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The least-squares functional related to a vorticity variable or a velocity flux variable is consid-
ered for two-dimensional compressible Stokes equations. We show ellipticity and continuity
in an appropriate product norm for each functional.
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1. Introduction. Let Ω be a convex polygonal domain in R2. Consider the station-

ary compressible Stokes equations with zero boundary conditions for the velocity u =
(u1,u2)t and pressure p as follows:

−µ∆u+∇p = f in Ω,

∇·u+β·∇p = g in Ω,

u= 0 on ∂Ω,
(1.1)

where the symbols ∆, ∇, and ∇· stand for the Laplacian, gradient, and divergence

operators, respectively (∆u is the vector of components ∆ui); the number µ is a viscous

constant; f is a given vector function; β = (U,V)t is a given C1 function. The system

(1.1) may be obtained by linearizing the steady-state barotropic compressible viscous

Navier-Stokes equations without an ambient flow (see [8, 9] for more detail). Since the

continuity equation is of hyperbolic type containing a convective derivative of p, we

further assume that the boundary condition for the pressure is given on the inlet of

the boundary where the characteristic function β points into Ω, that is,

p = 0 on Γin, (1.2)

where Γin = {(x,y) ∈ ∂Ω | β ·n < 0} with the outward unit normal n to ∂Ω. Hence the

boundary ∂Ω consists of Γin and Γout where Γout = {(x,y)|β·n ≥ 0}. There was a study

on a mixed finite element theory for a compressible Stokes system (see, e.g., [8]), but

there are a few trials dealing with a compressible Stokes system like (1.1) using least-

squares method. Some papers focused on a H−1 least-squares method (see, e.g., [6, 9]).

Least-squares approach was developed for the incompressible Stokes and Navier-Stokes

equations in [1, 2, 7]. The purpose of this paper is to apply the philosophy of first-

order system least-squares (FOSLS) methodology developed in [5] to a compressible

stationary Stokes system. We consider two basic first-order systems. The first one is

induced by a vorticity variable, and the second one is induced by a velocity flux variable
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which is further extended to the system’s associated curl and trace equations. This

extended system is not a system of first order but a mixture system of first- and second-

order equations due to the continuity equation ∇·u+β ·∇p = g. In order to provide

ellipticity for each functional, we assume the H1 and H2 regularity assumptions for

the compressible Stokes equations. As usual in FOSLS approach, we first show that the

H−1 and L2 FOSLS functional is elliptic in the product norm ‖w‖+‖u‖1+‖q‖+‖p‖0,β

for the functional involving vorticity variable and ‖U‖+‖u‖1+‖p‖ for the functional

involving flux variable. We also show that the extended functional related to velocity flux

variable is elliptic in the product norm ‖U‖1+‖u‖1+‖p‖1,β. Then we provide the error

estimates for using finite element methods. The outline of the paper is as follows. In

Section 2, we discuss least-squares system and other preliminaries. The continuity and

ellipticity of least-squares functionals are discussed in Section 3. These can be done by

employing regularity estimates for (1.1). The finite element approximations are briefly

discussed in Section 4.

2. Least-squares system for compressible Stokes equations, and other prelimi-

naries. For the development of least-squares theory, we will adopt the notation intro-

duced in [5] and introduce the necessary definitions in this section. A new independent

variable related to the 4-vector function of gradients of the displacement vectors, ui,
i = 1,2 will be given. It will be convenient to view the original n-vector functions as

column vectors and the new 4-vector functions as either block column vectors or ma-

trices. The velocity variable u= (u1,u2)t is a column vector with scalar components ui,
so that the gradient ∇ut is a matrix with columns ∇ui. For a function U with 2-vector

components Ui

U =∇ut = (U1,U2
)= (Uij)2×2, (2.1)

which is a matrix with entries Uij = ∂uj/∂xi, 1≤ i,j ≤ 2. Then we can define the trace

operator tr as

trU =
n∑
i=1

Uii. (2.2)

Let, for v∈ L2(Ω)2,

∇×v := curlv= ∂v2

∂x
− ∂v1

∂y
, ∇·v= ∂v1

∂x
+ ∂v2

∂y
,

∇⊥vt = (∇⊥v1,∇⊥v2
)= ( ∂yv1 ∂yv2

−∂xv1 −∂xv2

)
,

n×v=−n2v1+n1v2.

(2.3)

Define the curl as

∇×U = (∇×U1,∇×U2
)
, (2.4)
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and the divergence as

(∇·U)t = (∇·U1,∇·U2
)t . (2.5)

We also define the tangential operator n× componentwise

n×U = (n×U1,n×U2
)
. (2.6)

The inner products and norms on the block column vector functions are defined in the

natural componentwise way; for example,

‖U‖2 =
2∑
i=1

∥∥Ui
∥∥2 =

2∑
i,j=1

∥∥Uij∥∥2. (2.7)

We use standard notations and definitions for the Sobolev spaces Hs(Ω)n, associated

inner products (·,·)s , and respective norms ‖ · ‖s , s ≥ 0. When s = 0, H0(Ω)n is the

usual L2(Ω)n, in which case the norm and inner product will be denoted by ‖·‖0 = ‖·‖
and (·,·), respectively. The space Hs0(Ω) is the set of functions in Hs(Ω) vanishing on

the boundaries. From now on, we will omit the superscript n and Ω if the dependence

of vector norms on dimension is clear by context. We use H−1
0 (Ω) to denote the dual

spaces of H1
0(Ω) with norm defined by

‖φ‖−1 = sup
ψ∈H1

0 (Ω)

(φ,ψ)
‖ψ‖1

. (2.8)

Define the product spaces Hs0(Ω)2 and L2(Ω)2 in usual way with standard product

norms. Let

H(div;Ω)= {v∈ L2(Ω)2 :∇·v∈ L2(Ω)
}
. (2.9)

Define a space

Qk(Ω)=
{
q ∈ L2(Ω) :

(‖q‖2
k+‖β·∇q‖2

k
)1/2 <∞}, (2.10)

where k is either 1 or 0, which is a Hilbert space with norm

‖q‖k,β =
(‖q‖2

k+‖β·∇q‖2
k
)1/2. (2.11)

We frequently use the notation constant CΩ to denote that it depends on Ω only, but it

may be a different constant. If a constant depends on another variable, we specify it in

each place. Throughout this paper, we assume the following regularity.

Assumption 1. Assume that µ and β are such that (1.1) has a unique solution which

satisfies the following a priori estimate:∥∥∇ut
∥∥2
k+‖p‖2

k ≤ C0(µ,Ω)
(‖−µ∆u+∇p‖2

k−1+‖∇·u+β·∇p‖2
k
)
, (2.12)

where k is either 0 or 1; C0 := C0(µ,Ω) is a constant depending on µ, β, andΩ. Note that

one may find (2.12) for k= 1 in [10, Theorem 1.3] for β= (1,0)t and one may get (2.12)
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for k= 0 by following the arguments in [10, Section 3]. In fact, using triangle inequality

and the assumption (2.12), one may get the improved a priori estimates:∥∥∇ut
∥∥2
k+‖p‖2

k,β ≤ C0(µ,Ω)
(‖−µ∆u+∇p‖2

k−1+‖∇·u+β·∇p‖2
k
)
, (2.13)

where k is 1 or 0 and C0 := C0(µ,Ω) is a constant depending on µ, β, and Ω.

2.1. Velocity-vorticity-pressure formulation. Note that

∇⊥(∇×u)=−∆u+∇(∇·u). (2.14)

As in [4] for Stokes equations, introducing the vorticity variable w = ∇×u, the first

equation of the compressible Stokes equations (1.1) using the second equation of (1.1) is

µ∇⊥w−µ∇·q+∇p = f. (2.15)

By setting q =∇·u, the equivalent first-order system is now

w−∇×u= 0 in Ω,

q−∇·u = 0 in Ω,

µ∇⊥w−µ∇q+∇p = f in Ω,

q+β·∇p = g in Ω,

u= 0 on ∂Ω,

p = 0 on Γin.

(2.16)

2.2. Velocity-flux-pressure formulation. As in [5] for Stokes equations, introducing

the velocity flux variable U = ∇ut , the compressible Stokes equations (1.1) may be

written as the following equivalent first-order system:

U−∇ut = 0 in Ω,

−µ(∇·U)t+∇p = f in Ω,

∇·u+β·∇p = g in Ω,

u= 0 on ∂Ω,

p = 0 on Γin.

(2.17)

We consider the following extended equivalent system for (2.17):

U−∇ut = 0 in Ω,

−µ(∇·U)t+∇p = f in Ω,

∇·u+β∇p = g in Ω,

∇×U = 0 in Ω,

∇(trU)+∇(β·∇p)=∇g in Ω,

u= 0 on ∂Ω,

n×U = 0 on ∂Ω,

p = 0 on Γin.

(2.18)
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3. Least-squares functionals. The main objective in this section is to establish ellip-

ticity and continuity of least-squares functionals based on (2.16), (2.17), and (2.18) in

appropriate Sobolev spaces.

3.1. Velocity, vorticity, and pressure. The first-order least-squares functional cor-

responding to (2.16) is

G0(w,u,q,p;f,g)= ∥∥µ∇⊥w−µ∇q+∇p−f
∥∥2
−1,0

+‖q+β·∇p−g‖2+‖w−∇×u‖2+‖q−∇·u‖2.
(3.1)

Define

M0(w,u,q,p)= ‖w‖2+‖u‖2
1+‖q‖2+‖p‖2

0,β, (3.2)

and let

�0 = L2(Ω)×H1
0(Ω)

2×L2(Ω)×Q0(Ω). (3.3)

The FOSLS variational problem for the compressible Stokes equations corresponding

to (2.16) is to minimize the quadratic functional G0 over �0: find (w,u,q,p)∈�0 such

that

G0(w,u,q,p;f,g)= inf
(z,v,r ,s)∈�0

G0(z,v,r ,s;f,g). (3.4)

Theorem 3.1. Under the assumption (2.12), there are two positive constants c and

C , dependent on δ and Ω, such that for all (w,u,q,p)∈�0,

cM0(w,u,q,p)≤G0(w,u,q,p;0,0)≤ CM0(w,u,q,p). (3.5)

Proof. Upper bound in (3.5) is a simple consequence of the triangle inequality and

Cauchy-Schwarz inequality. For any (w,u,q,p) ∈ �0, using (2.13), triangle inequality,

and (·), we have∥∥∇ut
∥∥2+‖p‖2

0,β ≤ C0
(‖−µ∆u+∇p‖2

−1,0+‖∇·u+β·∇p‖2)
≤ C0

(∥∥µ∇⊥w−µ∇q+∇p∥∥2
−1,0+µ2

∥∥∇⊥(w−∇×u)∥∥2
−1,0

+µ2
∥∥∇(∇·u−q)∥∥2

−1,0+‖q+β·∇p‖2)
≤ Ĉ0G1(U,u,p;0,0),

(3.6)

where Ĉ0 is a constant that depends on µ, β, and Ω. Using (3.6), we have

(w,w)= (w−∇×u,w)+(∇×u,w)≤ CG1/2
0 (w,u,q,p)‖w‖, (3.7)

where C is a constant depending on Ω and the Poincare constant. Now, cancelling ‖w‖
on both sides and squaring the remainder, we have

‖w‖2 ≤ CG0(w,u,q,p;0,0), (3.8)
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where C is a constant depending on Ω and the Poincare constant. Now, using (3.6), we

have

(q,q)= (q−∇·u,q)+(∇·u,q)
≤ ‖q−∇·u‖‖q‖+‖∇·u‖‖q‖
≤ CG1/2

0 (w,u,q,p)‖q‖,
(3.9)

where C is a constant depending on Ω. Cancelling ‖q‖ on both sides and squaring the

remainder, we have

‖q‖ ≤ CG0(w,u,q,p). (3.10)

Finally, combining (3.6), (3.8), and (3.10) yields the lower bound. This completes the

proof.

3.2. Velocity, flux, and pressure. The first-order least-squares functional correspon-

ding to (2.17) is

G1(U,u,p;f,g)= ∥∥−µ(∇·U)t+∇p−f
∥∥2
−1,0

+‖∇·u+β·∇p−g‖2+∥∥U−∇ut
∥∥2.

(3.11)

The extended least-squares functional corresponding to (2.18) is

G3(U,u,q,p;f,g)= ∥∥U−∇ut
∥∥2+∥∥−µ(∇·U)t+∇p−f

∥∥2+‖∇×U‖2

+‖∇·u+β·∇−g‖2+∥∥∇trU+∇(β·∇p)∥∥2.
(3.12)

Define

M1(U,u,p)= ‖U‖2+‖u‖2
1+‖p‖2

0,β,

M2(U,u,q,p)= ‖U‖2
1+‖u‖2

1+‖p‖2
1,β.

(3.13)

Let

V0 =
{
U ∈H1(Ω)4 : n×U = 0 on ∂Ω

}
. (3.14)

Define

�1 = L2(Ω)4×H1
0(Ω)

2×Q0(Ω),

�2 =V0×H1
0(Ω)

2×Q1(Ω).
(3.15)

The least-squares variational problem for the compressible Stokes equations corre-

sponding to (2.17) or (2.18) is to minimize the quadratic functional Gi over �i: find

(U,u,p)∈�i such that

Gi(U,u,p;f,g)= inf
(V,v,r )∈�i

Gi(V,v,r ;f,g) for i= 1,2. (3.16)
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Theorem 3.2. Under the assumption (2.12), there are two positive constants c and

C , dependent on µ, β, and Ω, such that for all (U,u,p)∈�1,

cM1(U,u,p)≤G1(U,u,p;0,0)≤ CM1(U,u,p). (3.17)

Proof. Upper bound in (3.17) is a simple consequence of the triangle inequality and

Cauchy-Schwarz inequality. To limit arguments, it is enough to show that lower bound

in (3.17) holds for �̃=H(div;Ω)2×H1
0(Ω)2×Q(Ω). Using (2.12) and triangle inequality,

we have

∥∥∇ut
∥∥2+‖p‖2

0,β

≤ C0
(‖−µ∆u+∇p‖2

−1,0+‖∇·u+β·∇p‖2)
≤ C0

(∥∥−µ(∇·U)t+∇p∥∥2
−1,0+µ2

∥∥∇·(U−∇ut
)t∥∥2

−1,0+‖∇·u+β·∇p‖2)
≤ Ĉ0G1(U,u,p;0,0),

(3.18)

where Ĉ0 is a constant that depends on µ and Ω. Note that

(U,U)= (U−∇ut ,U
)+(∇ut ,U

)≤ C(∥∥U−∇ut
∥∥‖U‖+‖u‖1‖U‖

)
, (3.19)

where C is a constant depending on Ω. Now cancelling ‖U‖ on both sides, squaring the

remainder, and using (3.19), we have

‖U‖2 ≤ CG1(U,u,p;0,0), (3.20)

where C is a constant depending on µ, β, and Ω. Finally, combining (3.19) and (3.20)

yields the lower bound. This completes the proof.

The following lemma is basically proved in [5, Lemma 3.2].

Lemma 3.3. Letφ= (φ1,φ2)t and q= (q1,q2)t ; if each qi ∈H1
0(Ω)∩H2(Ω) and each

φi ∈H1(Ω) is such that ∆φi ∈ L2(Ω) and n·∇φi = 0 on ∂Ω, then

|∇·q+β·∇p|21 ≤ CΩ
(∣∣∇·q+tr∇⊥φt+β·∇p∣∣2

1+‖∆φ‖2). (3.21)

Proof. Note that tr(∇⊥φ1,∇⊥φ2)=−∇×φ,

|∇·q+β·∇p|21 ≤ 2
(|∇·q−∇×φ+β·∇p|21+|∇×φ|21)

≤ C(∣∣∇·q+tr∇⊥φt+β·∇p∣∣2
1+|φ|2

)
≤ C(∣∣∇·q+tr∇⊥φt+β·∇p∣∣2

1+‖∆φ‖
)
,

(3.22)

where the constant C depends on Ω.

Due to the above lemma, one may get the following theorem.
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Theorem 3.4. Under the assumption of (2.12), there are two positive constants c and

C dependent on µ, β, and Ω such that for all (U,u,p)∈�2,

cM2(U,u,q,p)≤G2(U,u,q,p;0,0)≤ CM2(U,u,q,p). (3.23)

The proof of Theorem 3.4 comes immediately by following techniques similar to

those in [5].

4. Finite element approximations. In this section, we provide the finite element ap-

proximation of the minimization of the least-squares functionals G0 only. Note that

an obvious modification in this section also provides the finite element error analysis

for the least-squares functionals G1 and G2. Let T :H−1
0 (Ω)2 →H1

0(Ω)2 be the solution

operator (u= T f) for the following elliptic boundary value problem with zero boundary

condition −∆u+u = f in Ω. It is well known that (see [3, Lemma 2.1])

(f,T f)= ‖f‖2
−1 = sup

φ∈H1
0 (Ω)2

(f,φ)2

‖φ‖2
1

∀f ∈H−1
0 (Ω)

2. (4.1)

Let �h be a family of triangulations of Ω by standard finite element subdivisions of Ω
into quasi-uniform triangles with h=max{diam(K) :K ∈�h}.

Let �0,h be a finite-dimensional subspace of �0 with an approximation property such

that for (w,u,q,p)∈�0, there exists positive integers l,m,n≥ 1 and s ≥ 1 satisfying

inf
wh∈�h

{∥∥w−wh∥∥+h∥∥w−wh∥∥1

}≤ Chr‖w‖r ,
inf

uh∈�0,h

{∥∥u−uh
∥∥+h∥∥u−uh

∥∥
1

}≤ Chs+1‖u‖s+1,

inf
qh∈�h

{∥∥q−qh∥∥+h∥∥q−qh∥∥1

}≤ Chr‖q‖r ,
inf

ph∈�h

{∥∥p−ph∥∥+h∥∥p−ph∥∥1

}≤ Chk+1‖p‖k+1,

(4.2)

where C is a positive integer. Then the finite element approximation of (3.4) is to find

(wh,uh,qh,ph)∈�0,h which satisfies

G0
(
wh,uh,qh,ph;f,g

)= inf
(zh,vh,rh,sh)∈�0,h

G0
(
zh,vh,rh,sh;f,g

)
. (4.3)

From (4.1), we have

G0(w,u,q,p;0,0)= (T(µ∇⊥w−µ∇q+∇p),µ∇⊥w−µ∇q+∇p)
+(q+β·∇p,q+β·∇p)+(q−∇·u,q−∇·u)
+(w−∇×u,w−∇×u).

(4.4)
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Theorem 4.1. Suppose that the assumption in Theorem 3.1 holds. Assume that (w,u,
q,p)∈�0 is the solution of the minimization problem for G1 in (3.4) and (wh,uh,qh,ph)
is the unique minimizer of G0 over �0,h. Then∥∥w−wh∥∥2+∥∥u−uh

∥∥2
1+

∣∣q−qh∣∣2+∥∥p−ph∥∥2
0,β

≤ C inf
(zh,vh,rh,sh)∈�0,h

(∥∥w−zh∥∥2+∥∥u−vh
∥∥2

1+
∣∣q−rh∣∣2+∥∥p−sh∥∥2

0,β
)
.

(4.5)

Proof. For convenience, let

[w,u,q,p;z,v,r ,s]= (T(µ∇⊥w−µ∇q+∇p),µ∇⊥z−µ∇r +∇s)
+(q+β·∇p,r +β·∇s)+(w−∇×u,z−∇×v)

+(q−∇·u,r −∇·s).
(4.6)

Then, using (4.1), Theorem 3.1, the orthogonality of the error (w−wh,u−uh,q−qh,p−
ph) to �0,h, with respect to the above inner product, and the Schwarz inequality, we

have the conclusion.

From this theorem and approximate property of �0,h, we have∥∥w−wh∥∥2+∥∥u−uh
∥∥2

1+
∥∥q−qh∥∥2+∥∥p−ph∥∥2

0,β

≤ C(h2l‖w‖2
l +h2m‖u‖2

m+1+h2n‖q‖2
n+h2s‖p‖2

s+1

)
,

(4.7)

where (w,u,q,p) ∈ (Hl(Ω)×Hm0 (Ω)2×Hn+1(Ω)2×Hs(Ω))∩�0 is the solution of the

minimization problem for G0 in (3.4) and (wh,uh,qh,ph) is the unique minimizer of G0

over �0,h.
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