have 0 * (0 * (x * (y * (0 * x)))) = 0 * y. It follows from Corollary 3.6 that x * (y * (0 * x)) = 0 * y and hence x * (0 * y) = y * (0 * x) by Lemma 3.1.

These lemmas provide a proof that we can construct an Abelian group $(X; \cdot, e)$ from a *QS*-algebra (X; *, 0).

THEOREM 3.8. Let (X; *, 0) be a QS-algebra. If $x \cdot y = x * (0 * y)$ is defined, $x^{-1} = 0 * x$, and e = 0, then the structure $(X; \cdot, -1, e)$ is an Abelian group.

PROOF. We only show that the structure $(X; \cdot, -1, e)$ satisfies the conditions of associativity and of commutativity with respect to the operation " \cdot ".

For associativity, we have

$$(x \cdot y) \cdot z = (x * (0 * y)) * (0 * z)$$

= (y * (0 * x)) * (0 * z) (by Lemma 3.7)
= (y * (0 * z)) * (0 * x) (3.3)
= x * (0 * (y * (0 * z))) (by Lemma 3.7)
= x \cdot (y \cdot z).

For commutativity, we also have $x \cdot y = x * (0 * y) = y * (0 * x) = y \cdot x$.

Combining Theorems 2.2 and 3.8, we can conclude that the class of *QS*-algebras coincides with the class of Abelian groups.

In the following, we will describe our results in greater detail. We can show that each theorem of QS-algebras is translated to a formula of \mathscr{AG} which is provable in the theory of Abelian groups and conversely each theorem of Abelian groups is proved in the theory of QS-algebras. To present our theorem precisely, we will develop the formal theories of QS-algebras and Abelian groups. Let \mathscr{DG} and \mathscr{AG} be the theories of QS-algebras and Abelian groups, respectively. Theories consist of languages and axioms. At first, we define languages of these theories which are needed to present statements formally in their theories. By $\mathscr{L}(\mathscr{DG})$ (or $\mathscr{L}(\mathscr{AG})$), we mean a language of the theory \mathscr{DG} of QS-algebras (or the theory \mathscr{AG} of groups). We define them as follows.

The language of the theory of \mathfrak{QS} -algebras consists of

(lq1) countable variables x, y, z, ...,

(lq2) binary operation symbol *,

(lq3) constant symbol 0;

and the language of the theory of \mathcal{AG} of QS-algebras consists of

(lg1) countable variables x, y, z, ...,

- (lg2) binary operation symbol o,
- (lg3) unary operation symbol -1,
- (lg4) constant symbol *e*.

Next we define *terms* which represent objects in the theory. By $\mathcal{T}(\mathcal{QG})$ (or $\mathcal{T}(\mathcal{AG})$) we mean the set of terms of \mathcal{QG} (or \mathcal{AG}). Terms are defined as follows.

- For terms of $\mathfrak{Q}\mathcal{G}$,
- (tb1) each variable is a term,
- (tb2) the constant 0 is a term,
- (tb3) if u and v are terms, then u * v is a term.

For terms of AG,

- (tg1) each variable is a term,
- (tg2) the constant e is a term,
- (tg3) if *u* and *v* are terms, then so are $u \circ v$ and u^{-1} .

We also define *formulas* which represent statements in each theory. Formulas of \mathfrak{QS} (or \mathcal{AG}) are defined as the forms of s = t, where $s, t \in \mathcal{T}(\mathfrak{QS})$ (or $s, t \in \mathcal{T}(\mathcal{AG})$). By $\mathcal{F}(\mathfrak{QS})$

(or $\mathcal{F}(\mathcal{AG})$) we mean the set of formulas of \mathcal{QG} (or \mathcal{AG}). We denote formulas simply by A, B, C, \dots

As to the axioms of *QS*-algebras, we list the following:

- (QS1) x * x = 0,
- (QS2) x * 0 = x,
- (QS3) (x * y) * z = (x * z) * y,
- (QS4) (x * y) * (x * z) = y * z.

For the axioms of Abelian groups, we use the following:

- (G1) $x \circ (y \circ z) = (x \circ y) \circ z$,
- (G2) $x \circ e = e \circ x = x$,
- (G3) $x \circ x^{-1} = x^{-1} \circ x = e$,
- (G4) $x \circ y = y \circ x$.

Two formal theories $\mathfrak{D}\mathcal{G}$ and $\mathcal{A}\mathcal{G}$ have the same rules of inference concerning "equality," for they have no predicate symbols.

RULES OF INFERENCE. For all terms $s, t, w, s_1, s_2, ... \in \mathcal{T}(\mathfrak{AG})$ (or $\mathcal{T}(\mathcal{AG})$),

$$s = s, \qquad \frac{s = t}{t = s}, \qquad \frac{s = t, t = w}{s = t}, \qquad \frac{s_1 = t_1, \dots, s_n = t_n}{\phi(s_1, \dots, s_n) = \phi(t_1, \dots, t_n)},$$
 (3.4)

where $\phi(x_1,...,x_n)$ is a term of $\mathcal{T}(\mathfrak{AG})$ (or $\mathcal{T}(\mathfrak{AG})$) whose variables are contained in $\{x_1,...,x_n\}$.

We are now ready to present a formal theory of Abelian groups and *QS*-algebras. Let Γ be a subset of formulas of $\mathcal{F}(\mathcal{QG})$ (or $\mathcal{F}(\mathcal{AG})$). By

$$\Gamma \vdash_{\mathfrak{D}\mathcal{G}} A(\Gamma \vdash_{\mathfrak{A}\mathcal{G}} A), \tag{3.5}$$

we mean that there is a finite sequence of formulas $A_1, A_2, ..., A_n$ of $\mathcal{F}(\mathcal{QG})(\mathcal{F}(\mathcal{AG}))$ such that for each *i*,

- (1) A_i is an axiom of $\mathfrak{QG}(\mathfrak{AG})$,
- (2) $A_i \in \Gamma$,
- (3) there exists j_i, \ldots, j_k $(j_1, \ldots, j_k < i)$ such that

$$\frac{A_{j_1},\dots,A_{j_k}}{A}.$$
(3.6)

We say that *A* is provable from Γ in $\mathfrak{DG}(\mathfrak{AG})$ when $\Gamma \vdash_{\mathfrak{AG}} A(\Gamma \vdash_{\mathfrak{AG}} A)$. In particular, in case of $\Gamma = \emptyset$, we say that *A* is a theorem of $\mathfrak{DG}(\mathfrak{AG})$ and simply denote it by $\vdash_{\mathfrak{DG}} A(\vdash_{\mathfrak{AG}} A)$.

As an example, we present the following which is called a cancelation rule in the theory of groups:

$$x \circ y = z \circ x \vdash_{\mathcal{A}\mathcal{G}} y = z. \tag{3.7}$$

Indeed, we have the following finite sequence of formulas:

$$x \circ y = z \circ x, \qquad z \circ x = x \circ z, \qquad x \circ y = x \circ z, \qquad x^{-1} \circ (x \circ y) = x^{-1} \circ (x \circ z),$$

$$x^{-1} \circ (x \circ y) = (x^{-1} \circ x) \circ y, \qquad x^{-1} \circ (x \circ z) = (x^{-1} \circ x) \circ z,$$

$$(x^{-1} \circ x) \circ y = (x^{-1} \circ x) \circ z, \qquad x^{-1} \circ x = e, \qquad e \circ y = e \circ z,$$

$$e \circ y = y, \qquad e \circ z = z, \qquad y = z.$$
(3.8)

Next, we define two maps ξ from the theory \mathfrak{QS} of *QS*-algebras to the theory \mathfrak{AG} of Abelian groups and η from \mathfrak{AG} to \mathfrak{QS} as follows. For $\mathcal{T}(\mathfrak{QS})$,

$$\xi(x) \equiv x \quad \text{for each variable } x,$$

$$\xi(0) \equiv e,$$

$$\xi(s * t) \equiv \xi(s) \circ \xi(t^{-1}),$$
(3.9)

and for $\mathcal{F}(\mathcal{QG})$,

$$\xi(s=t) \equiv \xi(s) = \xi(t),$$

$$\xi(s=t \Longrightarrow s'=t') \equiv \xi(s=t) \Longrightarrow \xi(s'=t'),$$
(3.10)

where $s, s', t, t' \in \mathcal{T}(\mathfrak{QG})$.

Conversely, we define a map η : $\mathcal{AG} \rightarrow \mathcal{QG}$ as follows. For $\mathcal{T}(\mathcal{AG})$,

$$\eta(x) \equiv x \quad \text{for each variable } x,$$

$$\eta(e) \equiv 0,$$

$$\eta(s^{-1}) \equiv 0 * (\eta(s)),$$

$$\eta(s \circ t) \equiv \eta(s) * (0 * \eta(t)),$$

(3.11)

and for $\mathcal{F}(\mathcal{AG})$,

$$\eta(s=t) \equiv \eta(s) = \eta(t),$$

$$\eta(s=t \Longrightarrow s'=t') \equiv \eta(s=t) \Longrightarrow \eta(s'=t'),$$
(3.12)

where $s, s', t, t' \in \mathcal{T}(\mathcal{AG})$.

We are now ready to state our theorem. It is as follows.

MAIN THEOREM 3.9. (1) For every $\Gamma \cup \{A\} \in \mathcal{F}(\mathcal{QG})$, if $\Gamma \vdash_{\mathcal{QG}} A$, then $\xi(\Gamma) \vdash_{\mathcal{AG}} \xi(A)$; conversely,

(2) for every $\Gamma \cup \{A\} \in \mathcal{F}(\mathcal{AG})$, if $\Gamma \vdash_{\mathcal{AG}} A$, then $\eta(\Gamma) \vdash_{\mathfrak{QG}} \eta(A)$; moreover,

(3) $\Gamma \vdash_{\mathfrak{D}\mathcal{G}} \eta \xi(A)$ if and only if $\Gamma \vdash_{\mathfrak{D}\mathcal{G}} A$ for every $\Gamma \cup \{A\} \in \mathcal{F}(\mathfrak{D}\mathcal{G})$;

(4) $\Gamma \vdash_{\mathscr{A}\mathscr{G}} \xi\eta(A)$ if and only if $\Gamma \vdash_{\mathscr{A}\mathscr{G}} A$ for every $\Gamma \cup \{A\} \in \mathscr{F}(\mathscr{A}\mathscr{G})$.

This means that each theorem of *QS*-algebras can be translated immediately to that of groups and conversely, every theorem of groups is applied to that of *QS*-algebras.

At first we will establish the former part, that is, if $\Gamma \vdash_{\mathfrak{A}\mathfrak{G}} A$, then $\xi(\Gamma) \vdash_{\mathfrak{A}\mathfrak{G}} \xi(A)$.

THEOREM 3.10. For $\Gamma \cup \{A\} \in \mathcal{F}(\mathfrak{QG})$, if $\Gamma \vdash_{\mathfrak{QG}} A$, then $\xi(\Gamma) \vdash_{\mathfrak{AG}} \xi(A)$.

PROOF. It is sufficient to show that for every axiom A of QS-algebras, $\xi(A)$ is provable in the theory \mathcal{AG} of Abelian groups. For the sake of simplicity, we treat only the case of axiom (QS3): (x * y) * z = x * (z * (0 * y)). Other cases can be proved similarly. Since

$$\xi((x * y) * z) = (x \circ y^{-1}) \circ z^{-1},$$

$$\xi(x * (z * (0 * y))) = x \circ \{z \circ (y^{-1})^{-1}\}^{-1},$$
(3.13)

we have to show that

$$(x \circ y^{-1}) \circ z^{-1} = x \circ \left\{ z \circ (y^{-1})^{-1} \right\}^{-1}.$$
(3.14)

We have the following:

$$x \circ \left\{ z \circ (y^{-1})^{-1} \right\}^{-1} = x \circ (z \circ y)^{-1}$$

= $x \circ (y^{-1} \circ z^{-1})$
= $(x \circ y^{-1}) \circ z^{-1}$. (3.15)

Hence, if $\Gamma \vdash_{\mathcal{D}\mathcal{G}} A$, then $\xi(\Gamma) \vdash_{\mathcal{A}\mathcal{G}} \xi(A)$.

Conversely, we can show that if $\Gamma \vdash_{\mathscr{A}\mathscr{G}} A$, then $\eta(\Gamma) \vdash_{\mathscr{Q}\mathscr{G}} \eta(A)$.

THEOREM 3.11. For $\Gamma \cup \{A\} \in \mathcal{F}(\mathcal{AG})$, if $\Gamma \vdash_{\mathcal{AG}} A$, then $\eta(\Gamma) \vdash_{\mathcal{DG}} \eta(A)$.

PROOF. As above, it is sufficient to show that $\eta(A)$ is provable in the theory $\mathfrak{D}\mathcal{G}$ of *QS*-algebras for every axiom *A* of the theory of Abelian groups.

For the case of (G1), we have to show that

$$(x * (0 * y)) * (0 * z) = x * (0 * (y * (0 * z)))$$
(3.16)

because $\eta((x \circ y) \circ z) = (x * (0 * y)) * (0 * z)$ and $\eta(x \circ (y \circ z)) = x * (0 * (y * (0 * z)))$. By the proposition above, we have

$$(x * (0 * y)) * (0 * z) = x * ((0 * z) * (0 * (0 * y)))$$

= x * ((0 * z) * y)
= x * (0 * (y * (0 * z))). (3.17)

Other cases are proved easily, so we omit their proofs.

The theorem can be proved completely.

Moreover, it follows from Lemma 3.5 and Corollary 3.6 that we have $\vdash_{\mathfrak{DF}} \eta \xi(t) = t$ for every term $t \in \mathcal{T}(\mathcal{D}\mathcal{S})$. For the case of Abelian groups, it is easy to prove that $\vdash_{\mathcal{A}\mathcal{G}}$ $\xi \eta(s) = s$ for every term $s \in \mathcal{T}(\mathcal{AG})$. Thus we have the following.

THEOREM 3.12. For these maps,

- (1) $\Gamma \vdash_{\mathfrak{D}} \eta \xi(A)$ if and only if $\Gamma \vdash_{\mathfrak{D}} A$ for all $\Gamma \cup \{A\} \in \mathcal{F}(\mathfrak{D})$,
- (2) $\Gamma \vdash_{\mathcal{A}\mathfrak{G}} \xi \eta(A)$ if and only if $\Gamma \vdash_{\mathcal{A}\mathfrak{G}} A$ for all $\Gamma \cup \{A\} \in \mathcal{F}(\mathcal{A}\mathfrak{G})$.

4. Some properties. In this section, we prove other properties of *QS*-algebras, especially properties about the *G*-part and *mediality*. That is,

- (1) the *G*-part *G*(*X*) of a *QS*-algebra *X* is a normal subgroup generated by the class of all elements of order 2 of *X*;
- (2) every *QS*-algebra *X* is *medial*, that is, it satisfies the condition

$$(x * y) * (z * u) = (x * z) * (y * u)$$
(4.1)

for all elements $x, y, z, u \in X$.

Let *X* be a *QS*-algebra. A subset $G(X) = \{x \in X \mid 0 * x = x\}$ is called a *G*-part of *X*. For the *G*-part of *X*, we have the following results.

PROPOSITION 4.1. If $x, y \in G(X)$, then x * y = y * x.

PROOF. Suppose $x, y \in G(X)$. Since 0 * x = x and 0 * y = y, we have

$$x * y = (0 * x) * (0 * y)$$

= (0 * (0 * y)) * x (by (QS3))
= y * x.

PROPOSITION 4.2. If $x, y \in G(X)$, then $x * y \in G(X)$.

PROOF. Suppose that $x, y \in G(X)$. It follows that (0 * (x * y)) * (x * y) = (y * x) * (x * y) = (x * y) * (x * y) = 0 by Lemma 3.5. Thus we have 0 * (x * y) = x * y, that is, $x * y \in G(X)$.

Since any *QS*-algebra *X* may be considered as an Abelian group, Proposition 4.2 implies that G(X) is a (normal) subgroup of *X*. Moreover, since $x^2 = x \cdot x = x * (0 * x) = x * x = 0$ for $x \in G(X)$, every nonunit element in G(X) is of order 2. Hence, we can conclude that the *G*-part G(X) is the normal subgroup generated by the class of all elements of order 2. It is easy to show that $G(X) = \{x \in X \mid x \text{ is of order } 2\} \cup \{0\}$.

For the statement (2) above, in [1, Theorem 3.6], it is proved that a *QS*-algebra *X* is medial if and only if the condition x * (y * z) = (x * y) * (0 * z) holds for all $x, y, z \in X$. On the other hand, by Lemma 3.7, we have (x * y) * (0 * z) = z * (0 * (x * y)) = z * (y * x). Thus *X* is medial if and only if the condition x * (y * z) = z * (y * x) holds for all $x, y, z \in X$. By using this characterization of mediality, we will prove the following.

THEOREM 4.3. Every QS-algebra is medial.

PROOF. It is sufficient to show that x * (y * z) = z * (y * x) holds for all $x, y, z \in X$. Since

$$x * (y * z) = 0 * (0 * (x * (y * z)))$$
 (by Corollary 3.6)
= 0 * ((y * z) * x) (by Lemma 3.5)
= 0 * ((y * x) * z) (by (QS3))
= z * (y * x) (by Lemma 3.5), (4.3)

it follows that *X* is medial.

5. Application. Let $V = \{x, y, z, ...\}$ be a set of variables and **0** a constant. We define a *term* and *equation* as follows:

- (1) **0** is a term;
- (2) each variable in *V* is a term;
- (3) if *s*, *t* are terms, then s * t is also a term;
- (4) if s, t are terms, then s = t is an equation.

Thus, for example, **0**, **0** * *x*, *x* * (**0** * *y*), *x* * *y* are terms and thus **0** = **0** * *x*, *x* * (**0** * *y*) = *x* * *y* are equations. By t(x, y, ...) we mean a term whose variables are in {*x*, *y*,...}. We say that an equation s(x, y, ...) = t(x, y, ...) is satisfied in a *QS*-algebra *X* when for all elements $a, b, ... \in X$, we have $u^X(a, b, ...) = v^X(a, b, ...)$. In particular, an equation t(x, y, ...) = 0 is said to be satisfied in *X* if $t^X(a, b, ...) = 0$ for all elements $a, b, ... \in X$. In the following, by t(a, b, ...) we mean an element $t^X(a, b, ...)$ which is an interpretation of a term t(x, y, ...) in *X*, that is, t(a, b, ...) is an abbreviation of $t^X(a, b, ...)$.

We also define a condition (*C*) which plays an important role to develop our theory: (*C*) for all x and for all y, there exists t(x, y) such that

$$(\mathbf{0} * (\mathbf{0} * x)) * (\mathbf{0} * (\mathbf{0} * y)) = \mathbf{0} * (\mathbf{0} * t(x, y)), \quad t(x, x) = \mathbf{0}.$$
(5.1)

By using condition (C), we have the following theorem which shows the relation between Q-algebras and QS-algebras.

THEOREM 5.1. Let (X; *, 0) be a *Q*-algebra. (X; *, 0) satisfies condition (*C*) if and only if $(X^*; *, 0)$ is a *QS*-algebra, where $X^* = \{0 * (0 * a) | a \in X\}$.

PROOF. If part. For all $u, v \in X^*$, there exist $a, b \in X$ such that u = 0 * (0 * a), v = 0 * (0 * b). It follows from condition (*C*) that $u * v \in X^*$ and that X^* is a subalgebra of *X*. Hence, X^* is a *Q*-algebra. We define $u \cdot v = u * (0 * v)$ and $u^{-1} = 0 * u$. Since $u, v, 0 \in X^*$, we have $u \cdot v \in X^*$. Moreover for this operation, we can show that

- (i) $u \cdot v = v \cdot u$,
- (ii) $u \cdot 0 = 0 \cdot u = u$,
- (iii) $u \cdot (0 * u) = (0 * u) \cdot u = 0$,
- (iv) $(u \cdot v) \cdot w = u \cdot (v \cdot w)$.

For the sake of simplicity, we only prove the case of (iv). Before doing so, we note the following result: $(u \cdot v) \cdot w = (u \cdot w) \cdot v$ for all $u, v, w \in X^*$. Because

$$(u \cdot v) \cdot w = (u \cdot v) * (0 * w)$$

= $(u * (0 * v)) * (0 * w)$
= $(u * (0 * w)) * (0 * v)$
= $(u \cdot w) \cdot v$, (5.2)

it follows from the result that $(u \cdot v) \cdot w = (v \cdot u) \cdot w = (v \cdot w) \cdot u = u \cdot (v \cdot w)$.

Thus the above means that $(X^*; \cdot, -1, 0)$ is an Abelian group. For this group, if we define $u \circ v = u \cdot (0 * v)$, then $(X^*; \circ, 0)$ is a *QS*-algebra. Clearly we have $u \circ v = u \cdot (0 * v) = u * (0 * (0 * v)) = u * v$ for all $u, v \in X^*$. That is, $(X^*; *, 0)$ is a *QS*-algebra.

Only if part. Conversely, we suppose that $(X^*; *, 0)$ is a *QS*-algebra. For all $u, v \in X^*$, there exist $a, b \in X$ such that u = 0 * (0 * a), v = 0 * (0 * b). Since $u * v \in X^*$, u * v has to have a form of 0 * (0 * t(a, b)). This means that X^* satisfies the condition

$$\forall x \forall y \exists t(x, y) \quad (0 * (0 * x)) * (0 * (0 * y)) = 0 * (0 * t(x, y)).$$
(5.3)

It is obvious that t(a, a) = 0 for all $a \in X$, that is, t(x, x) = 0. Thus X^* satisfies condition (*C*).

We consider some cases of t(x, y) as corollaries to the theorem. First of all, let t(x, y) be a form of x * y, that is, t(x, y) = x * y. In this case, condition (*C*) has a form of

$$(0*(0*x))*(0*(0*y)) = 0*(0*(x*y)).$$
(5.4)

For a map $f: X \to X^*$ defined by f(x) = 0 * (0 * x), since $(x, y) \in \text{Ker } f$ if and only if 0 * (0 * x) = 0 * (0 * y), we have that X/Ker f, the quotient Q-algebra modulo Ker f, is isomorphic to X^* , that is, $X/\text{Ker } f \cong X^*$. Hence, we have the following.

COROLLARY 5.2. If $f: X \to X^*$ is a map defined by f(x) = 0 * (0 * x), then $X / \text{Ker } f \cong X^*$.

We define a term $t^n(x, y)$ for all nonnegative integers n as follows:

$$t^{0}(x, y) = 0 * (x * y),$$

$$t^{n}(x, y) = t^{n-1}(x, y) * (0 * (0 * (x * y))).$$

(5.5)

In this case, the corresponding condition (C_n) is (C_n)

$$(0*(0*x))*(0*(0*y)) = 0*(0*t^n(x,y)).$$
(5.6)

We now have the following result as to condition (C_n) .

COROLLARY 5.3. Let X be a QS-algebra. If X satisfies condition (C_n) , then X^* is an Abelian group in which every element has order at most (n+2).

PROOF. For condition (C_n) , if we take y = 0, then we have $0 * (0 * x) = 0 * (0 * t^n(x, 0))$, that is,

$$0*(0*x) = 0*[0*\{((0*x)*(0*(0*x)))*(0*(0*x))*\cdots*(0*(0*x))\}].$$
 (5.7)

Since any element $u \in X^*$ has a form of 0 * (0 * a) for some element $a \in X$, it follows from (C_n) that

$$u = 0 * [0 * \{((0 * a) * (0 * (0 * a))) * (0 * (0 * a)) * \dots * (0 * (0 * a))\}]$$

= 0 * [0 * {((...((0 * a) * u) * u) * ...) * u}]
= ((...((0 * a) * u) * u) * ...) * u
= ((...((0 * u) * u) * u) * ...) * u. (5.8)

On the other hand, since $(0 * u) * u = (0 * u) * (0 * (0 * u)) = u^{-1} \cdot u^{-1}$ in the Abelian group X^* , we have

$$u = (u^{-1} \cdot u^{-1}) \cdot u^{-1} \cdots u^{-1} = (u^{-1})^{n+1} = u^{-(n+1)}$$
(5.9)

and hence $u^{n+2} = 0$. This means that each element of X^* has order at most n+2. \Box

As the last case, we suppose t(x, y) = (x * y) * (y * x). Since condition (*C*) is

$$(0*(0*x))*(0*(0*y)) = 0*(0*((x*y)*(y*x)))$$
(5.10)

in this case, if we take y = 0, then we have the condition

$$0 * (0 * x) = 0 * (0 * (x * (0 * x))).$$
(5.11)

This implies that

$$0 * (0 * a) = 0 * (0 * (a * (0 * a)))$$
(5.12)

for all $a \in X$. In particular, any element $u \in X^*$ satisfies the condition. Hence, since u = 0 * (0 * u) for all elements $u \in X^*$, we have in the Abelian group X^*

$$u = u * (0 * u) = u \cdot u. \tag{5.13}$$

This means that every element of X^* is an idempotent. But $u \cdot uu$ means u = 0 and $X^* = \{0\}$ is trivial.

COROLLARY 5.4. Let X be a Q-algebra. If X satisfies the condition

$$(0*(0*x))*(0*(0*y)) = 0*(0*((x*y)*(y*x))),$$
(5.14)

then X^* is an Abelian group in which every element is an idempotent.

REFERENCES

- [1] S. S. Ahn and H. S. Kim, On QS-algebras, J. Chungcheong Math. Soc. 12 (1999), 33-41.
- M. Kondo and Y. B. Jun, *The class of B-algebras coincides with the class of groups*, Sci. Math. Jpn. 57 (2003), no. 1, 197–199.
- [3] J. Neggers, S. S. Ahn, and H. S. Kim, *On Q-algebras*, Int. J. Math. Math. Sci. **27** (2001), no. 12, 749–757.
- [4] J. Neggers and H. S. Kim, On B-algebras, Mat. Vesnik 54 (2002), no. 1-2, 21-29.

Michiro Kondo: School of Information Environment, Tokyo Denki University, Inzai 270-1382, Japan

E-mail address: kondo@sie.dendai.ac.jp