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First we deal with a brief introduction of the autotroph-herbivore model system along with
deterministic analysis of local stability, bifurcation behavior, and persistence of the pop-
ulations. The second part consists of the stochastic formulation of the model system to
incorporate the effect of environmental fluctuation and then analysis of nonequilibrium
fluctuation. Stochastic stability criteria of the model system under the influence of random
environmental fluctuation are obtained through the convergence conditions of second-order
moments.
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1. Introduction. The branch of science which deals with interrelationships among

the living organisms in relation with the surrounding environment is known as ecol-

ogy and an ecosystem is the functional unit of ecology. The interaction between living

and nonliving (biotic or abiotic) components is a complex phenomenon. The remark-

able variety of dynamical behaviors exhibited by many species of plants, insects, and

animals has stimulated great interest in the development of mathematical models for

several ecological systems [21, 23]. Mathematical modeling of ecological systems is a

systematic methodology that has proved powerful as well as successful in discovering

and better understanding the underlying processes and causes in nature based on its

observable parts and their relationships. The purpose of a model is not to provide a lit-

eral description of some systems but to provide a conceptualization of the system and

its workings, in terms of which one can think about the system and understand some-

thing of its behavior [22]. In other words modeling is frequently an evolving process.

Systematic mathematical analysis can often lead to better understanding of the plausi-

ble models. The exposed discrepancies in turn lead to the necessary modifications [37].

The dynamical relationship between consumer and producer has long been and will

continue to be one of the dominant themes in population biology due to its universal

existence and importance [3, 6, 7, 9, 13]. All types of available literature deals with

two types of autotroph-herbivore systems. These are terrestrial plant-grazer systems

where the grazer is normally a mammal or insect, and aquatic or marine phytoplankton-

zooplankton systems [3, 9, 10, 26, 28, 31]. Classical approaches for modeling plant-

herbivore systems have analogy with those for modeling the prey-predator systems.

There is no typical pattern for the plant-herbivore dynamics; rather, it depends upon the

demographic parameters of the plant and herbivore populations and also on the timing

kind and degree of density dependence that they exhibit [25, 32]. A wide variety of
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modeling approaches have been used to reflect the quantitative diversity of the grazing

systems. The dynamical problems involved with mathematical modeling of autotroph-

herbivore systems may appear to be simple at first sight; however, they may turn out

to be complicated and challenging. In the last few decades, interest has been growing

steadily in the designing and studying of mathematical models of autotroph-herbivore

interactions.

Major parts of works in this direction are based on deterministic models of differ-

ential and difference equations. The deterministic approach has, however, some limi-

tations in biology; it is always difficult to predict especially the future of the system

accurately. This difficulty increases if we consider the complex behavior of the whole

system or the dynamics of population ecosystems or global environmental systems.

This type of difficulty arises as biological systems are controlled by environmental

fluctuations. Randomness or stochasticity plays a vital role in the structure and func-

tion of biological systems. In ecology, we have two types of stochasticity—namely, the

demographic stochasticity and the environmental stochasticity [12, 14, 24, 27]. Both

types of stochasticity play a significant role in the realistic dynamic modeling of ecosys-

tems [4]. A central obstacle in the stochastic modeling of an ecosystem is the lack of

mathematical machinery available to analyze nonlinear multidimensional stochastic

processes. Introduction of demographic or environmental stochasticity within a deter-

ministic population model leads us to stochastic multispecies models. The resulting

stochastic models involve nonlinear stochastic differential equations whose solutions

pose great difficulties. Different linearization techniques for nonlinear stochastic differ-

ential equations generate a set of deterministic moment equations. These linearization

techniques are receiving a great deal of attention not only in population biology but

also in different fields of science and technology [2, 5, 19, 33]. In most of the cases

randomness has been introduced in theoretical biology (mathematical biology and/or

physical biology) by using the Gaussian white noise probably for the very reason that

it gives some qualitative stochastic behavior of the model system without any compli-

cated mathematical calculation [20].

The object of the present paper is to develop a stochastic dynamic model of a non-

linear noninteractive type of autotroph-herbivore model and to examine the stability

conditions of the system under random perturbation. To make a comparative study

of stability behaviors for the model system within both deterministic and stochas-

tic environments, we have to find the criteria of stability within the deterministic as

well as the stochastic environment. Section 2 consists of a brief introduction to the

autotroph-herbivore model system and deterministic analysis of stability and Hopf-

bifurcation around the positive interior steady state of the model system. Section 3

includes the stochastic dynamic modeling of the autotroph-herbivore model system

to include the effect of environmental fluctuation. The system of nonlinear stochas-

tic differential equations has been reduced to deterministic moment equations with

the help of statistical linearization in Section 4. Section 5 deals with the solutions for

the system of second-order moment equations which leads us to the expressions for

nonequilibrium fluctuation and the criteria of stability of the stationary state within

stochastic environment. The paper ends with a concluding section.
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2. Autotroph-herbivore model: deterministic stability analysis. The consumer-

resource interactions can be classified into two independent directions: intimacy (the

closeness and the duration of the relationship between the individual consumer and the

organism it consumes) and lethality (the probability that a trophic interaction results

in the death of the organism being consumed) [31, 35]. In case of autotroph-herbivore

model system, herbivores are at a low scale of both “intimacy” and “lethality.” It is a

well-understood biological phenomenon that the changes in autotroph density affect

the herbivores at both individual and population levels. Temporal variation in autotroph

density affects the rate at which autotroph biomass are killed by herbivores. The most

popular framework for modeling autotroph-herbivore interactions has the following

structure:

dN1

dt
= R(N1

)
N1−F

(
N1,N2

)
N2,

dN2

dt
= cF(N1,N2

)
N2−δ

(
N2
)
N2,

(2.1)

where R(N1) is the density-independent per capita growth rate of autotroph in absence

of herbivores, δ(N2) is the per capita decline rate of herbivores in the absence of au-

totrophs, F(N1,N2) is the herbivores’ functional response, and c is the conversion rate

of eaten autotroph biomass into new herbivores. The origin of (2.1) is clearly based on

the classical Lotka-Volterra model, which is the simplest possible example of it (since

it assumes exponential growth/decline terms and the linear functional response). The

functional response is the rate at which each herbivore captures autotroph biomass.

In the present study, we consider the Holling type-III functional response for herbi-

vores. The type of behavior described by the Holling type-III function can easily occur

if some fraction of the autotroph biomass is relatively well protected from consump-

tion. The Holling type-III function has proved relatively successful in describing the

feeding process of herbivores [13, 22]. The dynamics of the model system is governed

by the following system of nonlinear ordinary differential equations:

dN1

dt
= rN1

(
1− N1

K

)
− aN

2
1N2

b+N2
1

,

dN2

dt
= caN

2
1N2

b+N2
1

−mN2,
(2.2)

where r , K, a, b, c, m are all positive constants and have the following biological sig-

nificance: r is the intrinsic growth rate of autotrophs in absence of herbivores, K is

the environmental carrying capacity of autotroph population, which is usually deter-

mined by the available sustaining resources, a is the maximum uptake rate for her-

bivores associated with Holling type-III functional response, b is the half-saturation

autotroph density for type-III functional response, c is the conversion efficiency, and

m is the mortality rate of herbivores in absence of autotroph. Now we assume that
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the conversion efficiency c satisfies the condition 0 < c < 1. Using the transformation

N1 =
√
bx, N2 =

√
by , and t =Kτ/r√b, (2.2) can be nondimensionalized as

dx
dτ

= x(α−x)− βx
2y

1+x2
,

dy
dτ

= β1x2y
1+x2

−γy,
(2.3)

where α, β, β1, and γ are dimensionless parameters and we have 0< β1 < β. The initial

condition for the system of (2.3) is given by x(0)= x0 ≥ 0 and y(0)=y0 ≥ 0 which are

also biologically meaningful. Due to the boundedness of the functional responses and

using (2.3) we can conclude that the functions on the right-hand side of differential

equations (2.3) are continuous functions on R2+ = [(x,y) : x ≥ 0, y ≥ 0]. Straight-

forward computation shows that they are Lipschitzian on R2+. Hence the solutions of

(2.3) with nonnegative initial condition exist and are unique. It is also easy to verify

that these solutions exist for all τ > 0 and stay nonnegative. In fact, if x(0) = x0 > 0,

then x(τ) > 0 for all dimensionless time τ > 0. The same argument is true for the y-

component. Hence, the interior of R2+ is invariant under model system (2.3). Regarding

the boundedness of solutions for the model system (2.3) with positive initial condition,

we can state the following result.

Lemma 2.1. All the solutions of the system (2.3) with x(0) > 0, y(0) > 0 are uniformly

bounded within a region B ⊂R2+, where B= {(x,y)∈R2+ : 0≤ x ≤α, 0≤ x+(β/β1)y ≤
L/γ, L=αγ+α2/4}.

The above lemma is very obvious; we omit its proof. Interested readers may proceed

along the same way that we have adopted earlier [4].

The equilibrium points or steady states for the model system (2.3) are (i) E0(0,0)
(trivial equilibrium point), (ii) E1(α,0) (axial equilibrium point), and (iii) E∗(x∗,y∗)
(positive interior equilibrium point), where

x∗ =
√

γ(
β1−γ

) , y∗ = β1
(
α−x∗)[

βx∗
(
β1−γ

)] . (2.4)

Hence the positive interior equilibrium E∗ will exist if and only if β1 > γ and 0<x∗ <α.

For local stability of the model system around their steady states we have to find the

Jacobian matrix for the system of (2.3). The Jacobian matrix for the system of (2.3)

evaluated at any point (x,y) is

J(x,y)=



α−2x− 2βxy(

1+x2
)2 − β(x)2

1+(x2
)

2β1xy(
1+(x2

))2

β1
(
x2
)

1+(x2
) −γ


 . (2.5)

At E0, the Jacobian matrix takes the form

[
J(x,y)

]
E0
=
[
α 0

0 −γ

]
. (2.6)
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The eigenvalues are λ1 = α > 0 and λ2 = −γ < 0. Clearly E0 is a saddle point which is

unstable along the positive direction of the x-axis. At E1, the Jacobian matrix takes the

form

[
J(x,y)

]
E1
=



−α β(α)2

1+(α)2

0
β1(α)2

1+(α)2 −γ


 . (2.7)

The eigenvalues are λ1 = −α and λ2 = β1α/(1+(α)2)−γ. Due to the condition 0 <
x∗ < α, we have λ2 > 0. Thus E1 is a saddle point which is unstable along the positive

direction of the y-axis. At E∗ the Jacobian matrix takes the form

[
J(x,y)

]
E∗ =



−α−2x∗− 2βx∗y∗(

1+(x∗)2)2

β(x∗)2

1+(x∗)2
2β1x∗y∗(
1+(x∗)2)2 0


 . (2.8)

The characteristic equation for J∗ is

λ2+A1λ+A2 = 0, (2.9)

where

A1 =−traceJ∗ = −
(
α−2x∗− 2βx∗y∗(

1+(x∗)2)2

)
,

A2 = detJ∗ = 2β1β(x∗)3y∗(
1+(x∗)2)3 > 0.

(2.10)

Applying Routh-Hurwitz criteria to (2.9) we get the condition for local asymptotic sta-

bility of the steady-state E∗ as A1 > 0, that is, α < 2x∗γ/(2γ−β1), with γ < β1 < 2γ.

In this case E∗ is a global attractor in the positive (x,y)-plane. The stability behavior

changes as α passes through the critical value α=α∗ = 2x∗γ/(2γ−β1) and the system

exhibits Hopf-bifurcation. The existence condition for Hopf-bifurcation can be stated

as follows.

Lemma 2.2. If α=α∗=2x∗γ/(2γ−β1)with γ<β1<2γ, then the system (2.3) exhibits

Hopf-bifurcation near E∗.

Proof. The lemma will be proved if we can show that the conditions for Hopf-

bifurcation are satisfied. At α = α∗ = 2x∗γ/(2γ −β1), trace(J∗) = 0 and det(J∗) =
2β1β(x∗)3y∗/(1+(x∗)2)3 > 0.

When α takes the value α=α∗, the two roots of the characteristic equation (2.9) are

purely imaginary, namely, λ = ±iω where ω2 = det(J∗) (evaluated at α = α∗). Also,

we have

d
dα

[
trace(J)

]
α=α∗ =

2γ−β1

β1
≠ 0. (2.11)
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Hence all the conditions for Hopf-bifurcations are satisfied [16]. This ensures the

existence of a small amplitude periodic solution near E∗.

We will now try to find the condition which eliminates the chance of existence of

a nontrivial periodic solution within the bounded domain B. The approach is based

on the application of the divergence criterion for the stability of periodic solutions in

two-dimensional systems [15, 17, 18].

We define the functions h(x,y), f(x,y), and g(x,y) as

h(x,y)= 1+x2

x2y
, f(x,y)= x(α−x)− βx

2y
1+x2

, g(x,y)= β1x2y
1+x2

−γy.
(2.12)

Obviously h(x,y) > 0 for x,y > 0. Now,

∆(x,y)= ∂
∂x
(hf)+ ∂

∂y
(hg)=α−2x−αx2. (2.13)

Thus ∆(x,y) < 0 for α1/3 < x < α and by Bendixon-Dulac criterion there will be no

limit cycle within B.

Recall that the saddle property of the boundary equilibrium point E1 ensures the

existence of the interior equilibrium point E∗. Local asymptotic stability of E∗ under

the restrictions α < α∗ and γ < β1 < 2γ together with nonexistence of trivial periodic

solution (whenever α1/3 <x <α) implies global stability of the model system. Hence by

using the arguments of Zhang et al. [38] we conclude that both populations will persist

under the parametric restrictions mentioned earlier.

3. Autotroph-herbivore model: stochastic extension. Environmental fluctuation is

an important component within an ecosystem. Most natural phenomena do not follow

strictly deterministic laws; rather, they oscillate randomly about some average value

so that the deterministic equilibrium is no longer an absolutely fixed state. May [22]

pointed out the fact that due to environmental fluctuation, the birthrates, carrying ca-

pacity, competition coefficients, and other parameters involved with the model system

exhibit random fluctuation to a greater or lesser extent. Consequently the equilibrium

population distribution fluctuates randomly around some average values. Within the

deterministic environment we seek the constant equilibrium populations and then in-

vestigate their stability which follows from the dynamics of the interactions between

and within the species. For the systems which are driven by the environmental stochas-

ticity, it is impossible to find a time-independent equilibrium point as a solution of

the governing stochastic differential equations. In this situation it is reasonable to find

a probabilistic “smoke cloud,” described by the equilibrium probability distribution.

The model systems is described by system of stochastic differential equations, there

is a continuous spectrum of disturbances generated by the environmental stochastic-

ity, and the system is in tension between two countervailing tendencies. On the one

hand, the random environmental fluctuations are responsible for spreading the cloud,
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to make the probability distribution more diffusive, while, on the other hand, the dy-

namics of stabilizing population interactions tends to restore the populations to their

mean value in order to compact the cloud. The model system with this type of compact

cloud of population distribution is called a stochastically stable system. To study the

effect of random environmental fluctuation we have to construct the stochastic coun-

terpart of the deterministic model system by incorporating environmental fluctuation.

Our next task is to extend the model system to a stochastic differential equation by

incorporating additive white noise which will reflect the overall environmental effect

on the model system.

Before introducing the stochastic perturbation we shift the origin to the positive

interior equilibrium point E∗(x∗,y∗) by using the transformation x = x∗ +p, y =
y∗+h. Substituting this transformation in (2.3) and using Taylor series expansion for

the functions on the right-hand sides of (2.3) we get

dp
dτ

= a10p+a01h+a20p2+a11ph,

dh
dτ

= b10p+b20p2+b11ph.
(3.1)

The system of (3.1) are basic deterministic ordinary differential equations govern-

ing the system behavior around the steady state E∗. In the above expansion, we have

discarded the third and higher powers of the perturbation variables p and h as the

deterministic and stochastic stability properties of the model system near the origin

solely depend upon the coefficients of first- and second-order homogeneous terms with

the variables p and h [2, 4, 5]. Coefficients involved in (3.1) are given by

a10 = α
(
2γ−β1

)−2x∗γ
β1

, a01 =−βγβ1
, a11 =−2β

(
β1−γ

)2

β2
1

,

a20 = γ(α−x
∗)(5β−4γ)
β2

1x∗
−αβ2

1, b10 = 2
(
β1−γ

)2x∗y∗

β1
,

b11 = 2
(
β1−γ

)2x∗

β1
, b20 = y

∗(β1−4γ
)(
β1−γ

)2

β2
1

.

(3.2)

In particular, as we are interested in stochastic stability of the model system under

environmental fluctuation (within the vicinity of the origin) in terms of second-order

moments, terms involving third and higher powers will have no contribution to the sta-

bility behavior. The solutions (p(τ),h(τ)) of (3.1) subject to known nonnegative initial

values represent the state of the system at any future time τ > 0. If the random aspects

of the system are to be concerned, a number of modifications can be made in the for-

mation of the initial value problem given by (3.1). We will however follow the case when

imposing random input or perturbation extends the right-hand side of (3.1) to a system

of stochastic differential equations. More specifically we are concerned with stochas-

tic differential equations which are driven by Gaussian white noises and interpreted
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mathematically as Ito stochastic differential equations. Gaussian white noise, which

is a delta-correlated random process, is very irregular and as such it is to be treated

carefully. In spite of this it is an immensely useful concept to model rapidly fluctuat-

ing environments. White noises are a very good approximation of many phenomena of

physical and natural systems such as electrical resistance, motion of Brownian parti-

cles, climate fluctuation an so forth, and support the usefulness of the white noises

idealization in application to ecological systems. To study the effect of environmen-

tal fluctuations on the stability properties of the steady state, the system of (3.1) can

be extended to Ito-type stochastic differential equations (nonlinear coupled bivariate

Langevin equations) by introducing additive white noises as follows:

dp
dτ

= a10p+a01h+a20p2+a11ph+χ1(τ),

dh
dτ

= b10p+b20p2+b11ph+χ2(τ),
(3.3)

where χ1(τ) and χ2(τ) are Gaussian white noises characterized by 〈χ1(τ)〉 = 0 =
〈χ2(τ)〉 and 〈χi(τ)χj(τ1)〉 = 2ξδijδ(τ − τ1) (i,j = 1,2), where ξ is the intensity or

strength of the random perturbation, δij is the Dirac delta function, with τ and τ1 be-

ing the distinct times, and the bracket 〈·〉 represents the ensemble average. Equations

(3.3) are the basic nonlinear stochastic differential equations determining the statistical

behavior of the system around the steady-state E∗.

4. Statistical linearization and moment equations. The statistical linearization of

the system of equations consists of replacing (3.3) by the system of linear equations [36]

dp
dτ

= ζ1p+η1h+φ1+χ1(τ),

dp
dτ

= ζ2p+η2h+φ2+χ2(τ).
(4.1)

The errors committed due to this linearization are given by

∆1(p,h)=
(
a10p+a01h+a20p2+a11ph

)−(ζ1p+η1h+φ1
)
,

∆2(p,h)=
(
b10p+b20p2+b11ph

)−(ζ2p+η2h+φ2
)
.

(4.2)

The unknown coefficients ζ1, ζ2, η1, η2, φ1, φ2 of (4.1) are determined from the min-

imization of the averages of the squares of the errors given by (4.2). We determine the

unknown coefficients by demanding that

∂
∂ζi

〈
∆2
i
〉= ∂

∂ηi

〈
∆2
i
〉= ∂

∂φi

〈
∆2
i
〉= 0, (4.3)
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where i = 1,2 and 〈·〉 represents the ensemble average. The expressions for ζi, ηi, φi
(i= 1,2) are given by

ζ1 = a10, η1 = a01, φ1 = a20
〈
p2〉+a11〈ph〉,

ζ2 = b10, η2 = 0, φ2 = b20
〈
p2〉+b11〈ph〉.

(4.4)

After evaluating the unknown coefficients, simple calculations lead to the system of

ordinary differential equations for first two moments

d〈p〉
dτ

= a10〈p〉+a01〈h〉+a20
〈
p2〉+a11〈ph〉,

d〈h〉
dτ

= b10〈p〉++b20
〈
p2〉+b11〈ph〉,

d
〈
p2
〉

dτ
= 2a10

〈
p2〉+2a01〈ph〉+2a20

〈
p3〉+2a11

〈
p2h

〉+2ε1,

d
〈
h2
〉

dτ
= 2b10〈ph〉+2b20

〈
p2h

〉+2b11
〈
ph2〉+2ε2,

d〈ph〉
dτ

= b10
〈
p2〉+a01

〈
h2〉+a10〈ph〉+

(
a20+b11

)〈
p2h

〉+b20
〈
p3〉+a11

〈
ph2〉,

(4.5)

where we have used the results

〈
pχ1

〉= ε1,
〈
pχ2

〉= 0,
〈
hχ1

〉= 0,
〈
hχ2

〉= ε2. (4.6)

We assume that the system size expansion is valid such that all correlations and vari-

ances are of the order of 1/N compared to the averages [2, 4, 5, 30], that is,

〈ph〉 ∝ o
[〈p〉
N

]
or o

[〈h〉
N

]
,

〈
p2〉∝ o[〈p〉

N

]
,

〈
h2〉∝ o[〈h〉

N

]
, (4.7)

whereN is the total population size of the system. We also assume that the correlations

ε1 and ε2 given by (4.7) decrease with the increase of the population size and they are

assumed to be of the order of the inverse of the total population size N. To calculate

these moments, we now express 〈p2h〉, 〈ph2〉, 〈p3〉 in terms of the first two moments

for each of the variables and the correlation coefficients using a bivariate Gaussian dis-

tribution. Since we are interested only in the first two moments, it is convenient to use

the characteristic function

ψ
(
ν1,ν2

)= exp
[
i〈p〉ν1+i〈h〉ν2− 1

2

(
σ 2

1 ν
2
1 +σ 2

2 ν
2
2 +2ρ12σ1σ2ν1ν2

)]
, (4.8)

where

σ 2
1 =

〈
p2〉−(〈p〉)2,

σ 2
2 =

〈
h2〉−(〈h〉)2,

ρ12 = 〈ph〉−〈p〉〈h〉σ1σ2
;

(4.9)
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using the result [36]

〈
pnhm

〉= [(−i)(m+n) ∂n+m
∂νn1 ∂ν

m
2

[
ψ
(
ν1,ν2

)]]
(ν1=ν2=0)

(4.10)

one can find the following results:

〈
p2h

〉= 2〈p〉[〈ph〉−〈p〉〈h〉]+〈p2〉〈h〉,〈
ph2〉= 2〈h〉[〈ph〉−〈p〉〈h〉]+〈p〉〈h2〉,〈

p3〉= 3〈p〉〈p2〉−2
(〈p〉)3.

(4.11)

Thus using the above expression, keeping the lowest-order terms, and replacing the

averages 〈p〉 and 〈h〉 by their steady-state values 〈p〉 = 0 = 〈h〉, we get the following

reduced system of equations:

d
〈
p2
〉

dτ
= 2a10

〈
p2〉+2a01〈ph〉,

d
〈
h2
〉

dτ
= 2b10〈ph〉,

d〈ph〉
dτ

= b10
〈
p2〉+a01

〈
h2〉+a10〈ph〉.

(4.12)

These equations are the required ordinary coupled linear equations for second-order

moments.

5. Stochastic stability analysis. Stability of the model system in presence of envi-

ronmental fluctuation demands that the second-order moments approach to zero or

a constant value with the advancement of time [1, 4, 12]. For this purpose we have

to study the nature of the solution of the system of linear differential equations for

second-order moments. Eliminating 〈h2〉 and 〈p2〉 from the system of (4.12) we get an

ordinary linear differential equation for 〈ph〉 as

d3

dτ3
〈ph〉+3u1

d2

dτ2
〈ph〉+3u2

d
dτ
〈ph〉+u3〈ph〉 = 0, (5.1)

where

u1 =−a10, 3u2 = 2a2
10−4a01b10, u3 = 4a01a10b10. (5.2)

Assuming the solution of (5.1) in the form 〈ph〉 =Aexp(µτ) and then substituting, we

get the auxiliary equation

µ3+3u1µ2+3u2µ+u3 = 0. (5.3)
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The structure and nature of the solution of the system of (4.12) solely depends upon

the sign of discriminating cubic “G” of the cubic equation (5.3) and is given by 3G =
a2

10+4a01b10. First we consider the case G < 0. Then the roots of the auxiliary equation

of (5.3) are given by −u1, −u1±+i
√

3G1, where G1 = −G. The solution of the linear

differential equation (5.1) and hence the system of linear differential equations (4.12)

given by

〈ph〉 = exp
(−u1τ

)[
M1+M2 cos

√
3G1τ+M3 sin

√
3G1τ

]
,

〈
p2〉= exp

(−u1τ
)[
N1+N2 cos

√
3G1τ+N3 sin

√
3G1τ

]
+N4 exp

(−2u1τ
)
,

〈
h2〉= exp

(−u1τ
)[
P1+P2 cos

√
3G1τ+p3 sin

√
3G1τ

]
+P4,

(5.4)

where Mi (i = 1,2,3), Ni, Pi (i = 1,2,3,4) are all constants. The convergence of the

second-order moments depends solely on the sign of u1. For u1 > 0, the system under

stochastic perturbation is stable in the sense of second-order moments around the

equilibrium state E∗ and is unstable for u1 < 0 [1].

On the other hand, for G > 0, the roots of the auxiliary equation of (5.3) are given by

−u1, −u1±
√

3G. The solutions of (4.12) are given by

〈ph〉 = exp
(−u1τ

)[
Q1+Q2 exp

(−√3Gτ
)+Q3 exp

(√
3Gτ

)]
,〈

p2〉= exp
(−u1τ

)[
R1+R2 exp

(−√3Gτ
)+R3 exp

(√
3Gτ

)]+R4 exp
(−2u1τ

)
,〈

h2〉= exp
(−u1τ

)[
S1+S2 exp

(−√3Gτ
)+S3 exp

(√
3Gτ

)]+S4,

(5.5)

where Qi (i = 1,2,3), Ri, Si (i = 1,2,3,4) are all constants. Hence in this case the

convergence of the stochastic model system in terms of second-order moment demands

u1 > 0 along withu1 >
√

3G. Foru1 < 0 oru1 <
√

3G, fluctuation about the steady states

increases with the increase of time t and hence the second-order moments diverge with

the advancement of time; accordingly the system becomes unstable in the sense of

second-order moments [1]. In case of deterministic analysis, local asymptotic stability

of the steady-state E∗ demands the criteria α < 2x∗γ/(2γ−β1) = α∗, with 2γ > β1,

which is nothing but u1 > 0. But for the stochastic version of the model system, the

stability of the steady state demands an additional restriction u1 >
√

3G. The above

analysis leads us to an important conclusion that u1 =
√

3G is a critical parametric

condition for which the stochastic model system changes its stability behavior around

the equilibrium point E∗. Thus u1 =
√

3G or equivalently α=α∗∗ = √γ/(β1−γ) is the

new bifurcation point and the stability behavior of the stochastic model system under

environmental fluctuation changes as u1 passes through the value
√

3G from lower to

higher.

6. Conclusion. In the present paper, we have considered a noninteractive type of

autotroph-herbivore model system in which the removal rate of autotroph biomass has

been taken as a Holling type-III function and we have derived the local asymptotic-

stability condition and existence of small amplitude periodic solution within deter-

ministic environment. It also includes the stochastic dynamical aspects of stability of
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the model system within a fluctuating environment with special emphasis on the com-

parative study of stability results in two different environments.

The type of behavior described by the Holling type-III function can easily occur if

some fraction of the resource biomass is well protected from consumption [11]. This

type of uptake function also reflects the idea that autotroph biomass in low abundances

is harder to find and capture by the herbivores. The existence of the positive interior

equilibrium point and its local stability is totally controlled by the environmental carry-

ing capacity of autotroph biomass and rate of change (or increase) of herbivore biomass

due to herbivory compared to their mortality rate [29, 30]. Local asymptotic stability of

coexisting equilibrium points demands that the carrying capacity of autotroph biomass

be greater than some threshold value and that the rate of consumption of autotroph

biomass lie between a finite bounded interval along with the mortality rate of herbi-

vore biomass must be less than the growth rate of herbivores due to herbivory. All

these ecologically significant results are the interpretations of various restrictions we

have obtained in Section 2. Conditions for global stability and permanence of solutions

indicate the longtime survival of both species.

Deterministic models in ecology do not usually incorporate environmental fluctua-

tion based upon the idea that in the case of large populations, stochastic deviations (or

effects of randomly fluctuating environment) are small enough to be ignored [8, 34].

In reality, the stochastic model provides a more realistic picture of a natural system

than its deterministic counterpart. To analyze the stability properties of the model sys-

tem embedded in a fluctuating environment around its coexisting equilibrium point,

we have considered the stochastic differential equation model of autotroph-herbivore

populations. The deterministic model is randomized by introducing additive Gaussian

white noise leading to a system of Ito type of stochastic differential equation. By us-

ing a minimization of the averages of error square, the resulting system is linearized

and its stability condition is obtained by means of the corresponding second-order

moments. The point of importance is that the linearization is achieved by a Galerkin-

like technique instead of standard Taylor expansion. Basically, the stochastic stability

is converted into a deterministic stability by using the dynamical equation of the state

moment. It is also possible to follow the route of stochastic Liapunov function to obtain

the stability condition but it is not a suitable one for the bifurcation analysis. Stochas-

tic stability of the model system demands some extra restrictions on the parameters

than the deterministic case. Our analysis reveals the fact that lowering of environmen-

tal carrying capacity and strong interaction between autotroph-herbivore population

drives the system towards instability within the fluctuating environment. Environmen-

tal fluctuation is also responsible for the shift of bifurcation point from α=α∗ to the

new bifurcation point α=α∗∗. These are in good agreement with some earlier results

[26, 29, 30].

Acknowledgments. The authors wish to thank Professor C. G. Chakrabarti, an

S. N. Bose Professor of theoretical physics, Department of Applied Mathematics, for his

valuable suggestions, which helped in better exposition of the paper. The first author

wishes to thank the University Grants Commission of India for its Junior Research

fellowship.



EFFECT OF RANDOMLY FLUCTUATING ENVIRONMENT . . . 3715

References

[1] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley-Interscience,
New York, 1974.

[2] M. C. Baishya and C. G. Chakraborti, Nonequilibrium fluctuation in Volterra-Lotka systems,
Bull. Math. Biol. 49 (1987), no. 1, 125–131.

[3] M. Bandyopadhyay, R. Bhattacharyya, and B. Mukhopadhyay, Dynamics of an autotroph-
herbivore ecosystem with nutrient recycling, Eco. Mod. 176 (2004), 201–209.

[4] M. Bandyopadhyay and C. G. Chakrabarti, Deterministic and stochastic analysis of a non-
linear prey-predator systems, J. Biol. Systems 11 (2003), no. 2, 161–172.

[5] S. Banerjee and C. G. Chakrabarti, Stochastic dynamic modelling of damped Lotka-Volterra
system, Systems Anal. Modelling Simulation 30 (1998), no. 1-2, 1–10.

[6] E. Beretta and Y. Kuang, Global analyses in some delayed ratio-dependent predator-prey
systems, Nonlinear Anal. 32 (1998), no. 3, 381–408.

[7] A. A. Berryman, The origin and evolution of predator-prey theory, Ecology 73 (1992), 1530–
1535.

[8] M. Carletti, On the stability properties of a stochastic model for phage-bacteria interaction
in open marine environment, Math. Biosci. 175 (2002), no. 2, 117–131.

[9] G. Caughley, Plant-herbivore systems, Theoretical Ecology: Principles and Applications
(R. M. May, ed.), W. B. Saunders, Pennsylvania, 1976, pp. 94–113.

[10] M. J. Crawley, Herbivory. The Dynamics of Animal-Plant Interactions, University of Califor-
nia Press, California, 1983.

[11] D. L. DeAngelis, Dynamics of Nutrient Cycling and Food Webs, Chapman & Hall, London,
1992.

[12] C. W. Gardiner, Handbook of Stochastic Methods, Springer Series in Synergetics, vol. 13,
Springer-Verlag, Berlin, 1983.

[13] D. Ghosh and A. K. Sarkar, Oscillatory behavior of an autotroph-herbivore system with a
type-III uptake function, Internat. J. Systems Sci. 28 (1997), no. 3, 259–264.

[14] W. S. C. Gurney and R. M. Nisbet, Ecological Dynamics, Oxford University Press, New York,
1998.

[15] J. K. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing, New York, 1980.
[16] B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurca-

tion, London Mathematical Society Lecture Note Series, vol. 41, Cambridge University
Press, Cambridge, 1981.

[17] J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, London
Mathematical Society Student Texts, vol. 7, Cambridge University Press, Cambridge,
1988.

[18] S. B. Hsu, On global stability of a predator-prey system, Math. Biosci. 39 (1978), no. 1-2,
1–10.

[19] G. Jumarie, A practical variational approach to stochastic optimal control via state moment
equations, J. Franklin Inst. B 332 (1995), no. 6, 761–772.

[20] , Stochastics of order n in biological systems: applications to population dynamics,
thermodynamics, nonequilibrium phase and complexity, J. Biol. Systems 11 (2003),
no. 2, 113–137.

[21] M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001.
[22] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, New

Jersey, 2001.
[23] J. D. Murray, Mathematical Biology, Biomathematics, vol. 19, Springer-Verlag, Berlin, 1993.
[24] R. M. Nisbet and W. S. C. Gurney, Modelling Fluctuating Populations, Wiley-Interscience,

1982.
[25] S. Pimm, Food Webs, Chapman & Hall, London, 1982.
[26] Prajneshu, A stochastic model for two interacting species, Stochastic Process. Appl. 4 (1976),

no. 3, 271–282.



3716 T. SAHA AND M. BANDYOPADHYAY

[27] E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge Studies in
Mathematical Biology, vol. 11, Cambridge University Press, Cambridge, 1991.

[28] S. G. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with
instantaneous nutrient recycling, J. Math. Biol. 31 (1993), no. 6, 633–654.

[29] G. P. Samanta, Influence of environmental noises on the Gomatam model of interacting
species, Eco. Mod. 91 (1996), no. 1, 283–291.

[30] G. P. Samanta and C. G. Chakrabarti, Stochastic behaviour of a damped Volterra-Lotka
system with time-dependent parameters, J. Math. Phys. Sci. 25 (1991), no. 4, 351–
359.

[31] P. Stiling, Ecology: Theories and Applications, Prentice-Hall, New York, 1999.
[32] M. Stubbs, Density dependence in the life cycles of animals and its importance in k- and

r-strategies, J. Animal Ecology 46 (1977), no. 2, 677–688.
[33] Yu. M. Svirezhev and D. O. Logofet, Stability of Biological Communities, Mir, Moscow, 1983.
[34] P. K. Tapaswi and A. Mukhopadhyay, Effects of environmental fluctuation on plankton al-

lelopathy, J. Math. Biol. 39 (1999), no. 1, 39–58.
[35] P. Turchin, Complex Population Dynamics. A Theoretical/Empirical Synthesis, Monographs

in Population Biology, vol. 35, Princeton University Press, New Jersey, 2003.
[36] M. C. Valsakumar, K. P. N. Murthy, and G. Ananthakrishna, On the linearization of nonlinear

Langevin-type stochastic differential equations, J. Statist. Phys. 30 (1983), 617–631.
[37] K. Yang, Basic properties of mathematical population models, J. Biomath. 17 (2002), no. 2,

129–142.
[38] X. Zhang, L. Chen, and A. U. Neumann, The stage-structured predator-prey model and op-

timal harvesting policy, Math. Biosci. 168 (2000), no. 2, 201–210.

Tapan Saha: Department of Applied Mathematics, University of Calcutta, 92 A.P.C. Road, Cal-
cutta 700009, India

E-mail address: tsmath@rediffmail.com

Malay Bandyopadhyay: Department of Mathematics, Scottish Church College, 1 & 3 Urquhart
Square, Calcutta 700006, India

E-mail address: malay_ban@rediffmail.com

mailto:tsmath@rediffmail.com
mailto:malay_ban@rediffmail.com

