
IJMMS 2004:70, 3849–3857
PII. S0161171204404426

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

CONVERGENCE AND STABILITY OF THE THREE-STEP
ITERATIVE SCHEMES FOR A CLASS OF GENERAL

QUASIVARIATIONAL-LIKE INEQUALITIES

ZEQING LIU, ZHEFU AN, SHIN MIN KANG,

and JEONG SHEOK UME

Received 27 April 2004

We introduce and study a class of general quasivariational-like inequalities in Hilbert spaces,
suggest two general algorithms, and establish the existence and uniqueness of solutions for
these kinds of inequalities. Under certain conditions, we discuss convergence and stability
of the three-step iterative sequences generated by the algorithms.

2000 Mathematics Subject Classification: 47J20, 49J40.

1. Introduction. In the last 30 years, variational inequalities have made much de-

velopments in the theory and applications, see, for example, [1, 3, 4, 6, 7, 8, 9] and

the references therein. Recently Ding and Luo [1], Hassouni and Moudafi [3], Huang [4],

Liu, et al. [6], and others introduced and studied some classes of varitional inequalities

and variational-like inclusions in Hilbert spaces, proved the existence and uniqueness

of solutions, and developed some new perturbed iterative algorithms for finding the

approximate solutions for these variational inequalities and variational-like inclusions.

In this paper, we introduce and study a class of general quasivariational-like inequal-

ities in Hilbert spaces, suggest three-step perturbed iterative algorithms, and establish

the existence and uniqueness of solutions for these kinds of inequalities. Under certain

conditions, we discuss convergence and stability of the three-step perturbed iterative

algorithms. Our results extend, improve, and unify the results due to Ding and Luo [1],

Hassouni and Moudafi [3], and Huang [4].

Throughout this paper, we assume that H is a real Hilbert space endowed with the

norm ‖·‖ and inner product 〈·,·〉, respectively, andR= (−∞,∞). LetA, B, C , g,m :H →
H and η :H×H →H be mappings and let φ :H×H →R∪{+∞} be a proper functional

such that for each fixed y ∈ H, φ(·,y) : H → R∪{+∞} is lower semicontinuous and

η-subdifferentiable and (g−m)(H)∩dom∂φ(·,y) 	= ∅. We now consider the following

general quasivariational-like inequality problem.

Find x ∈H such that (g−m)(x)∈ dom∂φ(·,x) and

〈
A(x)−(B(x)−C(x)), η(y,(g−m)(x))〉

≥φ((g−m)(x),x)−φ(y,x) ∀y ∈H, (1.1)

where (g−m)(y)= g(y)−m(y) for all x ∈H.
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Special cases. (a) If C(x)=m(x)= 0 for all x ∈H, then problem (1.1) reduces to

finding x ∈H such that g(x)∈ dom∂φ(·,x) and

〈
A(x)−B(x),η(y,g(x))〉≥φ(g(x),x)−φ(y,x) ∀y ∈H, (1.2)

which is called the general quasivariational-like inclusion, introduced and studied by

Ding and Luo [1].

(b) If C(x) =m(x) = 0, η(y , x) = y−x, and φ(x, y) =φ(x) for all x,y ∈H, then

problem (1.1) reduces to determining x ∈H such that g(x)∈ dom∂φ(x) and

〈
A(x)−B(x),y−g(x)〉≥φ(g(x))−φ(y) ∀y ∈H. (1.3)

This concept was introduced and studied by Hassouni and Moudafi [3] and Huang [4].

Next we recall some definitions and notations.

Definition 1.1 [1]. Let η : H×H → H be a mapping. A proper functional φ : H →
R∪{+∞} is said to be η-subdifferentiable at a point x ∈H if there exists a point f∗ ∈H
such that

〈
f∗,η(y,x)

〉≤φ(y)−φ(x) ∀y ∈H, (1.4)

where f∗ is called an η-subgradient of φ at x. The set of all η-subgradients of φ at x
is denoted by ∂φ(x). The mapping ∂φ :H → 2H is defined by

∂φ(x)= {f∗ ∈H :φ(y)−φ(x)≥ 〈f∗,η(y,x)〉, ∀y ∈H}. (1.5)

Definition 1.2 [1]. Let φ :H →R∪{+∞} be a proper functional and η :H×H →H
be a mapping. For any given x ∈H and any ρ > 0, if there exists a unique point u∈H
such that

〈
u−x,η(y,u)〉≥ ρφ(x)−ρφ(y) ∀y ∈H, (1.6)

then the mapping x → u, denoted by J∂φρ (x), is said to be an η-proximal mapping of

φ. By (1.5) and the definition of J∂φρ (x), it is deduced that x−u ∈ ρ∂φ(u). It follows

that J∂φρ (x)= (I+ρ∂φ)−1(x), where I is the identity mapping on H.

Definition 1.3 [1]. A functional f : H ×H → R∪{+∞} is said to be 0-diagonally

quasiconcave (0-DQCV) in x if for any finite set {x1,x2, . . . ,xn} ⊂ H and for any y =∑n
i=1λixi with λi ≥ 0 and

∑n
i=1λi = 1,

min
1≤i≤n

f
(
xi,y

)≤ 0. (1.7)

Definition 1.4. A mapping g :H →H is said to be

(i) strongly monotone if there exists a constant r > 0 such that

〈
g(x)−g(y),x−y〉≥ r‖x−y‖2 ∀x,y ∈H, (1.8)

(ii) Lipschitz continuous if there exists a constant r > 0 such that

∥∥g(x)−g(y)∥∥≤ r‖x−y‖ ∀x,y ∈H. (1.9)
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Definition 1.5. A mapping η :H×H →H is said to be

(i) δ-strongly monotone if there exists a constant δ > 0 such that

〈
η(x,y),x−y〉≥ δ‖x−y‖2 ∀x,y ∈H, (1.10)

(ii) τ-Lipschitz continuous if there exists a contant τ > 0 such that

∥∥η(x,y)∥∥≤ τ‖x−y‖ ∀x,y ∈H. (1.11)

Definition 1.6 [2]. Let T be a mapping from H into H, x0 ∈ H, and let xn+1 =
f(T , xn) define an iterative procedure which yields a sequence of points {xn}∞n=0 ⊆H.
Let F(T) = {x ∈ H : x = Tx} 	= ∅. Suppose that {xn}∞n=0 converges to q ∈ F(T). Let

{yn}∞n=0 ⊆ H and let εn = ‖yn+1−f(T ,yn)‖ for each n ≥ 0. If limn→∞ εn = 0 implies

that limn→∞yn = q, then the iteration procedure defined by xn+1 = f(T ,xn) is said to

be T -stable or stable with respect to T .

The following lemmas play an important role in proving our main results.

Lemma 1.7 [1]. Let η :H×H →H be δ-strongly monotone and τ-Lipschitz continuous

such that η(x,y)+η(y,x)= 0 for all x,y ∈H and for any given x ∈H, the functional

h(y,u) = 〈x−u,η(y,u)〉 is 0-DQCV in y . Let φ : H → R be a lower semicontinuous

η-subdifferentiable proper function and let ρ > 0 be an arbitrary constant. Then the

η-proximal mapping J∂φρ of φ is (τ/δ)-Lipschitz continuous.

Lemma 1.8 [5]. Let {αn}∞n=0, {βn}∞n=0, and {γn}∞n=0 be three nonnegative sequences

satisfying the following inequality:

αn+1 ≤
(
1−ωn

)
αn+βnωn+γn ∀n≥ 0, (1.12)

where {ωn}∞n=0 ⊆ [0,1],
∑∞
n=0ωn =∞,

∑∞
n=0γn <∞, and limn→∞βn = 0. Then limn→∞αn

= 0.

Lemma 1.9. Let ρ > 0 be a constant and J∂φ(·,x)ρ = (I+∂φ(·,x))−1 for all x ∈H. Then

the following conditions are equivalent to each other:

(i) problem (1.1) has a solution u∈H;

(ii) there exists u∈H satisfying the following relation:

g(u)=m(u)+J∂φ(·,u)ρ
(
(g−m)(u)−ρ(A(u)−(B(u)−C(u)))); (1.13)

(iii) the mapping T :H →H defined by

Tx = x−(g−m)(x)+J∂φ(·,x)ρ
(
f(x)

) ∀x ∈H, (1.14)

has a fixed point u∈H, where

f(x)= (g−m)(x)−ρ(A(x)−(B(x)−C(x))) ∀x ∈H. (1.15)

Proof. It is clear that (ii) and (iii) are equivalent. Note that (ii) holds if and only if

there exists u∈H satisfying

−A(u)+B(u)−C(u)∈ ∂φ((g−m)(u),u), (1.16)
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which is equivalent to finding u∈H such that

〈A(u)−(B(u)−C(u)),η(y,(g−m)(u))〉 ≥φ((g−m)(u),u)−φ(y,u) ∀y ∈H.
(1.17)

That is, (i) and (ii) are equivalent. This completes the proof.

Remark 1.10. Theorem 3.1 in [1] is a special case of Lemma 1.9.

Based on Lemma 1.9 we suggest the following three-step perturbed iterative algo-

rithms.

Algorithm 1.11. Let A,B,C,g,m : H → H, η : H ×H → H be mappings and let

φn : H×H → R be functional for each n ≥ 0. Suppose that for each given x ∈ H and

n≥ 0, the η-proximal mapping of φn(·,x) exists. For any given u0 ∈H, the three-step

perturbed iterative sequence {un}∞n=0 ⊆H is defined by

wn =
(
1−cn

)
un+cn

[
un−(g−m)

(
un
)+J∂φn(·,un)ρ

(
f
(
un
))]+pn,

vn =
(
1−bn

)
un+bn

[
wn−(g−m)

(
wn
)+J∂φn(·,wn)ρ

(
f
(
wn
))]+qn,

un+1 =
(
1−an

)
un+an

[
vn−(g−m)

(
vn
)+J∂φn(·,vn)ρ

(
f
(
vn
))]+rn, n≥ 0,

(1.18)

where f is defined by (1.15), {pn}∞n=0, {qn}∞n=0, {rn}∞n=0 are any sequences in H and

{an}∞n=0, {bn}∞n=0, {cn}∞n=0 are arbitrary sequences in [0,1] satisfying

∞∑
n=0

an =∞. (1.19)

Algorithm 1.12. Let A,B,C,g,m : H → H, η : H ×H → H be mappings and let

φ : H ×H → R be a functional. Suppose that for each given x ∈ H, the η-proximal

mapping of φ(·,x) exists. For any given u0 ∈H, the three-step iterative sequence with

errors {un}∞n=0 ⊆H is defined by

wn =
(
1−cn

)
un+cnT

(
un
)+pn,

vn =
(
1−bn

)
un+bnT

(
wn
)+qn,

un+1 =
(
1−an

)
un+anT

(
vn
)+rn, n≥ 0,

(1.20)

where T is defined by (1.14), {pn}∞n=0, {qn}∞n=0, {rn}∞n=0 are any sequences in H, and

{an}∞n=0, {bn}∞n=0, {cn}∞n=0 are arbitrary sequences in [0,1] satisfying (1.19).

Remark 1.13. Algorithms 3.3 and 3.4 in [1] are special cases of Algorithm 1.11.

2. Convergence and stability

Theorem 2.1. Let A,B,C,g, and m : H → H be Lipschitz continuous mappings with

constants β, γ,σ , ν , and ζ, respectively, and letA and (g−m) be strongly monotone with

constants α and ξ, respectively. Let η : H×H → H be strongly monotone and Lipschitz
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with constants δ and τ , respectively, satisfying η(x,y)+ η(y,x) = 0 for any x,y ∈
H, and for each given x ∈ H, the functional h(y,u) = 〈x−u,η(y,u)〉 is 0-DQCV in

y . Suppose that φ : H ×H → R satisfies that for each fixed y ∈ H, φ(·,u) is a lower

semicontinuous η-subdifferentiable proper functional with (g−m)(H)∩dom∂φ(·,y) 	=
∅. Assume that there exists a constant µ > 0 such that

∥∥∥J∂φ(·,x)ρ (z)−J∂φ(·,y)ρ (z)
∥∥∥≤ µ‖x−y‖ ∀x,y,z ∈H. (2.1)

Let k= µ+(1+τ/δ)
√

1−2ξ+(ν+ζ)2. If there exists a constant ρ > 0 satisfying

ρ <
(1−k)δ
τ(γ+σ) (2.2)

and one of the following conditions:

β > γ+σ,
τα > δ(1−k)(γ+σ)+

√[
β2−(γ+σ)2][τ2−(1−k)2δ2

]
,

∣∣∣∣ρ− δ(k−1)(γ+σ)+τα
τ
[
β2−(γ+σ)2]

∣∣∣∣

<

√[
τα−δ(1−k)(γ+σ)]2−[β2−(γ+σ)2][τ2−δ2(1−k)2]

τ
[
β2−(γ+σ)2] ;

(2.3)

β= γ+σ, τα > δ(1−k)β, ρ >
δ2(1−k)2−τ2

2τ
[
τα−(1−k)δ(γ+σ)] ; (2.4)

β < γ+σ,
∣∣∣∣ρ− (1−k)δ(γ+σ)−τατ

[
(γ+σ)2−β2

]
∣∣∣∣

>

√[
τα−δ(1−k)(γ+σ)]2+[(γ+σ)2−β2

][
τ2−(1−k)2δ2

]
τ
[
(γ+σ)2−β2

] ,

(2.5)

then problem (1.1) has a unique solution u∈H.

Proof. It follows from the strong monotonicity of A and (g −m) and Lipschitz

continuity of A, g, and m that

∥∥x−y−((g−m)(x)−(g−m)(y))∥∥2

= ‖x−y‖2−2
〈
x−y,(g−m)(x)−(g−m)(y)〉+∥∥(g−m)(x)−(g−m)(y)∥∥2

≤ [1−2ξ+(ν+ζ)2]‖x−y‖2,
∥∥x−y−ρ(A(x)−B(y))∥∥2

= ‖x−y‖2−2ρ
〈
x−y,A(x)−A(y)〉+∥∥A(x)−A(y)∥∥2

≤ (1−2ρα+ρ2β2)‖x−y‖2,
(2.6)
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for any x,y ∈H. In light of (1.14), (2.6), Lemma 1.7, and the Lipschitz continuity of B
and C , we infer that for any x,y ∈H,

‖Tx−Ty‖ ≤ ∥∥x−y−((g−m)(x)−(g−m)(y))∥∥
+
∥∥∥J∂φ(·,x)ρ

(
f(x)

)−J∂φ(·,x)ρ
(
f(y)

)∥∥∥
+
∥∥∥J∂φ(·,x)ρ

(
f(y)

)−J∂φ(·,y)ρ
(
f(y)

)∥∥∥

≤
(

1+ τ
δ

)∥∥x−y−((g−m)(x)−(g−m)(y))∥∥

+ τ
δ
∥∥x−y−ρ(A(x)−A(y))∥∥+ ρτ

δ
∥∥B(x)−B(y)∥∥

+ ρτ
δ
∥∥C(x)−C(y)∥∥+µ‖x−y‖

≤ θ‖x−y‖,

(2.7)

where

θ = k+ τ
δ

√
1−2ρα+ρ2β2+ ρτ(γ+σ)

δ
. (2.8)

Thus (2.2) and one of (2.3)–(2.5) ensure that θ < 1. Hence T is a contraction mapping

and it has a unique fixed point u∈H. Lemma 1.9 means that u is a unique solution of

problem (1.1). This completes the proof.

Remark 2.2. Theorem 2.1 extends and improves [1, Theorem 3.6].

Next we show convergence of the three-step perturbed iterative sequence and three-

step iterative sequence with errors generated by Algorithms 1.11 and 1.12, respectively.

Theorem 2.3. Let A, B, C , g,m, η, and φ be as in Theorem 2.1 satisfying (2.1), (2.2),

and one of the conditions (2.3)–(2.5). Letφn :H×H →R be such that for any fixed y ∈H
and n ≥ 0, φn(·,y) :H → R is lower semicontinuous η-subdifferentiable on H. Assume

that

∥∥∥J∂φn(·,x)ρ (z)−J∂φn(·,y)ρ (z)
∥∥∥≤ µ‖x−y‖ ∀x,y,z ∈H, n≥ 0, (2.9)

lim
n→∞

∥∥∥J∂φn(·,x)ρ (y)−J∂φ(·,x)ρ (y)
∥∥∥= 0 ∀x,y ∈H, (2.10)

lim
n→∞bn

∥∥pn∥∥= lim
n→∞

∥∥qn∥∥= 0. (2.11)

If one of the conditions

(C1)
∑∞
n=0‖rn‖<∞,

(C2) there exists a nonnegative sequence {dn}∞n=0 satisfying limn→∞dn = 0 and ‖rn‖ =
andn for all n≥ 0,

is fulfilled, then the three-step perturbed iterative sequence {un}∞n=0 generated by

Algorithm 1.11 converges strongly to the unique solution of problem (1.1).
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Proof. It follows from Theorem 2.1 that problem (1.1) has a unique solution u∈H.

That is, u= Tu, where T is defined by (1.14). Notice that

u= (1−an)u+anT(u)= (1−bn)u+bnT(u)= (1−cn)u+cnT(u) ∀n≥ 0.
(2.12)

Using the same argument as in the proof of Theorem 2.1, from (2.9), (2.12), and

Lemma 1.7 we obtain that for any n≥ 0,

∥∥wn−u
∥∥=

∥∥∥(1−cn)un+cn[un−(g−m)(un)+J∂φn(·,un)ρ
(
f
(
un
))]

+pn−
(
1−cn

)
u−cn

[
u−(g−m)(u)+J∂φ(·,u)ρ

(
f(u)

)]∥∥∥
≤ (1−cn)∥∥un−u∥∥+cn∥∥un−u−((g−m)(un)−(g−m)(u))∥∥
+cn

∥∥∥J∂φn(·,un)ρ
(
f
(
un
))−J∂φn(·,un)ρ

(
f(u)

)∥∥∥
+cn

∥∥∥J∂φn(·,un)ρ
(
f(u)

)−J∂φn(·,u)ρ
(
f(u)

)∥∥∥
+cn

∥∥∥J∂φn(·,u)ρ
(
f(u)

)−J∂φ(·,u)ρ
(
f(u)

)∥∥∥+∥∥pn∥∥
≤ (1−cn)∥∥un−u∥∥+cn∥∥un−u−((g−m)(un)−(g−m)(u))∥∥

+cn τδ
∥∥f (un)−f(u)∥∥+cnµ∥∥un−u∥∥+cnεn+∥∥pn∥∥

≤ (1−cn)∥∥un−u∥∥+cnθ∥∥un−u∥∥+cnεn+∥∥pn∥∥,

(2.13)

where θ satisfies (2.8) and εn = ‖J∂φn(·,u)ρ (f (u))−J∂φ(·,u)ρ (f (u))‖. It follows from (2.2)

and one of (2.3)–(2.5) that θ < 1. In view of (2.13) we know that

∥∥wn−u
∥∥≤ ∥∥un−u∥∥+cnεn+∥∥pn∥∥ ∀n≥ 0. (2.14)

Similarly we infer that

∥∥vn−u∥∥≤ ∥∥un−u∥∥+2bnεn+bn
∥∥pn∥∥+∥∥qn∥∥ ∀n≥ 0, (2.15)

∥∥un+1−u
∥∥≤ (1−an(1−θ))∥∥un−u∥∥+3anεn+anbn

∥∥pn∥∥+an∥∥qn∥∥+∥∥rn∥∥ ∀n≥ 0.
(2.16)

Suppose that (C1) holds. Let

αn =
∥∥un−u∥∥, ωn = (1−θ)an,

βn = (1−θ)−1(3εn+bn∥∥pn∥∥+∥∥qn∥∥), γn =
∥∥rn∥∥ ∀n≥ 0.

(2.17)

It follows from Lemma 1.8, (1.19), (2.10), (2.11), (C1), and (2.16) that {un}∞n=0 converges

strongly to u.

Suppose that (C2) holds. Set

αn =
∥∥un−u∥∥, ωn = (1−θ)an,

βn = (1−θ)−1(3εn+bn∥∥pn∥∥+∥∥qn∥∥+dn), γn = 0, ∀n≥ 0.
(2.18)
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Thus Lemma 1.8, (1.19), (2.10), (2.11), (C2), and (2.16) ensure that {un}∞n=0 converges

strongly to u. This completes the proof.

In case φn =φ for all n≥ 0, then Theorem 2.3 reduces to the following.

Theorem 2.4. Let A, B, C , g,m, η, and φ be as in Theorem 2.1 satisfying (2.1), (2.2),

(2.11), and one of the conditions (2.3)–(2.5). If either (C1) or (C2) holds, then the three-step

iterative sequence with errors {un}∞n=0 generated by Algorithm 1.12 converges strongly

to the unique solution of problem (1.1).

Now we study stability of the three-step iterative sequence with errors generated by

Algorithm 1.12.

Theorem 2.5. Let g,m, A, B, C , η, and φ be as in Theorem 2.4 satisfying (2.1), (2.2),

(2.11), and one of the conditions (2.3)–(2.5). Let {yn}∞n=0 be any sequence inH and define

{εn}∞n=0 ⊆ [0,∞) by

εn =
∥∥yn+1−

(
1−an

)
yn−anTxn−rn

∥∥,
xn =

(
1−bn

)
yn+bnTzn+qn,

zn =
(
1−cn

)
yn+cnTyn+pn ∀n≥ 0,

(2.19)

where T satisfies (1.14). If there exists a constant d> 0 satisfying

an ≥ d ∀n≥ 0, (2.20)

and if

lim
n→∞

∥∥rn∥∥= 0, (2.21)

then the three-step iterative sequence with errors {un}∞n=0 generated by Algorithm 1.12

converges strongly to the unique solution u∈H of problem (1.1). Moreover, limn→∞yn =
u if and only if limn→∞ εn = 0.

Proof. Set dn = ‖rn‖/an for all n ≥ 0. Then (2.21) implies that (C2) holds. Obvi-

ously, (2.20) yields that (1.19) holds. It follows from Theorem 2.4 that the three-step

iterative sequence with errors {un}∞n=0 generated by Algorithm 1.12 converges strongly

to the unique solution u of problem (1.1).

Put yn+1− (1−an)yn−anTxn− rn = hn for all n ≥ 0. Then yn+1 = (1−an)yn+
anTxn + rn + hn and εn = ‖hn‖ for all n ≥ 0. As in the proof of Theorem 2.3, we

deduce that

∥∥(1−an)yn+anTxn+rn−u∥∥≤ (1−(1−θ)d)∥∥yn−u∥∥+bn∥∥pn∥∥+∥∥qn∥∥+∥∥rn∥∥,
(2.22)∥∥yn+1−u

∥∥≤ (1−(1−θ)an)∥∥yn−u∥∥+anbn∥∥pn∥∥+an∥∥qn∥∥+∥∥rn∥∥+∥∥hn∥∥
≤ (1−(1−θ)d)∥∥yn−u∥∥+bn∥∥pn∥∥+∥∥qn∥∥+∥∥rn∥∥+εn (2.23)

for all n≥ 0.
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Suppose that limn→∞ εn = 0. Let

αn =
∥∥yn−u∥∥, ωn = (1−θ)d,

βn =ω−1
n
(
bn
∥∥pn∥∥+∥∥qn∥∥+∥∥rn∥∥+εn), γn = 0 ∀n≥ 0.

(2.24)

Then Lemma 1.8, (2.11), (2.21), and (2.23) ensure that limn→∞yn =u.

Suppose that limn→∞yn =u. It follows from (2.11), (2.21), and (2.22) that

εn ≤
∥∥yn+1−u

∥∥+∥∥(1−an)yn+anTxn+rn−u∥∥
≤ ∥∥yn+1−u

∥∥+(1−(1−θ)d)∥∥yn−u∥∥+bn∥∥pn∥∥+∥∥qn∥∥+∥∥rn∥∥
�→ 0

(2.25)

as n→∞. That is, limn→∞ εn = 0. This completes the proof.
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