ON THE GENUS OF FREE LOOP FIBRATIONS OVER *F*₀-SPACES

TOSHIHIRO YAMAGUCHI

Received 12 March 2004

We give a lower bound of the genus of the fibration of free loops on an elliptic space whose rational cohomology is concentrated in even degrees.

2000 Mathematics Subject Classification: 55P62, 55M30.

1. Introduction. In this note, all spaces are supposed to be connected and having the rational homotopy type of a CW complex of finite type. The LS category, cat(X), of a space *X* is the least integer *n* such that *X* can be covered by n + 1 open subsets, each contractible in *X*. The genus, $genus(\eta)$ or genus(p), of a fibration $\eta : F \to E \xrightarrow{p} B$ is the least integer *n* such that *B* can be covered by n + 1 open subsets, over each of which *p* is a trivial fibration, in the sense of fiber homotopy type. The sectional category, $secat(\eta)$, is the least integer *n* such that *B* can be covered by n + 1 open subsets, over each of which *p* is a trivial fibration. Let

$$\mathscr{L}_X: \Omega X \longrightarrow LX \longrightarrow X \tag{1.1}$$

be the fibration of free loops on a 2-connected space *X* and let $\mathscr{P}_X : \Omega X \to PX \to X$ be the path fibration. It is known that \mathscr{L}_X is an interesting object in topology and geometry [1, 9]. We know that $cat(X) = secat(\mathscr{P}_X) = genus(\mathscr{P}_X)$ (see [4, page 599]). On the other hand, since \mathscr{L}_X has a section, $secat(\mathscr{L}_X) = 0$. But it seems hard to know $genus(\mathscr{L}_X)$ in general. In this note, we consider a certain case for *X* by using the argument of the Sullivan minimal model in [4].

A simply connected space is said to be elliptic if the dimensions of rational cohomology and homotopy are finite. An elliptic space *X* is said to be an *F*₀-space if the rational cohomology is concentrated in even degrees. Then there is an isomorphism $H^*(X;\mathbb{Q}) \cong \mathbb{Q}[x_1,...,x_n]/(f_1,...,f_n)$ with a regular sequence $f_1,...,f_n$. For example, the homogeneous space G/H where *G* and *H* have same rank is an *F*₀-space. Note that there is a conjecture of Halperin for an *F*₀-space (see [3, page 516], [7]).

THEOREM 1.1. Let X be a 2-connected F_0 -space of n variables. Then genus(\mathscr{L}_X) $\geq n$.

In the following, Section 2 is a preliminary in Sullivan minimal models and we prove the theorem in Section 3. Refer to [3] for the rational model theory.

2. Sullivan model of classifying map. Let $M(X) = (\Lambda V, d)$ be the Sullivan minimal model [3, Section 12] of a 2-connected space X, in which $V = \bigoplus_{i>2} V^i$ as a graded vector space. Let $\overline{V}^i = V^{i+1}$ and let $\beta : \Lambda \overline{V} \otimes \Lambda V \to \Lambda \overline{V} \otimes \Lambda V$ be the derivation ($\beta(xy) = \beta(x)y + (-1)^{\deg x}x\beta(y)$) of degree -1 with the properties $\beta(v) = \overline{v}$ and $\beta(\overline{v}) = 0$.

Then $M(\Omega X) = (\Lambda \overline{V}, 0)$ and $M(LX) \cong (\Lambda \overline{V} \otimes \Lambda V, \delta)$ with $\delta v = dv$ and $\delta \overline{v} = -\beta dv = \sum_{i \neq j} \frac{\partial dv}{\partial v_{j}} \cdot \overline{v}_{j}$ for a basis v_{i} of V [9].

Let *Y* be a simply connected space and let $\operatorname{Der}_i M(Y)$ be the set of derivations of M(Y) decreasing the degree by i > 0. We denote $\bigoplus_{i>0} \operatorname{Der}_i M(Y)$ by $\operatorname{Der} M(Y)$. The Lie bracket is defined by $[\sigma, \tau] = \sigma \circ \tau - (-1)^{\deg \sigma \deg \tau} \tau \circ \sigma$. The boundary operator $\partial : \operatorname{Der}_* M(Y) \to \operatorname{Der}_{*-1} M(Y)$ is defined by $\partial(\sigma) = [d, \sigma]$. Let *B* aut *Y* be the Dold-Lashof classifying space [2] for fibrations with fiber *Y* and \tilde{B} aut *Y* the universal covering. The differential graded Lie algebra $L = (\operatorname{Der} M(Y), \partial)$ is a model for \tilde{B} aut *Y* (see [8, page 313]).

Any fibration with fiber *Y* over a simply connected space *B* is the pullback of the universal fibration by a classifying map $h : B \to \tilde{B}$ aut *Y*. Let $Y \to E \to B$ be a fibration whose model [3, Section 15] is

$$M(B) = (\Lambda W, d) \longrightarrow (\Lambda W \otimes \Lambda V, D) \longrightarrow (\Lambda V, \overline{D}) = M(Y).$$
(2.1)

Take a basis a_i of $(\Lambda W)^+$, then there are derivations θ_i of ΛV such that for each $z \in V$, we have $D(z) = \overline{D}(z) + \sum_i a_i \theta_i(z)$. A differential graded algebra model for \tilde{B} aut Y is given by the cochain algebra $C^*(L)$ [3, 23(a)] on L, and a model for the classifying map of the fibration h is given by

$$h^*: C^*(L) = \operatorname{Hom}\left(\operatorname{Der}_{*-1}M(Y), \mathbb{Q}\right) \longrightarrow \Lambda W, \qquad h^*(\psi) = \sum_i a_i \psi(\theta_i)$$
(2.2)

(see [6, Section 9]). Put the derivation which sends a generator p to an element q and other generators to zero as (p,q) and the dual element with the degree shifted by +1 as $s(p,q)^*$.

LEMMA 2.1. The fibration \mathscr{L}_X is the pullback of the universal fibration by a classifying map $h: X \to \tilde{B} \operatorname{aut} \Omega X$, where the model is given by $h^*(s(\overline{v}_i, \overline{v}_j)^*) = \pm_{i,j} \partial dv_i / \partial v_j$ for $v_i, v_j \in V$ and $h^*(other) = 0$.

3. Proof. The category, $\operatorname{cat}(f)$, of a map $f: X \to Y$ is the least integer n such that X can be covered by n+1 open subsets U_i , for which the restriction of f to each U_i is nullhomotopic. Note that $\operatorname{cat}(f) \leq \operatorname{cat}(X)$. Recall that if $\eta: F \to E \to B$ is a simply connected fibration, then genus $(\eta) = \operatorname{cat}(h)$ for the classifying map of $\eta, h: B \to \tilde{B}$ aut F [5].

PROOF OF THEOREM 1.1. Let $M(X) = (\Lambda(x_1, ..., x_n, y_1, ..., y_n), d)$ with deg x_i even, deg y_i odd, $d(x_i) = 0$, and $d(y_i) = f_i \neq 0 \in \Lambda(x_1, ..., x_n)$ for i = 1, ..., n. Then $M(\Omega X) = (\Lambda(\overline{x}_1, ..., \overline{x}_n, \overline{y}_1, ..., \overline{y}_n), 0)$ with deg $\overline{v} = \deg v - 1$ for any element v. The minimal model of the space *LX* of free loops on *X* is given by

$$M(LX) = (\Lambda(x_1, \dots, x_n, y_1, \dots, y_n, \overline{x}_1, \dots, \overline{x}_n, \overline{y}_1, \dots, \overline{y}_n), \delta),$$
(3.1)

where $\delta x_i = \delta \overline{x}_i = 0$, $\delta y_i = dy_i = f_i$, $\delta \overline{y}_i = -\sum_{j=1}^n \partial f_i / \partial x_j \cdot \overline{x}_j$. Then we see from Lemma 2.1 that

$$h^*(s(\overline{y}_i,\overline{x}_j)^*) = -\frac{\partial f_i}{\partial x_j} \quad \text{for } 1 \le i, \ j \le n, \ h^*(\text{other}) = 0.$$
(3.2)

3618

Let *J* be the determinant of the matrix whose (i, j)-component is $s(\overline{y}_i, \overline{x}_j)^*$. Then $(-1)^n h^*(J)$ is the Jacobian $|(\partial f_i/\partial x_j)_{1 \le i, j \le n}|$ of f_1, \ldots, f_n and it is a cocycle which is not cohomologous to zero in M(X) [7, Theorem B]. Therefore, as in [4, page 598(2)],

$$\operatorname{genus}\left(\mathscr{L}_X\right) = \operatorname{cat}(h) \ge \operatorname{nil}\left(\operatorname{Im}\tilde{H}(h^*)\right) \ge n,\tag{3.3}$$

where nil *R* is the least integer *n* such that $R^{n+1} = 0$ for a ring *R* and $\tilde{H}(h^*)$ is the induced morphism in reduced cohomology.

COROLLARY 3.1. If X is an F_0 -space of n variables with cat(X) = n, then $genus(\mathcal{L}_X) = n$.

EXAMPLE 3.2. Let $X = S^{2n} \vee S^{2n} \cup e^{4n} \neq_0 S^{2n} \vee S^{2n} \vee S^{4n}$. *X* is an F_0 -space where $H^*(X;\mathbb{Q}) \cong \mathbb{Q}[x_1,x_2]/(x_1^2 + ax_2^2,x_1x_2)$ with some $a \neq 0 \in \mathbb{Q}$ and deg $x_i = 2n$. Then from Theorem 1.1 and [3, Lemma 27.3], $2 \leq \text{genus}(\mathscr{L}_X) \leq \text{cat}(X) \leq \text{cat}(S^{2n} \vee S^{2n}) + 1 = 2$, that is, genus $(\mathscr{L}_X) = \text{cat}(X) = 2$.

ACKNOWLEDGMENT. The author would like to thank the referee for helpful comments.

REFERENCES

- M. Chas and D. Sullivan, *String topology*, preprint, 1999, http://arxiv.org/abs/math.GT/ 9911159v1.
- [2] A. Dold and R. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285–305.
- [3] Y. Félix, S. Halperin, and J.-C. Thomas, *Rational Homotopy Theory*, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001.
- [4] J.-B. Gatsinzi, On the genus of elliptic fibrations, Proc. Amer. Math. Soc. 132 (2004), no. 2, 597–606.
- [5] I. M. James, On category, in the sense of Lusternik-Schnirelmann, Topology 17 (1978), no. 4, 331–348.
- [6] M. Schlessinger and J. Stasheff, *Deformation theory and rational homotopy type*, to appear in Publ. Math. Inst. Hautes Études Sci.
- [7] H. Shiga and M. Tezuka, Rational fibrations, homogeneous spaces with positive Euler characteristics and Jacobians, Ann. Inst. Fourier (Grenoble) 37 (1987), no. 1, 81-106.
- [8] D. Sullivan, Infinitesimal computations in topology, Publ. Math. Inst. Hautes Etudes Sci. (1977), no. 47, 269-331.
- [9] M. Vigué-Poirrier and D. Sullivan, *The homology theory of the closed geodesic problem*, J. Differential Geom. 11 (1976), no. 4, 633-644.

Toshihiro Yamaguchi: Faculty of Education, Kochi University, Kochi 780-8520, Japan *E-mail address*: tyamag@cc.kochi-u.ac.jp