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We consider a form of generalized logistic distribution which is called extended type I gener-
alized logistic distribution. Some theorems that relate the distribution to some other statisti-
cal distributions are established. A possible application of one of the theorems is included.
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1. Introduction. The probability density function of a random variable that has lo-

gistic distribution is

fX(x)= e−x(
1+e−x)2 , −∞<x <∞, (1.1)

and the corresponding cumulative distribution function is given by

FX(x)=
(
1+e−x)−1, −∞<x <∞. (1.2)

The importance of the logistic distribution has already been felt in many areas of

human endeavour. Verhulst [12] used it in economic and demographic studies. Berkson

[3, 4, 5] used the distribution extensively in analyzing bioassay and quantal response

data. The works [6, 9, 10, 11, 8] are a few of many publications on logistic distribution.

The simplicity of the logistic distribution and its importance as a growth curve have

made it one of the many important statistical distributions. The shape of the logistic

distribution that is similar to that of the normal distribution makes it simpler and

also profitable on suitable occasions to replace the normal distribution by the logistic

distribution with negligible errors in the respective theories.

Balakrishnan and Leung [2] show the probability density function of a random vari-

able X that has type I generalized logistic distribution. It is given by

fX(x;b)= be−x(
1+e−x)b+1 , −∞<x <∞, b > 0. (1.3)

The corresponding cumulative distribution function is

FX(x;b)= (1+e−x)−b, −∞<x <∞, b > 0, (1.4)

and the characteristic function of X is

φX(t)= Γ(1−it)Γ(b+it)Γ(b)
. (1.5)
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The means, variances, and covariances of order statistics from the type I generalized

logistic distribution have been tabulated for some values of b in [1]. Wu et al. [13]

proposed an extended form of the generalized logistic distribution which is referred to

as the five-parameter generalized logistic distribution. Its density function is given by

fX(x;µ,σ ,λ,φ,m)

= λφ

σB(φ,m)

[
exp

(
x−µ
σ

)]m[
λ+exp

(
x−µ
σ

)]−(φ+m)
, −∞<x <∞,

(1.6)

where −∞ < µ <∞, λ > 0, φ > 0, σ > 0, m > 0. Several properties of this distribution

such as moments are examined and some applications are discussed in [13].

In this paper, we consider a form of generalized logistic distribution density function

that generalizes the type I generalized logistic distribution of Balakrishnan and Leung

[2]. The new function, which is a particular case of the general case considered in [13],

is called extended type I generalized logistic distribution.

2. Extended type I generalized logistic distribution. As mentioned above, Wu et

al. [13] presented a generalized logistic distribution with density function (1.6). Putting

µ = 0 andσ = 1 and working with−X instead ofX, its density function can be written as

fX(x;λ,φ,m)= λφ

B(φ,m)
e−mx(

λ+e−x)φ+m , −∞<x <∞, λ > 0, φ > 0, m > 0. (2.1)

In this section, we will derive a form of generalized logistic distribution which is

a special case of the one in (2.1) as (1.3) is a special case of the generalized logistic

distribution in [6].

Let X be a continuously distributed random variable with one-parameter Gumbel

density function

fX(x;α)=αe−x exp
(−αe−x), −∞<x <∞, α > 0. (2.2)

Assuming that α has a gamma distribution with probability density function

h(α;λ,p)= λp

Γ(p)
αp−1 exp(−λα), p > 0, λ > 0. (2.3)

We obtain the probability density function of the compound distribution using (2.2)

and (2.3) as

fX(x;λ,p)=
∫∞

0
fX(x;α)h(α;λ,p)dα= pλpe−x(

λ+e−x)p+1 . (2.4)

The function in (2.4) is what we refer to as the extended type I generalized logistic

distribution density function. Equation (2.4) corresponds to m= 1, φ= p in (2.1).

The corresponding cumulative distribution function is

FX(x;λ,p)= λp(
λ+e−x)p . (2.5)
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When p = λ= 1, we have the ordinary logistic distribution and when λ= 1, we have the

type I generalized logistic distribution of Balakrishnan and Leung [2].

For the extended type I generalized logistic distribution given in (2.4), we obtained

the characteristic function as

φX(t)= λ
−itΓ(p+it)Γ(1−it)

Γ(p)
. (2.6)

This characteristic function and the cumulative distribution function in (2.5) are impor-

tant tools in proving some theorems that characterize the extended type I generalized

logistic distribution as we will see in the next section.

3. Some theorems that relate the extended type I generalized logistic to some other

distributions. We state some theorems and prove them in this section.

Theorem 3.1. Let Y be a continuously distributed random variable with probability

density fY (y). Then the random variableX =− ln[λ(eY−1)] has an extended type I gen-

eralized logistic distribution with parameters p and λ if and only if Y has an exponential

probability distribution with parameter p.

Proof. If Y has exponential distribution with parameter p, then the probability

density function of Y is

fY (y ;p)= pe−py, y > 0, p > 0. (3.1)

Then x =− ln[λ(ey−1)] implies that y = ln((e−x+λ)/λ). Therefore

fX(x)=
∣∣∣∣dydx

∣∣∣∣fY (y)= pλpe−x(
λ+e−x)p+1 , −∞<x <∞, (3.2)

which is the extended type I generalized logistic density function.

Conversely, if X is an extended type I generalized logistic random variable, then

x =− ln[λ(ey−1)] implies that

dx
dy

= −ey(
ey−1

) ,

fY (y)=
∣∣∣∣dxdy

∣∣∣∣fX(x)= pe−py, y > 0, p > 0.
(3.3)

Since this is the probability density function of an exponential random variable Y with

parameter p, the proof is complete.

Theorem 3.2. Suppose Y1 and Y2 are independently distributed random variables.

If Y1 has the gamma distribution with probability density

h1
(
y1
)= λp

Γ(p)
yp−1

1 e−λy1 , y1 > 0, (3.4)

and Y2 has the exponential distribution with probability density

h2
(
y2
)= e−y2 , y2 > 0, (3.5)
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then the random variable X = lnY1− lnY2 has an extended type I generalized logistic

distribution with parameters p and λ.

Proof. Let Y1 and Y2 be independent random variables with probability density

functions h1 and h2, respectively. The characteristic function of lnY1 is given by

φlnY1(t)=
∫∞

0
eit lnY1

λp

Γ(p)
yp−1

1 e−λy1dy1 = λ
−itΓ(p+it)
Γ(p)

. (3.6)

Similarly, the characteristic function of − lnY2 is given by

φ− lnY2(t)=
∫∞

0
e−it lnY2e−y2dy2 = Γ(1−it). (3.7)

Since the characteristic function of the extended type I generalized logistic distribution

given in (2.6) is the product of (3.6) and (3.7), the theorem follows.

Theorem 3.3. Let Y be a continuously distributed random variable with probability

density function fY (y). Then the random variable X = − ln(Y −λ) is an extended type

I generalized logistic random variable if and only if Y follows a generalized Pareto

distribution with parameters λ and p which are positive real numbers.

Proof. If Y has the generalized Pareto distribution with parameters λ and p, then

fY (y ;λ,p)= pλp

yp+1
, y > λ (3.8)

(see McDonald and Xu [7]). Then x = − ln(y − λ) implies that y = λ+ e−x and the

Jacobian of the transformation is |J| = e−x . Therefore,

fX(x)= |J|fY (y)= pλpe−x(
λ+e−x)p+1 (3.9)

which is the extended type I generalized logistic density function.

Conversely, if X is an extended type I generalized logistic random variable with prob-

ability distribution function shown in (2.5), then

FY (y)= pr[Y ≤y]= pr
[(
λ+e−x)≤y] (3.10)

= 1−FX
(− ln(y−λ))= 1−

(
λ
y

)p
. (3.11)

Since (3.11) is the cumulative distribution function for the generalized Pareto distri-

bution given in (3.8), the proof is complete.

Theorem 3.4. The random variable X is extended type I generalized logistic with

probability distribution function F given in (2.5) if and only if F satisfies the homogeneous

differential equation

(
λ+e−x)F ′ −pe−xF = 0, (3.12)

where the prime denotes differentiation, F denotes F(x), and F ′ denotes F ′(x).
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Proof. Since

F = λp(
λ+e−x)p , (3.13)

if the random variable X is an extended type I generalized logistic distribution, it is

easily shown that F above satisfies (3.12).

Conversely, we assume that F satisfies (3.12). Separating the variables in (3.12) and

integrating, we have

lnF =−p ln
(
λ+e−x)+ lnk, (3.14)

where k is a constant. Obviously, from (3.14),

F = k(
λ+e−x)p . (3.15)

The value of k that makes F a distribution function is k= λp .

4. Possible application of Theorem 3.4. From (3.12), we have

x = ln
(
pF−F ′
λF ′

)
. (4.1)

Thus, the importance of Theorem 3.4 lies in the linearizing transformation (4.1). The

transformation (4.1) which we call “extended type I generalized logit transform” can

be regarded as an extended type I generalization of Berkson’s logit transform in [3] for

the ordinary logistic model.

Therefore, in the analysis of bioassay and quantal response data, if model (2.4) is

used, what Berkson’s logit transform does for the ordinary logistic model can be done

for the extended type I generalized logistic model (2.4) by the transformation (4.1).
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