## UNIFORMLY SUMMING SETS OF OPERATORS ON SPACES OF CONTINUOUS FUNCTIONS

## J. M. DELGADO and CÁNDIDO PIÑEIRO

Received 30 March 2004

Let *X* and *Y* be Banach spaces. A set  $\mathcal{M}$  of 1-summing operators from *X* into *Y* is said to be *uniformly summing* if the following holds: given a weakly 1-summing sequence  $(x_n)$  in *X*, the series  $\sum_n ||Tx_n||$  is uniformly convergent in  $T \in \mathcal{M}$ . We study some general properties and obtain a characterization of these sets when  $\mathcal{M}$  is a set of operators defined on spaces of continuous functions.

2000 Mathematics Subject Classification: 47B38, 47B10.

**1. Introduction.** Throughout this paper, *X* and *Y* will be Banach spaces. If *X* is a Banach space,  $B_X = \{x \in X : ||x|| \le 1\}$  will denote its closed unit ball and  $X^*$  will be the topological dual of *X*. Given a real number  $p \in [1, \infty)$ , a (linear) operator  $T : X \to Y$  is said to be *p*-summing if there exists a constant C > 0 such that

$$\left(\sum_{i=1}^{n}\left|\left|Tx_{i}\right|\right|^{p}\right)^{1/p} \leq C \cdot \sup\left\{\left(\sum_{i=1}^{n}\left|\left\langle x^{*}, x_{i}\right\rangle\right|^{p}\right)^{1/p} : x^{*} \in B_{X^{*}}\right\}$$
(1.1)

for every finite set  $\{x_1,...,x_n\} \subset X$ . The least *C* for which the above inequality always holds is denoted by  $\pi_p(T)$  (the *p*-summing norm of *T*). The linear space of all *p*-summing operators from *X* into *Y* is denoted by  $\Pi_p(X,Y)$  which is a Banach space endowed with the *p*-summing norm.

As usual,  $\ell_w^p(X)$  will be the Banach space of weakly *p*-summable sequences in *X*, that is, the sequences  $(x_n) \subset X$  satisfying  $\sum_n |\langle x^*, x_n \rangle|^p < \infty$  for all  $x^* \in X^*$ ; the norm in  $\ell_w^p(X)$  is  $\epsilon_p(x_n) = \sup\{(\sum_n |\langle x^*, x_n \rangle|^p)^{1/p} : x^* \in B_{X^*}\}$ . The set of all strongly *p*-summable sequences in *X* is denoted by  $\ell_a^p(X)$ ; the norm in this space is  $\pi_p(x_n) = (\sum_n ||x_n||^p)^{1/p}$ . If  $T \in \prod_p(X, Y)$ , the correspondence  $\hat{T} : (x_n) \mapsto (Tx_n)$  always induces a bounded operator from  $\ell_w^p(X)$  into  $\ell_a^p(Y)$  with  $||\hat{T}|| = \pi_p(T)$  [5, Proposition 2.1].

Families of operators arise in different applications: equations containing a parameter, homotopies of operators, and so forth. In these applications, it may be very interesting to know that, given a set  $\mathcal{M} \subset \prod_p(X,Y)$  and  $(x_n) \in \ell_w^p(X)$ , the series  $\sum_n ||Tx_n||^p$ is uniformly convergent in  $T \in \mathcal{M}$ . The main purpose of this paper is to study *uniformly p*-summing sets, that is, those sets  $\mathcal{M} \subset \prod_p(X,Y)$  for which, given  $(x_n) \in \ell_w^p(X)$ , the series  $\sum_n ||Tx_n||^p$  is uniformly convergent in  $T \in \mathcal{M}$ . These sets also enjoy some properties that justify their study; the next proposition lists some of them. **PROPOSITION 1.1.** (a) Let  $(T_k)$  be a sequence in  $\Pi_p(X, Y)$ . Then,  $\hat{T}_k \xrightarrow{k} 0$  pointwise if and only if  $T_k \xrightarrow{k} 0$  pointwise and  $(T_k)$  is uniformly *p*-summing.

(b) Let  $\mathcal{M} \subset \Pi_p(X,Y)$  be a uniformly *p*-summing set. If  $\mathcal{M}$  is endowed with the strong operator topology, then the map  $T \in \mathcal{M} \mapsto \sum_n ||Tx_n||^p \in \mathbb{R}$  is continuous for every  $(x_n) \in \ell^p_w(X)$ .

A basic argument shows that uniformly *p*-summing sets are bounded for the *p*-summing norm. In fact, if *X* does not contain any copy of  $c_0$ , bounded sets and uniformly 1-summing sets are the same. That is the reason for which we only consider operators defined on a  $\mathscr{C}(\Omega)$ -space,  $\Omega$  being a compact Hausdorff space. We recall that every weakly compact operator  $T : \mathscr{C}(\Omega) \to Y$  has a representing measure  $m_T : \Sigma \to Y$  defined by  $m_T(B) = T^{**}(\chi_B)$  for all  $B \in \Sigma$ , where  $\Sigma$  denotes the Borel  $\sigma$ -field of subsets of  $\Omega$  and  $\chi_B$  denotes the characteristic function of *B*. The vector measure  $m_T$  is regular and countably additive [6, Theorem VI.2.5 and Corollary VI.2.14]. If we denote by  $\tilde{T}$  the operator  $T^{**}$  restricted to  $B(\Sigma)$  (the space of all bounded Borel-measurable scalar-valued functions defined on  $\Omega$ ), then

$$\widetilde{T}\varphi = \int_{\Omega} \varphi \, dm_T, \tag{1.2}$$

for all  $\varphi \in B(\Sigma)$  (the integral is the elementary Bartle integral [6, Definition I.1.12]).

It is well known that every *p*-summing operator defined on a Banach space *X* is weakly compact. In Section 2, we consider 1-summing operators *T* defined on  $\mathscr{C}(\Omega)$ ; these operators are characterized as those with representing measure  $m_T$  having finite variation and  $\pi_1(T) = |m_T|(\Omega)|$  [6, Theorem VI.3.3]. We show that a set  $\mathcal{M} \subset \Pi_1(\mathscr{C}(\Omega), Y)$  is uniformly 1-summing if and only if the family of all variation measures  $\{|m_T|: T \in \mathcal{M}\}$  is uniformly bounded and there is a countably additive measure  $\mu: \Sigma \to [0, \infty)$  such that  $\{|m_T|: T \in \mathcal{M}\}$  is uniformly  $\mu$ -continuous.

In Section 3, we mention a special class of uniformly *p*-summing operators: *uniformly dominated sets*. The relationship between uniformly summing sets and relatively weak compactness is also studied. Finally, we give some examples and open problems.

**2.** Uniformly 1-summing sets in  $\Pi_1(\mathscr{C}(\Omega), Y)$ . Before facing our main theorem, we include three results which correspond to the vector measure theory. These results will be usually invoked along the following lines.

**PROPOSITION 2.1** [6, Proposition I.1.17]. *The following statements about a collection*  $\{m_i : i \in I\}$  of *Y*-valued measures defined on a  $\sigma$ -field  $\Sigma$  are equivalent:

- (a) the set  $\{m_i : i \in I\}$  is uniformly countably additive, that is, if  $(E_n)$  is a sequence of pairwise disjoint members of  $\Sigma$ , then  $\lim_n \|\sum_{k\geq n} m_i(E_k)\| = 0$  uniformly in  $i \in I$ ,
- (b) the set  $\{y^* \circ m_i : i \in I, y^* \in B_{Y^*}\}$  is uniformly countably additive,
- (c) if (E<sub>n</sub>) is a sequence of pairwise disjoint members of Σ, then lim<sub>n</sub> ||m<sub>i</sub>(E<sub>n</sub>)|| = 0 uniformly in i ∈ I,
- (d) if  $(E_n)$  is a sequence of pairwise disjoint members of  $\Sigma$ , then  $\lim_n ||m_i|| (E_n) = 0$ uniformly in  $i \in I$ , where  $||m_i||$  denotes the semivariation of  $m_i$ ,
- (e) the set  $\{|\gamma^* \circ m_i| : i \in I, \gamma^* \in B_{Y^*}\}$  is uniformly countably additive.

**THEOREM 2.2** [6, Theorem I.2.4]. Let  $\{m_i : \Sigma \to Y : i \in I\}$  be a uniformly bounded (with respect to the semivariation) family of countably additive vector measures on a  $\sigma$ -field  $\Sigma$ . The family  $\{m_i : i \in I\}$  is uniformly countably additive if and only if there exists a positive real-valued countably additive measure  $\mu$  on  $\Sigma$  such that  $\{m_i : i \in I\}$  is uniformly  $\mu$ -continuous, that is,

$$\lim_{\mu(E) \to 0} ||m_i(E)|| = 0 \tag{2.1}$$

uniformly in  $i \in I$ .

If  $\Omega$  is a compact Hausdorff space and  $\Sigma$  denotes the  $\sigma$ -field of the Borel subsets of  $\Omega$ , a vector measure m on  $\Sigma$  is regular if for each Borel set E and  $\varepsilon > 0$  there exists a compact set K and an open set O such that  $K \subset E \subset O$  and  $||m||(O \setminus K) < \varepsilon$ .

**PROPOSITION 2.3** [6, Lemma VI.2.13]. Let  $\mathcal{K}$  be a family of regular (countably additive) scalar measures defined on  $\Sigma$ . Each of the following statements implies all the others:

- (a) for each pairwise disjoint sequence  $(O_n)$  of open subsets of  $\Omega$ ,  $\lim_n \mu(O_n) = 0$ uniformly in  $\mu \in \mathcal{K}$ ,
- (b) for each pairwise disjoint sequence (O<sub>n</sub>) of open subsets of Ω, lim<sub>n</sub> |μ|(O<sub>n</sub>) = 0 uniformly in μ ∈ 𝔅,
- (c) *X* is uniformly countably additive,
- (d)  $\mathscr{X}$  is uniformly regular, that is, if  $E \in \Sigma$  and  $\varepsilon > 0$ , then there exists a compact set *K* and an open set *O* such that  $K \subset E \subset O$  and  $\sup_{\mu \in \mathscr{X}} |\mu|(O \setminus K) < \varepsilon$ .

Now, we are able to show our main result. In the proof, we will use the fact that  $|m_T|$  is regular when  $T: \mathscr{C}(\Omega) \to Y$  is 1-summing [7, Proposition 15.21].

**THEOREM 2.4.** Let  $\mathcal{M} \subset \Pi_1(\mathscr{C}(\Omega), Y)$  be a bounded set. The following statements are equivalent:

- (a) *M* is uniformly 1-summing,
- (b) the family of nonnegative measures  $\{|m_T| : T \in \mathcal{M}\}$  is uniformly countably additive,
- (c) given  $\varepsilon > 0$  and a disjoint sequence  $(E_n)$  of Borel subsets of  $\Omega$ , there exists  $n_0 \in \mathbb{N}$  such that

$$\sum_{n \ge n_0} ||m_T(E_n)|| < \varepsilon, \tag{2.2}$$

for all  $T \in \mathcal{M}$ .

**PROOF.** (a) $\Rightarrow$ (b). According to [6, Lemma VI.2.13], it suffices to show that  $\lim_{n\to\infty} |m_T|(O_n) = 0$  uniformly in  $T \in \mathcal{M}$ , for all disjoint sequences  $(O_n)$  of open subsets of  $\Omega$ . By contradiction, suppose that there exists  $\varepsilon > 0$ , a sequence  $(T_n)$  in  $\mathcal{M}$ , and a strictly increasing sequence  $(k_n)$  of natural numbers such that

$$|m_{T_n}|(O_{k_n}) > 2\varepsilon, \quad \forall n \in \mathbb{N}.$$

$$(2.3)$$

Now we consider the operators  $S_n : \mathscr{C}(\Omega, O_{k_n}) \to Y$  defined by

$$S_n \varphi = \int_{O_{k_n}} \varphi \, dm_{T_n}, \qquad (2.4)$$

for all  $\varphi \in \mathscr{C}(\Omega, O_{k_n})$ , where  $\mathscr{C}(\Omega, O_{k_n})$  is the closed subspace of  $\mathscr{C}(\Omega)$  formed by all continuous functions  $\varphi$  on  $\Omega$  such that  $\varphi$  vanishes in  $\Omega \setminus O_{k_n}$ . It is known that  $\pi_1(S_n) = |m_{T_n}|(O_{k_n})$ , for all  $n \in \mathbb{N}$  [7, Theorem 19.3]. For each  $n \in \mathbb{N}$ , we can choose a finite set  $\{\varphi_1^n, \dots, \varphi_{p_n}^n\} \subset \mathscr{C}(\Omega, O_{k_n})$  satisfying  $\epsilon_1(\varphi_i^n)_{i=1}^{p_n} \leq 1$  and

$$\sum_{i=1}^{p_n} ||S_n \varphi_i^n|| > \pi_1(S_n) - \varepsilon.$$
(2.5)

Since the open sets  $O_{k_n}$  are disjoint, it follows that the sequence  $(\varphi_1^1, ..., \varphi_{p_1}^1, \varphi_1^2, ..., \varphi_{p_2}^2, ...)$  belongs to  $\ell_w^1(\mathscr{C}(\Omega))$ . Nevertheless, for all  $n \in \mathbb{N}$ , we have

$$\sum_{m \ge n} \sum_{i=1}^{p_m} ||T_n \varphi_i^m|| \ge \sum_{i=1}^{p_n} ||T_n \varphi_i^n|| = \sum_{i=1}^{p_n} ||S_n \varphi_i^n|| > \pi_1(S_n) - \varepsilon = |m_{T_n}|(O_{k_n}) - \varepsilon > \varepsilon.$$
(2.6)

This denies (a) and proves that (a) implies (b).

(b) $\Rightarrow$ (c). Again we proceed by contradiction. Suppose  $(E_n)$  is a disjoint sequence of Borel subsets of  $\Omega$  for which there exists  $\varepsilon > 0$ , a sequence  $(T_n)$  in  $\mathcal{M}$ , and a strictly increasing sequence  $(k_n)$  of natural numbers so that

$$\sum_{i=k_n+1}^{k_{n+1}} ||m_{T_n}(E_i)|| > \varepsilon, \quad \forall n \in \mathbb{N}.$$
(2.7)

If we put  $B_n = \bigsqcup_{i=k_n+1}^{k_{n+1}} E_i$ , the above inequality yields  $|m_{T_n}|(B_n) > \varepsilon$ . So, in view of [6, Proposition I.1.17], the family  $\{|m_T|: T \in \mathcal{M}\}$  is not uniformly countably additive.

(c)⇒(b). We need to prove

$$\lim_{n \to \infty} |m_T|(E_n) = 0 \quad \text{uniformly in } T \in \mathcal{M},$$
(2.8)

for all disjoint sequences  $(E_n)$  of Borel subsets of  $\Omega$ . Suppose (b) fails. Then, there exists  $\varepsilon > 0$ , a sequence  $(T_n)$  in  $\mathcal{M}$ , and a strictly increasing sequence  $(k_n)$  of natural numbers satisfying

$$|m_{T_n}|(E_{k_n}) > \varepsilon, \quad \forall n \in \mathbb{N}.$$
 (2.9)

For each  $n \in \mathbb{N}$ , we choose a finite partition  $\{E_1^n, \dots, E_{p_n}^n\}$  of  $E_{k_n}$  for which

$$\sum_{i=1}^{p_n} ||m_{T_n}(E_i^n)|| > \varepsilon.$$
(2.10)

Then, the disjoint sequence  $(E_1^1, \ldots, E_{p_1}^1, E_1^2, \ldots, E_{p_2}^2, \ldots)$  does not satisfy (c).

3400

(b)⇒(a). According to [6, Theorem I.2.4] there exists a countably additive measure  $\mu$  :  $\Sigma$  → [0, ∞) so that

$$\lim_{\mu(E)\to 0} |m_T|(E) = 0 \quad \text{uniformly in } T \in \mathcal{M}.$$
(2.11)

Hence, given  $\varepsilon > 0$ , there exists  $\delta > 0$  such that, if  $E \in \Sigma$  verifies  $\mu(E) < \delta$ , then  $|m_T|(E) < \varepsilon/2$ , for all  $T \in \mathcal{M}$ .

Next, given  $(\varphi_n) \in \ell_w^1(\mathscr{C}(\Omega))$  with  $\epsilon_1(\varphi_n) \leq 1$ , notice that the series  $\sum_{n=1}^{\infty} |\varphi_n(t)|$  is convergent for all  $t \in \Omega$ . Put  $f_n(t) = \sum_{k=1}^n |\varphi_k(t)|$  and  $f(t) = \lim_{n \to \infty} f_n(t)$ . By Egorov's theorem, the sequence  $(f_n)$  is quasi-uniformly convergent to f. Then, there exists  $E \in \Sigma$  such that  $\mu(E) < \delta$  and

$$f_{n|\Omega\setminus E} \longrightarrow f_{|\Omega\setminus E} \tag{2.12}$$

uniformly. If  $C = \sup\{|m_T|(\Omega): T \in \mathcal{M}\}\)$ , there exists  $n_0 \in \mathbb{N}$  so that

$$\sum_{n \ge n_0} |\varphi_n(t)| < \frac{\varepsilon}{2C}, \quad \forall t \in \Omega \setminus E.$$
(2.13)

Now,

$$\sum_{n \ge n_0} ||T\varphi_n|| = \sum_{n \ge n_0} \left\| \int_{\Omega} \varphi_n(t) dm_T \right\|$$

$$\leq \sum_{n \ge n_0} \left\| \int_E \varphi_n(t) dm_T \right\| + \sum_{n \ge n_0} \left\| \int_{\Omega \setminus E} \varphi_n(t) dm_T \right\|$$

$$\leq \sum_{n \ge n_0} \int_E |\varphi_n(t)| d| m_T | + \sum_{n \ge n_0} \int_{\Omega \setminus E} |\varphi_n(t)| d| m_T |$$

$$= \int_E \left( \sum_{n \ge n_0} |\varphi_n(t)| \right) d| m_T | + \int_{\Omega \setminus E} \left( \sum_{n \ge n_0} |\varphi_n(t)| \right) d| m_T |$$

$$\leq |m_T| (E) + \frac{\varepsilon}{2C} |m_T| (\Omega \setminus E)$$

$$< \varepsilon.$$

We denote by  $\mathcal{V}(X, Y)$  the class of completely continuous operators from X into Y, that is, the class of operators which map weakly convergent sequences in X into norm-convergent sequences in Y. A set  $\mathcal{M} \subset \mathcal{V}(X, Y)$  is said to be *uniformly completely continuous* if, given a weakly convergent sequence  $(x_n)$  in X,  $(Tx_n)$  is norm convergent uniformly in  $T \in \mathcal{M}$ . The following result gives some characterizations of uniformly completely completely continuous sets in  $\mathcal{V}(\mathscr{C}(\Omega), Y)$ . Recall that an operator T defined on  $\mathscr{C}(\Omega)$  is completely continuous if and only if T is weakly compact [6, Corollary VI.2.17], so  $m_T$  is countably additive and regular, too.

**THEOREM 2.5.** Let  $\mathcal{M} \subset \mathcal{V}(\mathscr{C}(\Omega), Y)$  be a bounded set for the operator norm. The following statements are equivalent:

- (a) *M* is uniformly completely continuous,
- (b) the family  $\{m_T : T \in \mathcal{M}\}$  is uniformly countably additive,

(c)  $\mathcal{M}^* = \{T^* : T \in \mathcal{M}\}$  is collectively weakly compact, that is, the set  $\bigcup_{T \in \mathcal{M}} T^*(B_{Y^*})$  is relatively weakly compact in  $\mathscr{C}(\Omega)^*$ .

**PROOF.** (a) $\Rightarrow$ (b). By [6, Proposition I.1.17], the family  $\{m_T : T \in \mathcal{M}\}$  is uniformly countably additive if and only if  $\mathcal{N} = \{\gamma^* \circ m_T : T \in \mathcal{M}, \gamma^* \in B_{Y^*}\}$  is. According to [6, Lemma VI.1.13], we have to prove that

$$\lim_{n \to \infty} \gamma^* \circ m_T(O_n) = 0 \quad \text{uniformly in } \mathcal{N}, \tag{2.15}$$

for all disjoint sequences  $(O_n)$  of open subsets of  $\Omega$ . By contradiction, suppose there exists such a sequence  $(O_n)$  for which  $\lim_{n\to\infty} y^* \circ m_T(O_n) = 0$  but not uniformly in  $\mathcal{N}$ . Then, there exists  $\varepsilon > 0$  and sequences  $(y_n^*) \subset B_{Y^*}$ ,  $(T_n) \in \mathcal{M}$ , and  $(O_{k_n}) \subset (O_n)$  such that

$$|y_n^* \circ m_{T_n}(O_{k_n})| > \varepsilon, \quad \forall n \in \mathbb{N}.$$
 (2.16)

Now, using the regularity of each  $m_{T_n}$ , we can find a sequence of compact sets  $(H_n)$  with  $H_n \subset O_{k_n}$  and

$$||m_{T_n}||(O_{k_n} \setminus H_n) < \frac{\varepsilon}{2}, \quad \forall n \in \mathbb{N},$$
(2.17)

(||m|| denotes the semivariation of m, that is,  $||m||(E) = \sup\{|y^* \circ m|(E) : y^* \in B_{Y^*}\}$ ). By Urysohn's lemma, for every  $n \in \mathbb{N}$  there exists a continuous function  $\varphi_n : \Omega \rightarrow [0,1]$  such that  $\varphi_n(H_n) = 1$  and  $\varphi_n(\Omega \setminus O_{k_n}) = 0$ . Obviously, the series  $\sum_{n=1}^{\infty} \varphi_n$  is unconditionally convergent in  $\mathscr{C}(\Omega)$ . Since  $\mathcal{M}$  is uniformly completely continuous, there exists  $n_0 \in \mathbb{N}$  such that

$$||T\varphi_n|| < \frac{\varepsilon}{2}, \quad \forall n \ge n_0, \ \forall T \in \mathcal{M}.$$
 (2.18)

Then, we have

$$\begin{split} ||m_{T_{n}}(O_{k_{n}})|| &\leq ||m_{T_{n}}(O_{k_{n}}) - T_{n}\varphi_{n}|| + ||T_{n}\varphi_{n}|| \\ &= \left\| \int_{\Omega} \chi_{O_{k_{n}}} dm_{T_{n}} - \int_{\Omega} \varphi_{n} dm_{T_{n}} \right\| + ||T_{n}\varphi_{n}|| \\ &= \left\| \int_{O_{k_{n}}} (1 - \varphi_{n}) dm_{T_{n}} \right\| + ||T_{n}\varphi_{n}|| \\ &= \left\| \int_{O_{k_{n}} \setminus H_{n}} (1 - \varphi_{n}) dm_{T_{n}} \right\| + ||T_{n}\varphi_{n}|| \\ &\leq ||m_{T_{n}}||(O_{k_{n}} \setminus H_{n}) + ||T_{n}\varphi_{n}|| \\ &\leq \varepsilon, \end{split}$$
(2.19)

for all  $n \ge n_0$ . This is in contradiction with (2.16).

(b) $\Rightarrow$ (a). By [6, Theorem I.2.4], there exists a scalar countably additive measure  $\mu : \Sigma \rightarrow [0, \infty)$  such that  $\{m_T : T \in \mathcal{M}\}$  is uniformly  $\mu$ -continuous. Then, if  $(\varphi_n)$  is a sequence

3402

that tends to zero weakly in  $\mathscr{C}(\Omega)$ , it is obvious that zero is the pointwise limit of the sequence  $(\varphi_n(t))$ . Now, using Egorov's theorem and proceeding along similar lines as the proof of (b) $\Rightarrow$ (a) in Theorem 2.4, the proof concludes.

(b) $\Leftrightarrow$ (c). The set  $\bigcup_{T \in \mathcal{M}} T^*(B_{Y^*}) = \{y^* \circ m_T : T \in \mathcal{M}, y^* \in B_{Y^*}\} \subset \mathscr{C}(\Omega)^*$  is relatively weakly compact if and only if it is bounded and uniformly countably additive [4, Theorem VII.13]. A call to [6, Proposition I.1.17] makes clear that  $\bigcup_{T \in \mathcal{M}} T^*(B_{Y^*})$  is uniformly countably additive if and only if condition (b) is satisfied.

**COROLLARY 2.6.** If  $\mathcal{M} \subset \Pi_1(\mathscr{C}(\Omega), Y)$  is uniformly 1-summing, then  $\mathcal{M}$  is uniformly completely continuous.

The converse of the last result is not true in general.

**PROPOSITION 2.7.** Suppose that the cardinal of  $\Omega$  is infinite. The following statements are equivalent:

- (a) each subset of Π<sub>1</sub>(𝔅(Ω), Y) uniformly completely continuous is uniformly 1-summing,
- (b) *Y* is finite-dimensional.

**PROOF.** (a) $\Rightarrow$ (b). By contradiction, suppose there is an unconditionally summable serie  $\sum_k y_k$  in *Y* such that  $\sum_k ||y_k|| = \infty$ . Let  $(\omega_k)$  be a sequence in  $\Omega$  with  $\omega_k \neq \omega_l$  when  $k \neq l$ . For each  $m \in \mathbb{N}$  consider the operator  $T_m : \mathscr{C}(\Omega) \to Y$  defined by

$$T_m \varphi = \sum_{k=1}^m \varphi(\omega_k) y_k.$$
(2.20)

It is not difficult to show that  $\mathcal{M} = (T_m)$  is uniformly completely continuous. Nevertheless,

$$\pi_1(T_m) = \sum_{k=1}^m ||\mathcal{Y}_k|| \xrightarrow{m} \infty, \qquad (2.21)$$

so  $\mathcal{M}$  cannot be uniformly 1-summing because it is not  $\pi_1$ -bounded.

 $(b)\Rightarrow(a)$ . This follows easily in view of conditions (b) in Theorems 2.4 and 2.5.

We have showed that the converse of Corollary 2.6 is not true in general. However, a direct argument using Theorems 2.4 and 2.5 leads up to conclude that every uniformly completely continuous set  $\mathcal{M} \subset \Pi_1(\mathscr{C}(\Omega), Y)$  verifying the following condition is uniformly 1-summing:

(i) given  $T \in \mathcal{M}$  and a finite subset  $\{(\varphi_1, \gamma_1^*), \dots, (\varphi_m, \gamma_m^*)\}$  of  $\mathscr{C}(\Omega) \times B_{Y^*}$ , there exist  $S \in \mathcal{M}$  and  $z^* \in B_{Y^*}$  such that  $|\langle \gamma_n^*, T\varphi_n \rangle| \le |\langle z^*, S\varphi_n \rangle|, n = 1, \dots, m$ .

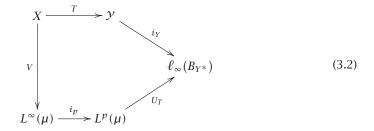
**3. Final notes and examples.** The Grothendieck-Pietsch domination theorem states that an operator  $T: X \rightarrow Y$  is *p*-summing if and only if there exists a positive Radon measure  $\mu$  defined on the (weak<sup>\*</sup>) compact space  $B_{X^*}$  such that

$$\left\|\left|Tx\right|\right|^{p} \leq \int_{B_{X^{*}}} \left|\left\langle x^{*}, x\right\rangle\right|^{p} d\mu(x^{*}),$$
(3.1)

for all  $x \in X$  [5, Theorem 2.12]. Since the appearance of this theorem, there is a great interest in finding out the structure of uniformly *p*-dominated sets. A subset  $\mathcal{M}$  of  $\Pi_p(X, Y)$  is *uniformly p-dominated* if there exists a positive Radon measure  $\mu$  such that the inequality (3.1) holds for all  $x \in X$  and all  $T \in \mathcal{M}$ . In [3, 8, 9], the reader can find some of the most recent steps given on this subject. Now we are going to show that these sets are uniformly *p*-summing.

**PROPOSITION 3.1.** If  $\mathcal{M} \subset \Pi_p(X, Y)$  is a uniformly *p*-dominated set, then  $\mathcal{M}^{**} = \{T^{**}: T \in \mathcal{M}\}$  is uniformly *p*-summing.

**PROOF.** Let  $\mu$  be a measure for which  $\mathcal{M}$  is uniformly p-dominated. In a similar way as in the Pietsch factorization theorem [5, Theorem 2.13], we can obtain, for all  $T \in \mathcal{M}$ , operators  $U_T: L_p(\mu) \to \ell_{\infty}(B_{Y^*}), ||U_T|| \le \mu(B_{X^*})^{1/p}$ , and an operator  $V: X \to L_{\infty}(\mu)$  such that the following diagram is commutative:



Here,  $i_p$  is the canonical injection from  $L_{\infty}(\mu)$  into  $L_p(\mu)$  and  $i_Y$  is the isometry from Y into  $\ell_{\infty}(B_{Y^*})$  defined by  $i_Y(y) = (\langle y^*, y \rangle)_{y^* \in B_{Y^*}}$ . Notice that  $i_p^{**}$  can be viewed as  $i_p$  composed with the canonical projection  $P: L_{\infty}(\mu)^{**} \to L_{\infty}(\mu)$  which is simply the adjoint of the usual embedding  $L_1(\mu) \to L_1(\mu)^{**}$ . By weak compactness, we may and do consider  $T^{**}$  as a map from  $X^{**}$  into Y for which

$$i_Y \circ T^{**} = U_T \circ i_p \circ P \circ V^{**}. \tag{3.3}$$

Given  $\varepsilon > 0$  and  $(x_n^{**}) \in \ell^p_w(X^{**})$ , we can choose  $n_0 \in \mathbb{N}$  so that

$$\sum_{n \ge n_0} \left\| i_p \circ P \circ V^{**}(x_n^{**}) \right\|^p < \frac{\varepsilon}{\mu(B_{X^*})},$$
(3.4)

because  $i_p \circ P \circ V^{**}$  is *p*-summing. Then, we have

$$\sum_{n \ge n_0} ||T^{**}x_n^{**}||^p = \sum_{n \ge n_0} ||i_Y \circ T^{**}(x_n^{**})||^p = \sum_{n \ge n_0} ||U_T \circ i_p \circ P \circ V^{**}(x_n^{**})||^p$$
  
$$\leq \mu(B_{X^*}) \sum_{n \ge n_0} ||i_p \circ P \circ V^{**}(x_n^{**})||^p < \varepsilon,$$
(3.5)

for all  $T \in \mathcal{M}$ . So,  $\mathcal{M}^{**}$  is uniformly *p*-summing.

3404

It is easy to show that the study of uniformly *p*-summing sets can be reduced to the behavior of its sequences. Indeed, a bounded set  $\mathcal{M}$  in  $\Pi_p(X,Y)$  is uniformly *p*-summing if and only if every sequence  $(T_n)$  in  $\mathcal{M}$  admits a uniformly *p*-summing subsequence. Thus, it seems to be interesting to make clear the relationship between uniformly *p*-summing sets and relatively weakly compact sets. For p = 1, we have the following result.

**PROPOSITION 3.2.** Every relatively weakly compact set in  $\Pi_1(X, Y)$  is uniformly 1-summing.

**PROOF.** Let  $\mathcal{M}$  be a relatively weakly compact set in  $\Pi_1(X,Y)$ . Given  $\hat{x} = (x_n) \in \ell^1_w(X)$ , consider the (weak-weak) continuous operator  $U_{\hat{x}} : \Pi_1(X,Y) \to \ell^1_a(Y)$  defined by  $U_{\hat{x}}(T) = (Tx_n)$ . Then,  $U_{\hat{x}}(\mathcal{M})$  is relatively weakly compact in  $\ell^1_a(Y)$ ; according to [2, Theorem 2], we can conclude that  $\mathcal{M}$  is uniformly 1-summing.

**Proposition 3.2** does not remain true if p = 2. For example, for each  $\beta = (\beta_n) \in \ell_2$  consider the operator  $T_\beta: c_0 \to \ell_2$  defined by  $T(\alpha_n) = (\alpha_n \cdot \beta_n)$  and put  $\mathcal{M} = \{T_\beta : \beta \in B_{\ell_2}\} \subset \Pi_2(c_0, \ell_2)$  [5, Theorem 3.5]. If we consider  $\ell_2$  as a subspace of  $\Pi_2(c_0, \ell_2)$ , the set  $\mathcal{M} = B_{\ell_2}$  is relatively weakly compact. Nevertheless, no matter how we choose  $k \in \mathbb{N}$ ,

$$\sum_{n \ge k} ||T_{e_k} e_n||^2 = 1, \tag{3.6}$$

so  $\mathcal{M}$  cannot be uniformly 2-summing.

Now we show that there are uniformly *p*-summing sets failing to be relatively weakly compact.

**PROPOSITION 3.3.** If every uniformly *p*-summing set is relatively weakly compact in  $\Pi_p(X, Y)$ , then *Y* is reflexive.

**PROOF.** Fixing  $x_0^* \in X^*$  with  $||x_0^*|| = 1$ , the isometry  $y \in Y \mapsto x_0^* \otimes y \in x_0^* \otimes Y$  allows us to see *Y* as a subspace of  $\prod_p (X, Y)$ . If  $\varepsilon > 0$  and  $(x_n) \in \ell_w^p(X)$ , there exists  $n_0 \in \mathbb{N}$  so that

$$\sum_{n\geq n_0} \left| \left\langle x_0^*, x_n \right\rangle \right|^p < \varepsilon; \tag{3.7}$$

hence, for every  $y \in B_Y$ ,

$$\sum_{n\geq n_0} \left\| \left( x_0^* \otimes \mathcal{Y} \right) (x_n) \right\|^p = \sum_{n\geq n_0} \left\| \left\langle x_0^*, x_n \right\rangle \right\|^p \|\mathcal{Y}\|^p < \varepsilon.$$
(3.8)

This yields that  $B_Y$  is uniformly *p*-summing and, by hypothesis, weakly compact.  $\Box$ 

The converse of Proposition 3.3 is not always true. By contradiction, suppose every uniformly 1-summing set in  $\Pi_1(\ell_1, \ell_2)$  is relatively weakly compact. Because  $\ell_1$  does not contain any copy of  $c_0$ , every bounded set in  $\Pi_1(\ell_1, \ell_2)$  is relatively weakly compact. Then, we conclude that  $\Pi_1(\ell_1, \ell_2)$  is reflexive, which is not possible since  $\ell_1^*$ , viewed as a subspace of  $\Pi_1(\ell_1, \ell_2)$ , is not.

However, if p = 1 and  $X = \mathscr{C}(\Omega)$ , the reflexivity of *Y* is a sufficient condition for a uniformly 1-summing set to be relatively weakly compact. Indeed, if  $rbvca(\Sigma, Y)$  denotes

the set of all regular, countably additive, *Y*-valued measures *m* on  $\Sigma$  with bounded variation, recall that relatively weakly compact sets  $\mathcal{M}$  in  $rbvca(\Sigma, Y)$  are those verifying the following conditions: (i)  $\mathcal{M}$  is bounded; (ii) the family of nonnegative measures  $\{|m| : m \in \mathcal{M}\}$  is uniformly countably additive; and (iii) for each  $E \in \Sigma$ , the set  $\{m(E) : m \in \mathcal{M}\}$  is relatively weakly compact in *Y* [6, Theorem IV.2.5]. Having in mind the identification between  $\Pi_1(\mathscr{C}(\Omega), Y)$  and  $rbvca(\Sigma, Y)$ , and making use of the characterization of uniformly 1-summing sets obtained in Theorem 2.4, we conclude the next characterization.

**COROLLARY 3.4.** *The following statements are equivalent:* 

- (a) Y is reflexive,
- (b) every set M in Π<sub>1</sub>(C(Ω), Y) is uniformly 1-summing if and only if M is relatively weakly compact.

It is well known that a linear operator T is 1-summing if and only if  $T^{**}$  is. So, it is natural to ask if a set  $\mathcal{M}$  is uniformly 1-summing whenever  $\mathcal{M}^{**} = \{T^{**} : T \in \mathcal{M}\}$  is. Unfortunately, we are going to show that this is not true in general. It suffices to take X as the separable  $\mathcal{L}_{\infty}$ -space of Bourgain and Delbaen [1]. This space has the Radon-Nikodym property, so it does not contain any copy of  $c_0$ . Nevertheless,  $X^*$  is isomorphic to  $\ell_1$  and, therefore,  $X^{**}$  contains a copy of  $c_0$ . Let  $(e_n)$  be the canonical basis of  $\ell_1$ and  $J : \ell_1 \to X^*$  an isomorphism. Put  $T_n = Je_n \in \Pi_1(X, \mathbb{R})$ ; the set  $\mathcal{M} = \{T_n : n \in \mathbb{N}\}$ is uniformly 1-summing since it is bounded and X does not contain any copy of  $c_0$ . Notice that the elements of  $\mathcal{M}^{**}$  are the linear forms  $x^{**} \in X^{**} \mapsto \langle x^{**}, Je_n \rangle \in \mathbb{R}$ , for all  $n \in \mathbb{N}$ . If  $(e_n^*)$  is the canonical basis of  $c_0$ , then  $((J^*)^{-1}(e_n^*)) \in \ell^1_w(X^{**})$ ; hence, no matter how we choose  $k \in \mathbb{N}$ , it turns out that

$$\sum_{n \ge k} \left| T_k^{**}((J^*)^{-1}(e_n^*)) \right| = \sum_{n \ge k} \left| \left\langle (J^*)^{-1}(e_n^*), Je_k \right\rangle \right| = \sum_{n \ge k} \left| \left\langle e_n^*, e_k \right\rangle \right| = 1,$$
(3.9)

and  $\mathcal{M}^{**}$  cannot be uniformly 1-summing.

Nevertheless, if  $\mathcal{M}$  is a set of operators defined on  $c_0$ , then it is true that  $\mathcal{M}$  is uniformly 1-summing if and only if  $\mathcal{M}^{**}$  is too. To see this, notice that for a 1-summing operator T:  $(\alpha_n) \in c_0 \mapsto \sum_{n=1}^{\infty} \alpha_n x_n \in X$ , the second adjoint  $T^{**} : \ell_{\infty} \to X$  is defined by  $T^{**}(\beta_n) = \sum_{n=1}^{\infty} \beta_n x_n$ , for all  $(\beta_n) \in \ell_{\infty}$ .

When  $\mathcal{M}$  is a set of operators defined on a  $\mathscr{C}(\Omega)$ -space, we do not know whether  $\mathcal{M}^{**}$  inherits the property or not. Anyway, we are going to prove the following weaker result. We inject isometrically  $B(\Sigma)$  into  $\mathscr{C}(\Omega)^{**}$  in the natural way.

**PROPOSITION 3.5.** If  $\mathcal{M} \subset \Pi_1(\mathfrak{C}(\Omega), X)$  is uniformly 1-summing, then  $\widetilde{\mathcal{M}} = \{\widetilde{T} : B(\Sigma) \rightarrow X : T \in \mathcal{M}\}$  is uniformly 1-summing too.

**PROOF.** The argument is similar to the one used in the proof of  $(b) \Rightarrow (a)$  in Theorem 2.4.

Finally, we give an example to show that Corollary 2.6 is not true if  $\mathscr{C}(\Omega)$  is replaced by a general Banach space *X*. It suffices to take  $X = \ell_2$  and  $\mathcal{M} = \{e_n^* : n \in \mathbb{N}\}$ , where  $(e_n^*)$ is the unit basis of  $\ell_2^* \simeq \ell_2$ . The set  $\mathcal{M}$  is bounded in  $\Pi_1(\ell_2, \mathbb{R})$  and, therefore, uniformly 1-summing but it is not uniformly completely continuous.

## REFERENCES

- [1] J. Bourgain and F. Delbaen, A class of special  $\mathcal{L}_{\infty}$ -spaces, Acta Math. 145 (1980), no. 3-4, 155-176.
- [2] J. K. Brooks and N. Dinculeanu, *Weak compactness in spaces of Bochner integrable functions and applications*, Adv. Math. **24** (1977), no. 2, 172–188.
- J. M. Delgado and C. Piñeiro, A note on uniformly dominated sets of summing operators, Int. J. Math. Math. Sci. 29 (2002), no. 5, 307–312.
- [4] J. Diestel, *Sequences and Series in Banach Spaces*, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984.
- [5] J. Diestel, H. Jarchow, and A. Tonge, *Absolutely Summing Operators*, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
- [6] J. Diestel and J. J. Uhl, Jr., Vector Measures, Mathematical Surveys, vol. 15, American Mathematical Society, Rhode Island, 1977.
- [7] N. Dinculeanu, Vector Measures, International Series of Monographs in Pure and Applied Mathematics, vol. 95, Pergamon Press, Oxford; VEB Deutscher Verlag der Wissenschaften, Berlin, 1967.
- [8] R. Khalil and M. Hussain, Uniformly dominated sets of p-summing operators, Far East J. Math. Sci., Special Volume (1998), no. Part I, 59–68.
- [9] B. Marchena and C. Piñeiro, Bounded sets in the range of an X\*\*-valued measure with bounded variation, Int. J. Math. Math. Sci. 23 (2000), no. 1, 21–30.

J. M. Delgado: Departamento de Matemáticas, Facultad de Ciencias Experimentales, Campus Universitario del Carmen, Avda. de las Fuerzas Armadas, 21071 Huelva, Spain *E-mail address*: jmdelga@uhu.es

Cándido Piñeiro: Departamento de Matemáticas, Facultad de Ciencias Experimentales, Campus Universitario del Carmen, Avda. de las Fuerzas Armadas, 21071 Huelva, Spain *E-mail address*: candido@uhu.es