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The purpose of this paper is to introduce and develop a family of Z+-valued autoregressive
processes of order p (INAR(p)) by using the generalized multiplication �F of van Harn
and Steutel (1982). We obtain various distributional and regression properties for these
models. A number of stationary INAR(p) processes with specific marginals are presented
and are shown to generalize several existing models.

1. Introduction

Integer-valued time series have been the object of growing interest in recent years. Models
of stationary time series for count data with a given marginal distribution have been
developed by several authors. Applications in the areas of model-fitting for count data
and simulation of sequences of dependent Poisson and negative binomial (among others)
variables have been offered. These models are based on the binomial thinning operator
� of Steutel and van Harn [19] which is defined as follows. If X is a Z+-valued random
variable (rv) and α∈ (0,1), then

α�X =
X∑
i=1

Xi, (1.1)

where {Xi} is a sequence of i.i.d. Bernoulli(α) rv’s independent of X . The operation �
incorporates the discrete nature of the variates and acts as the analogue of the standard
multiplication used in the Box-Jenkins models. For example, an integer-valued first-order
autoregressive (INAR(1)) process is described by the following equation:

Xn+1 = α�Xn−1 + εn. (1.2)

McKenzie [14, 16] used the binomial thinning operator to construct stationary Pois-
son and negative binomial autoregressive moving average (namely, AR(1), MA(q), and
ARMA(1,q)) processes. Al-Osh and Alzaid [1] offered a general theory for integer-valued
moving average processes of order q (INMA(q)). Du and Li [7] (see also Jayakumar [10]
and Latour [11]) developed higher-order integer-valued autoregressive processes of order
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p (INAR(p)) processes. Related models that made use of a more general operator were
introduced by Aly and Bouzar [2] and Zhu and Joe [22]. We refer to McKenzie [17] for
an overview of the work in this area (and for further references).

van Harn et al. [21] introduced the generalized multiplication �F (see definition be-
low) as an extension of binomial thinning and used it to define concepts of discrete self-
decomposability and stability. Subsequently, van Harn and Steutel [20] used�F to define
and solve stability equations involving continuous-time Z+-valued processes with sta-
tionary independent increments.

The purpose of this paper is to introduce and develop a family of INAR(p) processes
by using the �F multiplication in lieu of binomial thinning see Definitions 2.1 and 5.1.
We obtain various distributional and regression properties for these models. A number
of stationary INAR(p) processes with specific marginals are presented and are shown to
generalize several existing models. The paper is organized as follows. In Section 2, we
introduce the F-INAR(1) process and give several properties. Stationary solutions for F-
INAR(1) processes and characterizations of their marginals are offered in Section 3. In
Section 4, we study the question of time-reversibility for a stationary F-INAR(1) pro-
cess and we obtain a form for the probability generating function (pgf) of its marginal.
Section 5 is devoted to higher-order F-INAR(p) models and their properties.

In the rest of this section, we recall some definitions and results that are needed in the
sequel. For proofs and further details, we refer to Athreya and Ney (see [5, Chapter 3]),
van Harn et al. [21], and van Harn and Steutel [20]. The pgf of a distribution (pn, n≥ 0)
on Z+ is defined by

P(z)=
∞∑
n=0

pnz
n

(|z| ≤ 1
)
. (1.3)

F := (Ft, t ≥ 0) will denote a continuous composition semigroup of pgf ’s such that Ft �≡ 1
and δF =− lnF′1(1) > 0. For any |z| ≤ 1,

Fs ◦Ft(z)= Fs+t(z) (s, t ≥ 0), lim
t↓0

Ft(z)= z, lim
t→∞Ft(z)= 1. (1.4)

The infinitesimal generator U of the semigroup F is defined by

U(z)= lim
t↓0

Ft(z)− z
t

(|z| ≤ 1
)
, (1.5)

and satisfiesU(z) > 0 for 0≤ z < 1. There exist a constant a > 0 and a distribution (hn,n≥
0) on Z+ with pgf H(z) such that h1 = 0,

H′(1)=
∞∑
n=1

nhn ≤ 1, (1.6)

U(z)= a{H(z)− z}, |z| ≤ 1. (1.7)
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The related A-function is defined by

A(z)= exp
{
−
∫ z

0

(
U(x)

)−1
dx
}

, z ∈ [0,1). (1.8)

The functions U(z) and A(z) satisfy

U
(
Ft(z)

)=U(z)F′t (z), A
(
Ft(z)

)= e−tA(z) (t ≥ 0, 0≤ z ≤ 1). (1.9)

Moreover,

δF = a
(
1−H′(1)

)=−U ′(1), F′t (1)= e−δF t (t ≥ 0). (1.10)

The function B(z) defined by

B(z)= lim
t→∞

Ft(z)−Ft(0)
1−Ft(0)

(1.11)

is a pgf such that B(0)= 0 and takes the form

B(z)= 1−A(z)δF . (1.12)

For a Z+-valued rvX and η ∈ (0,1), the generalized multiplication η�F X is defined by

η�F X =
X∑
i=1

Yi, (1.13)

where (Yi, i ≥ 1) is a sequence of i.i.d. rv’s independent of X with common pgf Ft, t =
− lnη.

Throughout the paper, stationarity of a stochastic process is considered to be in the
strict sense. Finally, PX will denote the pgf of the distribution of a Z+-valued rv X .

2. F-INAR(1) processes

Definition 2.1. A sequence (Xn, n∈ Z) of Z+-valued rv’s is said to be an F-INAR(1) pro-
cess if for any n∈ Z,

Xn = η�F Xn−1 + εn, (2.1)

where 0 < η < 1 and (εn, n∈ Z) is an i.i.d. sequence of Z+-valued rv’s that is assumed to
be independent of the Y variables that define the operator �F (see below). (εn, n∈ Z) is
called the innovation sequence.

In the remainder of this paper, we will at times refer to the single-ended F-INAR(1)
process (Xn, n≥ 0) that arises when (2.1) is assumed to hold only for n≥ 0.
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The generalized multiplication η�F Xn−1 in (2.1) is performed independently for each
n. More precisely, we assume the existence of an array (Yi,n, i ≥ 0, n ∈ Z) of i.i.d. Z+-
valued rv’s, independent of (εn, n ∈ Z), such that the array’s common pgf is Ft(z), t =
− lnη, and (see (1.13))

η�F Xn−1 =
Xn−1∑
i=1

Yi,n−1. (2.2)

These assumptions clearly make the model (2.1) a Markov chain.
The pgf ’s PXn(z) and Pε(z) of the F-INAR(1) process (2.1) satisfy the equation

PXn(z)= PXn−1

(
Ft(z)

)
Pε(z), t =− lnη, n∈ Z. (2.3)

By using (2.3) recursively (and the fact that Ft(z) is a semigroup), it can be shown that an
F-INAR(1) process (Xn, n∈ Z) admits the following representation for any k ≥ 1:

Xn
d= ηk �F Xn−k +

k−1∑
i=0

ηi�F εn−i, n∈ Z. (2.4)

Further distributional and correlation properties of F-INAR(1) processes are gathered
in the following proposition.

Proposition 2.2. Assume
∑∞

n=2n(n− 1)hn <∞. Let (Xn, n∈ Z) be an F-INAR(1) process
(for some 0 < η < 1) such that E(Xn) <∞ and E(X2

n) <∞ for any n ∈ Z, µε = E(ε0) <∞
and σ2

ε =Var(ε0) <∞.
(i) The regression of Xn on Xn−1 is linear:

E
(
Xn|Xn−1

)= ηδFXn−1 +µε, n∈ Z. (2.5)

(ii) The conditional variance of Xn given Xn−1 is linear:

Var
(
Xn|Xn−1

)= AXn−1 + σ2
ε , n∈ Z, (2.6)

where A= (1−U ′′(1)/U ′(1))ηδF (1−ηδF ).
(iii) For any n∈ Z and k ≥ 0, the covariance at lag k, Γn(k)= cov(Xn−k,Xn) of {Xn}, is

Γn(k)= ηkδF Var
(
Xn−k

)
. (2.7)

(iv) For any n∈ Z and k ≥ 0,

E
(
Xn
)= ηkδFE(Xn−k)+µε

k−1∑
i=0

ηiδF ,

Var
(
Xn
)= η2kδF Var

(
Xn−k

)
+A

k∑
i=1

η2(i−1)δF E
(
Xn−i

)
+ σ2

ε

k∑
i=1

η2(i−1)δF ,

(2.8)

where A is as in (2.6) above.
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Proof. First, we note (by (1.7)) that
∑∞

n=2n(n− 1)hn <∞ implies that U ′′(1) exists. By
(2.2) and (1.10), E(η�F Xn−1|Xn−1) = ηδFXn−1 which leads to (2.5). By differentiating
twice (with respect to z) the expression U(Ft(z)) = F′t (z)U(z) (t = − lnη) and letting
z→ 1, we obtain F′′t (1) = ηδF (ηδF − 1)U ′′(1)/U ′(1). Again, by (2.2) and (1.10), E((η�F

Xn−1)2|Xn−1)=Var(Y1,n−1)X +ηδFX2. Noting that

Var
(
Y1,n−1

)= F′′t (1) +F′t (1)−F′t (1)2 = ηδF (1−ηδF )(1− U ′′(1)
U ′(1)

)
, (2.9)

(2.6) follows by direct calculations. Equation (2.7) is obtained by applying a conditioning
argument to (2.4). Finally, (2.8) are easily derived from (2.5) and (2.6). �

The following result due to Latour [11] insures the existence of a stationary F-INAR(1)
process.

Proposition 2.3. Given 0 < η < 1 and a sequence (εn, n∈ Z) of i.i.d. Z+-valued rv’s with
finite mean µε and finite variance σ2

ε , there exists a stationary F-INAR(1) process (Xn, n∈
Z) satisfying (2.1) and such that cov(Xm,εn)= 0, m< n.

Next, we explore the relationship between discrete self-decomposability and stationary
F-INAR(1) processes. A distribution on Z+ with pgf P(z) is said to be F-self-decompos-
able (van Harn et al. [21]) if for any t > 0, there exists a pgf Pt(z) such that

P(z)= P(Ft(z)
)
Pt(z), |z| ≤ 1. (2.10)

Any F-self-decomposable distribution can arise as the marginal distribution of a sta-
tionary F-INAR(1) process. More precisely, we have the following result.

Proposition 2.4. Let P(z) be the pgf of an F-self-decomposable distribution. For any η ∈
(0,1), there exists a stationary F-INAR(1) process (Xn, n∈ Z) whose marginal distribution
has pgf P(z).

Proof. Using (2.10), one can construct for every η ∈ (0,1), a single-ended F-INAR(1)
process (Xn, n≥ 0) of the form (2.1) whose innovation sequence (εn, n≥ 0) has common
pgf Pt(z) (where t =− lnη) and such that X0 has pgf P(z). It follows from (2.3) and (2.10)
that the Xn’s are identically distributed, which implies that (Xn, n≥ 0) is stationary since
it is a Markov chain. The double-ended version is obtained by sliding (Xn, n≥ 0) to the
left. �

Next, we state a representation theorem for stationary F-INAR(1) processes. The proof
follows easily from (2.4) and is omitted.

Proposition 2.5. Any stationary F-INAR(1) process (Xn, n ∈ Z) admits the following
(infinite-order) moving average representation for some 0 < η < 1:

Xn
d=
∞∑
i=0

ηi�F εn−i, n∈ Z, (2.11)

where the convergence of the series is in the weak sense.
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The mean, variance, and autocorrelation function (ACRF) of a stationary F-INAR(1)
process follow straightforwardly from Proposition 2.2.

Corollary 2.6. Assume
∑∞

n=2n(n−1)hn <∞. Let (Xn, n∈Z) be a stationary F-INAR(1)
process (for some 0 < η < 1) such that E(X0) <∞, E(X2

0 ) <∞, µε = E(ε0) <∞, and σ2
ε =

Var(ε0) <∞. Then

(i) for any n∈ Z,

E
(
Xn
)= µε(1−ηδF )−1

,

Var
(
Xn
)=

(
1−U ′′(1)/U ′(1)

)
ηδF µε + σ2

ε

1−η2δF
;

(2.12)

(ii) for any k ≥ 0 and n∈ Z, the correlation coefficient of (Xn−k,Xn) is

ρ(k)= ηkδF . (2.13)

We note that the ACRF of a stationary F-INAR(1) process, as given by (2.13), has
the same form as that of the standard AR(1) process. It decays exponentially at lag k.
However, unlike the standard AR(1) case, ρ(k) remains always positive.

Remark 2.7. Assume that (Xn, n≥ 0) is a one-sided F-INAR(1) process. If the pgf ’s Pε(z)
and Ft(z) (t =− lnη) satisfy

∫ 1

0

1−Pε(x)
Ft(x)− x dx <∞, t =− lnη, (2.14)

then by Foster and Williamson [9], (Xn, n ≥ 0) admits a limiting distribution. Endow-
ing X0 with the limiting distribution leads to stationarity (since (Xn, n≥ 0) is a Markov
chain).

3. Stationary solutions of F-INAR(1) processes

In this section, we present several stationary solutions of F-INAR(1) processes.
A Z+-valued rv X is said to have an F-stable distribution with exponent γ > 0 if there

exists a sequence of i.i.d. rv’s (Xi, i ≥ 0), Xi
d= X for all i, such that for any n > 0, X

d=
n−1/γ �F

∑n
i=1Xi (see van Harn et al. [21]). F-stable distributions are F-self-decomposable

and exist only when 0 < γ ≤ δF . Moreover, the pgf P(z) of an F-stable distribution with
exponent γ ∈ (0,δF] admits the canonical representation

P(z)= exp
[− λA(z)γ

]
(3.1)

for some λ > 0, where A(z) is given in (1.8).
It follows by Proposition 2.4 that for every 0 < η < 1, there exists a stationary F-

INAR(1) process (Xn, n ∈ Z) with an F-stable marginal distribution with exponent γ
(0 < γ ≤ δF). The marginal distribution of the innovation sequence (εn, n∈ Z), obtained
by solving for Pε in (2.3) and by using (1.9), is also F-stable with exponent γ and has pgf

Pε(z)= exp
[− λ(1−ηγ)A(z)γ

]
. (3.2)



E.-E. A. A. Aly and N. Bouzar 7

Moreover, it can be shown (see van Harn et al. [21]) that stationary F-INAR(1) processes
whose marginal is F-stable with finite mean arise only in the case γ = δF and B′(1) <∞
(where B(z) is given by (1.12)). The process has finite variance if B′′(1) <∞.

We have shown above (by letting η = e−t) that the pgf P(z) of the marginal distribution
of a stationary F-stable F-INAR(1) process satisfies the following property. For any t > 0,
there exist c(t)∈ (0,1) such that

P
[
Ft(z)

]= P(z)c(t), 0≤ z ≤ 1. (3.3)

It turns out that this property characterizes such processes.

Proposition 3.1. Let P(z) be a pgf such that P(z) �= 0 for all 0 ≤ z ≤ 1. Then P(z) is F-
stable, with some exponent γ ∈ (0,δF], if and only if for any t > 0, there exists c(t) ∈ (0,1)
such that (3.3) holds. The function c(t) is necessarily of the form c(t)= e−γt.
Proof. We need only to prove the “if” part. Let ψ(z)= lnP(z). It follows by (3.3) that for
any t > 0, there exists c(t)∈ (0,1) such that

ψ
(
Ft(z)

)= c(t)ψ(z). (3.4)

Letting ψ1(z)= ψ(z)/ψ(0) and noting that c(t)= ψ(Ft(0))/ψ(0), (3.4) becomes

ψ1
(
Ft(z)

)= ψ1
(
Ft(0)

)
ψ1(z). (3.5)

By differentiating (3.5) with respect to t, we obtain

∂

∂t
Ft(z)ψ′1

(
Ft(z)

)= ∂

∂t
Ft(0)ψ′1

(
Ft(0)

)
ψ1(z). (3.6)

Using (∂/∂t)Ft(z)=U(Ft(z)) and letting t ↓ 0, it follows by (1.4) that

ψ′1(z)
ψ1(z)

= U(0)
U(z)

ψ′1(0), (3.7)

whose solution is ψ1(z) = A(z)γ, where γ = −ψ′1(0)U(0) > 0. Hence, P(z) has the form
(3.1). Since P is a pgf, γ must satisfy γ ≤ δF (cf. van Harn and Steutel [20, the proof
of Lemma 4.2]). The form of c(t) follows from its uniqueness and the “only if” part.

�

Next, we present a stationary F-INAR(1) process with an F-geometric stable marginal
distribution.

A Z+-valued rvX is said to have an F-geometric stable distribution if for any p ∈ (0,1),

there exists α(p) ∈ (0,1) such that X
d= α(p)�F

∑Np

i=1Xi, where (Xi, i ≥ 1) is a sequence

of i.i.d. rv’s, Xi
d= X , Np has the geometric distribution with parameter p, and (Xi, i≥ 1)

and Np are independent (see Bouzar [6]). F-geometric stable distributions are F-self-
decomposable and their pgf ’s admit the canonical representation

P(z)= (1 + λA(z)γ
)−1

(3.8)
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for 0 < γ ≤ δF and λ > 0. We will refer to distributions with pgf (3.8) as F-geometric stable
distributions with exponent γ.

By Proposition 2.4, there exists, for every η ∈ (0,1), a stationary F-INAR(1) process
(Xn, n∈ Z) with an F-geometric stable marginal distribution with pgf (3.8). Its innova-
tion sequence (εn, n ∈ Z) has marginal pgf (obtained by solving (2.3) for Pε(z) and by
using (1.9))

Pε(z)= ηγ +
(
1−ηγ)(1 + λA(z)γ

)−1
, 0 < γ ≤ δF , λ > 0. (3.9)

This implies that a stationary F-INAR(1) process (Xn, n∈ Z) with an F-geometric stable
distribution can be written as

Xn = η�F Xn−1 + InEn, n∈ Z, (3.10)

where (In, n ∈ Z) and (En, n ∈ Z) are independent sequences of i.i.d. rv’s such that In
is Bernoulli(1− ηγ) and En has the same distribution as Xn. Moreover, a stationary F-
INAR(1) process with an F-geometric stable marginal has finite mean only if γ = δF and
B′(1) <∞. It has a finite variance if B′′(1) <∞.

We have in fact shown by the above argument (and by letting η = e−t) that the pgf
P(z) of the marginal distribution of a stationary F-geometric stable F-INAR(1) process
satisfies the following property. For any t > 0, there exists c(t)∈ (0,1) such that

P(z)= P(Ft(z)
)(
c(t) +

(
1− c(t))P(z)

)
. (3.11)

We show next that the converse is true.

Proposition 3.2. Let P(z) be the pgf of a nondegenerate distribution on Z+. Then P(z) is
F-geometric stable with some exponent γ ∈ (0,δF] if and only if for any t > 0, there exists
c(t)∈ (0,1) such that (3.11) holds. The function c(t) is necessarily of the form c(t)= e−γt.
Proof. We only need to show the “if” part. Rewriting P(z) = (1 +ψ(z))−1, it follows by
(3.11) that for t > 0, there exists c(t) ∈ (0,1) such that ψ(Ft(z)) = c(t)ψ(z). Using the
exact same argument as the one in the proof of Proposition 3.1 (following (3.5)), we have
ψ(z)= λA(z)γ for some 0 < γ ≤ δF and λ > 0. The form of c(t) follows from its uniqueness
and the “only if” part. �

We define next a compound discrete Linnik distribution and construct the corre-
sponding stationary F-INAR(1) process.

A Z+-valued rv X is said to have an F-compound discrete Linnik distribution if its pgf
has the form

P(z)= (1 + λA(z)γ
)−r

(3.12)

for some 0 < γ ≤ δF , λ > 0, and r > 0. Note that P(z) indeed results from the compounding
of i.i.d. rv’s (with the common pgf B(z) of (1.12)) by a discrete Linnik distribution (with
pgf G(z) = (1 + λ(1− z)γ/δF )−r). The special case r = 1 in (3.12) gives the F-geometric
stable distribution. van Harn and Steutel [20] showed that F-compound discrete Linnik
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distributions are F-self-decomposable and arise as solutions to stability equations for Z+-
valued processes with stationary independent increments.

Again by self-decomposability, for every η ∈ (0,1), there exists a stationary F-INAR(1)
process (Xn, n∈ Z) with an F-compound Linnik marginal distribution (with pgf (3.12)).
Its innovation sequence {εn} has pgf

Pε(z)=
(

1 + ληγA(z)γ

1 + λA(z)γ

)r
. (3.13)

It can be shown by a straightforward pgf argument that {εn} has the representation

ε d=
N∑
i=1

(
ηUi
)�F Wi, (3.14)

where (Wi, i≥ 0) is a sequence of i.i.d. F-geometric stable rv’s (with pgf (3.8)), {Ui} are
i.i.d. uniform (0,1) rv’s, and N is Poisson with mean −rγ lnη, with all these variables
independent. This allows for a shot-noise interpretation of the process that is similar to
the one given by Lawrance [12] for the gamma AR(1) process (see also McKenzie [15] for
the case of the negative binomial INAR(1) process). A shot-noise process is defined by

X(t)=
N(t)∑

m=N(−∞)

ηt−τm �Wm, (3.15)

where (Wm, m ≥ 0) are Z+-valued i.i.d. rv’s (amplitudes of the shots) and (N(t), t ≥ 0)
is a Poisson process with occurrence times at τm. If the Wm’s have their common pgf
given by (3.8) and N(t) has rate−rγ lnη, then X(t) of (3.15), sampled at n= 0,±1,±2, . . .
gives another representation of the stationary F-INAR(1) process (2.1) with marginal pgf
(3.12). The proof of this fact is an adaptation of Lawrance’s [12] argument and the details
are omitted.

Finally, as above, a stationary F-INAR(1) process with an F-compound discrete Lin-
nik marginal has finite mean only if γ = δF and B′(1) <∞. It has a finite variance if
B′′(1) < ∞.

van Harn et al. [21] give some rich examples of continuous composition semigroups of
pgf ’s from which one can generate F-INAR(1) processes. We mention the parametrized
family of semigroups (F(θ), θ ∈ [0,1)) described by

F(θ)
t (z)= 1− θe−θt(1− z)

θ + θ
(
1− e−θt)(1− z)

, t ≥ 0, |z| ≤ 1, θ = 1− θ. (3.16)

In this case, we have δF(θ) = θ, UF(θ) (z) = (1− z)(1− θz) and AF(θ) (z) = ((1− z)/(1−
θz))1/θ . We note that for θ = 0, F(θ) corresponds to the standard semigroup F(0)

t (z) =
1− e−t + e−tz and the multiplication �F(0) becomes the binomial thinning operator of
Steutel and van Harn [19].

The Poisson AR(1) process of McKenzie [16] is the stationary F(0)-INAR(1) process
with an F(0)-stable marginal. More generally, the Poisson geometric INAR(1) process of
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Aly and Bouzar [2] arises as the stationary F(θ)-INAR(1) process with an F(θ)-stable mar-
ginal. The discrete Mittag-Leffler F-INAR(1) process of Pillai and Jayakumar [10] (and,
in particular, the geometric INAR(1) of McKenzie [14]) is the stationary F(0)-INAR(1)
process with an F(0)-geometric stable marginal. The discrete Linnik INAR(1) process of
Aly and Bouzar [3] (and, in particular, the negative binomial INAR(1) of McKenzie [14])
is the stationary F(0)-INAR(1) process with an F(0)-compound Linnik marginal.

Finally, we note that Zhu and Joe [22] used a reparametrized version of the semi-
group F(θ) to construct a continuous-time Z+-valued Markov process (X(t), t ≥ 0) via the
equation

X(t)= e−µ(t−s)�F(θ) X(s) + ε(s, t), s < t, (3.17)

where µ > 0 and ε(s, t) is Z+-valued and independent of X(s).

4. Time-reversibility of stationary F-INAR(1) processes

A stochastic process (Xn, n ∈ Z) is said to be time-reversible if for any n ∈ Z and k ≥ 0,
(Xn,Xn+1, . . . ,Xn+k) and (Xn+k,Xn+k−1, . . . ,Xn) have the same joint distribution.

Let (Xn, n ∈ Z) be an F-INAR(1) process. By the Markov property, (Xn, n ∈ Z) is
time-reversible if and only if for any n∈ Z, (Xn−1,Xn) and (Xn,Xn−1) have the same joint
distribution. In terms of the joint pgf gn(z1,z2) of (Xn−1,Xn) which is defined by

gn
(
z1,z2

)= E(zXn−1
1 zXn2

) (∣∣z1
∣∣≤ 1,

∣∣z2
∣∣≤ 1

)
, (4.1)

(Xn, n ∈ Z) is time-reversible if and only if gn(z1,z2) = gn(z2,z1) for all n ∈ Z, |z1| ≤ 1,
and |z2| ≤ 1.

By (2.1) and a conditioning argument, it is easily shown that

gn
(
z1,z2

)= Pε(z2
)
PXn−1

(
z1Ft

(
z2
))

(t =− lnη, 0 < η < 1). (4.2)

By Proposition 2.2(i), a time-reversible F-INAR(1) process (Xn, n ∈ Z) (such that
E(Xn) <∞ and E(εn) <∞) possesses the property of linear backward regression. That
is, there exist c > 0 and d ≥ 0 such that for any n∈ Z,

E
(
Xn−1|Xn

)= d+ cXn. (4.3)

We show next that under an x lnx condition (condition (4.4) below), a stationary F-
INAR(1) process with finite mean and finite variance has the property of backward linear
regression only if its pgf admits a certain form.

Proposition 4.1. Assume that the distribution (hn, n≥ 0) satisfies

∞∑
n=2

hnn lnn <∞. (4.4)

Let (Xn, n ∈ Z) be a stationary F-INAR(1) process with finite mean and finite variance
with the property of linear backward regression (4.3). Then the pgf P(z) of the marginal
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distribution of (Xn, n∈ Z) has the form

P(z)= exp
(
− λ

∫ 1

z

B(x)
x

dx
)

, (4.5)

where λ > 0 and B(z) is the pgf of (1.12).

Proof. Let n≥ 1 and let g(z1,z2) be the joint pgf of (Xn−1,Xn). We have by (2.3) and (4.2)

g
(
z1,z2

)= P
(
z1Ft

(
z2
))
P
(
z2
)

P
(
Ft
(
z2
)) (t =− lnη, 0 < η < 1). (4.6)

Differentiating g with respect to z1, then setting z1 = 1 and z2 = z, it follows that for any
n∈ Z,

E
(
Xn−1z

Xn
)= Ft(z)P(z)P′

(
Ft(z)

)
P
(
Ft(z)

) . (4.7)

Now by (4.3) we have for some c > 0 and d ≥ 0,

E
(
Xn−1z

Xn
)= E(zXnE(Xn−1|Xn

))= czE(XnzXn−1)+dE
(
zXn
)

(4.8)

for any n ≥ 1. Letting Q(z) = zP′(z)/P(z) and combining (4.7) and (4.8) (note that
E(XnzXn−1) = P′(z)), we obtain cQ(z) + d = Q(Ft(z)), and therefore, by differentiation,
cQ′(z) = F′t (z)Q′(Ft(z)). Noting that Q′(1) = Var(Xn) �= 0, it follows that c = F′t (1) =
e−δF t (with the second equation following from (1.10)) which implies

Q′(z)= eδF tF′t (z)Q′
(
Ft(z)

)
. (4.9)

An induction argument yields for any n≥ 1,

Q′(z)= enδF t
n−1∏
j=0

F′t
(
Fjt(t)

)
Q′
(
Fnt(z)

)
. (4.10)

By the semigroup property and (1.9), we have F′t (Fjt(z)) = U(F( j+1)t(z))/U(Fjt(z)), j =
0, . . . ,n− 1. Therefore,

Q′(z)= enδF t U
(
Fnt(z)

)
U(z)

Q′
(
Fnt(z)

)
. (4.11)

From the semigroup properties (1.4), (1.10), and (1.11), we have

lim
n→∞Fnt(z)= 1, lim

n→∞
U
(
Fnt(z)

)
Fnt(z)− 1

=U ′(1)=−δF , lim
n→∞

Fnt(z)− 1
Fnt(0)− 1

= 1−B(z).

(4.12)

Moreover, (4.4) implies (see van Harn et al. [21])

lim
n→∞e

nδF t
(
Fnt(0)− 1

)=−1. (4.13)
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Therefore, by letting n→∞ in (4.11), we obtain

Q′(z)= δFQ′(1)
1−B(z)
U(z)

. (4.14)

Since (by (1.8) and (1.12)) 1/U(z) = −A′(z)/A(z) and 1−B(z) = A(z)δF , we have (note
that Q(0)= 0)

Q(z)=
∫ z

0
Q′(x)dx =Q′(1)

(
1−A(z)δF

)=Q′(1)B(z), (4.15)

which implies that P′(z)/P(z)=Q′(1)B(z)/z or

lnP(z)=−Q′(1)
∫ 1

z

B(x)
x

dx. (4.16)

�

We note that Proposition 4.1 remains valid if the property of backward linear regres-
sion is replaced by the (stronger) assumption of time-reversibility.

For the family of semigroups (F(θ), θ ∈ [0,1)) of (3.16), the condition (4.4) is satisfied
(since hn = 0 for n≥ 3). In this case, the pgf P(z) of (4.5) is shown to be

P(z)=


e−λ(1−z) if θ = 0 (λ > 0),(

θ

1− θz
)r

if 0 < θ < 1 (r > 0).
(4.17)

The Poisson distribution (resp., the negative binomial distribution with probability of
success θ, 0 < θ < 1) is the only distribution that arises as the marginal of a stationary
F(0) − INAR(1) (resp., F(θ)-INAR(1)) process with finite mean and finite variance and
with the property of backward linear regression. These results were established by Alzaid
and Al-Osh [4] (for θ = 0) and by Aly and Bouzar [2] (for 0 < θ < 1).

5. An F-INAR(p) process

Lawrance and Lewis [13] introduced the mixed autoregressive process of order p (AR(p))

Xn =
p∑
i=1

I
(
ξn = i

)
ηiXn−i + εn, (5.1)

where I(A) is the indicator function of the event A, {ξn} and {εn} are two independent
sequences of i.i.d. rv’s, 0 < ηi < 1, P(ξn = i) = ci, i = 1,2, . . . , p, and

∑p
i=1 ci = 1. The au-

thors obtained the distribution of the innovation rv εn for the stationary AR(p) process
with an exponential marginal. Pillai and Jayakumar [18] went a bit further by deriving
the distribution of εn for the stationary AR(p) process with the Mittag-Leffler marginal
on R+. Using the binomial thinning operator of Steutel and van Harn [19], Jayakumar
[10] defined the discrete analogue of (5.1) and constructed the discrete Mittag-Leffler
INAR(p) process.
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In this section, we present a generalized INAR(p) process by using the �F operator.
In particular, we will derive the marginal distribution of the stationary INAR(p) process
with an F-geometric stable marginal.

Definition 5.1. A sequence {Xn} of Z+-valued rv’s is said to be an F-INAR(p) process if
for any n∈ Z,

Xn =
p∑
i=1

I
(
ξn = i

)
ηi�F Xn−i + εn, (5.2)

where (ξn, n∈ Z) and (εn, n∈ Z) are two independent sequences of i.i.d. Z+-valued rv’s,
0 < ηi < 1, P(ξn = i)= ci, i= 1,2, . . . , p, and

∑p
i=1 ci = 1.

The generalized multiplication ηi �F Xn−i in (5.2) is performed independently for

each i. More precisely, we assume the existence of p independent arrays (Y
( j)
i,n , i≥ 0, n∈

Z), j = 1,2, . . . , p, of i.i.d. Z+-valued rv’s, independent of (ξn, n∈ Z) and (εn, n∈ Z), such
that for each j = 1,2, . . . , p, the array’s common pgf is Ftj (z), t j =− lnηj , and

ηj �F Xn− j =
Xn− j∑
i=1

Y
( j)
i,n− j . (5.3)

In terms of pgf ’s, it follows from (5.2) that

PXn(z)=
( p∑
i=1

ciPXn−i
(
Fti(z)

))
Pε(z), ti =− lnηi. (5.4)

The autocorrelation structure of a stationary F-INAR(p) process is given in the fol-
lowing proposition and its corollary.

Proposition 5.2. Assume
∑∞

n=2n(n − 1)hn < ∞. Let (Xn, n ∈ Z) be a stationary F-
INAR(p) process such that E(X0) <∞, E(X2

0 ) <∞, µε = E(ε0) <∞, and σ2
ε =Var(ε0) <∞.

Let ci and ηi (i= 1, . . . , p) be as in (5.2). Then

(i) for any n∈ Z,

E
(
Xn
)=

(
1−

p∑
i=1

ciη
δF
i

)−1

µε; (5.5)

(ii) the autocovariance function Γ(k)= Cov(Xn−k,Xn) of (Xn, n∈ Z) is given by

Γ(k)=




p∑
i=1

ciη
δF
i Γ(i) +B if k = 0,

p∑
i=1

ciη
δF
i Γ(k− i) if k ≥ 1,

(5.6)
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with Γ(k)= Γ(−k), k ≥ 1, and

B = σ2
ε +

1−U ′′(1)
U ′(1)

E
(
X0
) p∑
i=1

ciη
δF
i

(
1−ηδFi

)
+E

(
X2

0

) p∑
i=1

(
ci− c2

i

)
η2δF
i . (5.7)

Proof. Stationarity implies Γ(k) = Γ(−k). Using (5.2), (1.10), and a conditioning argu-
ment yields (5.5) and

E
(
Xn−k

(
ηi�F Xn−i

))= ηδFi E(Xn−kXn−i) (i= 1,2, . . . , p). (5.8)

It follows that E(XnXn−k) =∑p
i=1 ciη

δF
i E(Xn−kXn−i) + E(εn)E(Xn−k). Combining this last

equation with (5.5) gives the formula for Γ(k), k ≥ 1, in (5.6). Direct calculations lead to
(note again that U ′′(1) exists because

∑∞
n=2n(n− 1)hn <∞)

Γ(0)=
p∑
i=1

c2
i η

2δF
i Γ(0) + 2

∑
1≤i< j≤p

cic jη
δF
i η

δF
j Γ( j− i) +B, (5.9)

where B is as in (5.7). This in turn leads to Γ(0) of (5.6). �

The sequence (Γ(k), k ∈ Z) is completely determined by (5.6) once Γ(k), k = 0, . . . , p,
are found. The latter are solution of the linear system (5.6) restricted to k = 0,1, . . . , p.
Since

∑p
i=1 ciη

δF
i < 1, it follows by Latour [11, Lemma 2.1] that this system has a unique

solution given by

Γp = B(I−C)−1c, (5.10)

where Γp = (Γ(0),Γ(1), . . . ,Γ(p)), I is the (p + 1)× (p + 1) identity matrix, C is also (p +
1)× (p+ 1) whose (i, j) entry is equal to the coefficient of Γ(i) on the right-hand side of
the jth equation of (5.6), i, j = 0,1, . . . , p, c= (1,0, . . . ,0) (of length p+ 1), and B is given
by (5.7).

Corollary 5.3. Assume
∑∞

n=2n(n−1)hn <∞. Let (Xn, n∈Z) be a stationary F-INAR(p)
process such that E(X0) <∞, E(X2

0 ) <∞, µε = E(ε0) <∞ and σ2
ε = Var(ε0) <∞. Then the

autocorrelation coefficient ρk at lag k, k ≥ 1, is given by

ρk =
p∑
i=1

ciη
δF
i ρk−i, (5.11)

where ρ0 = 1, ρk = ρ−k, and ci and ηi (i= 1, . . . , p) are as in (5.2).

Next, we determine the marginal distribution of the innovation sequence of a station-
ary F-INAR(p) process with an F-geometric stable marginal distribution (whose pgf is
given by (3.8)). We need a lemma first.
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Lemma 5.4. For i= 1,2, let fi(t)=
∑ni

j=1 ci j(ai j /(ai j + t)), t ≥ 0, ai j > 0, ci j ≥ 0, and
∑ni

j=1 ci j

= 1. If max1≤i≤n1 a1i < min1≤i≤n2 a2i, there exist c′k ≥ 0, dk > 0, with
∑n1+n2−1

k=0 c′k = 1 and dk
strictly increasing (with the dk’s being the a1k’s in ascending order for k = 1, . . . ,n1) such that

f1(t)
f2(t)

= c′0 +
n1+n2−1∑
k=1

c′k
dk

dk + t
. (5.12)

Proof. Note that fi(t) is the Laplace-Stieltjes transform of a mixture of exponential distri-
butions. By grouping and reordering if necessary, we may assume without loss of gener-
ality that 0 < ai j < ··· < aini , i= 1,2. Using a result in Feller [8, pages 438–439], we have

fi(t)= Ci · bi1 + t
ai1 + t

·····bi,ni−1 + t
ai,ni−1 + t

· 1
aini + t

, (5.13)

where 0 < ai1 < bi1 < ai2 < bi2 < ··· < bi,ni−1 < aini and Ci > 0. Letting dk = a1k, k = 1, . . . ,
n1, and dn1+k = b2k, k = 1, . . . ,n2− 1, a straightforward partial fraction expansion leads to
(5.12). The fact that a1n1 < a21 and f1(0)/ f2(0) = 1 implies that c′k ≥ 0,

∑n1+n2−1
k=0 c′k = 1,

and dk is increasing by definition. �

Proposition 5.5. If (Xn, n ∈ Z) is a stationary F-INAR(p) process with an F-geometric
stable marginal (with pgf given by (3.8)), then

εn
d=

p∑
j=0

I
(
Vn = j

)
βj �F En, (5.14)

where (Vn, n∈ Z) and (En, n∈ Z) are independent sequences of i.i.d. rv’s, P(Vn = j)= c′j ,
j = 0, . . . , p,

∑p
j=0 c

′
j = 1, En has the same distribution as Xn, β0 = 0, β1 = 1, and 0 < βi < 1

for i= 2, . . . , p.

Proof. Using (1.9), (3.8), and (5.4), we have

Pε(z)=
(
1 + λA(z)γ

)−1

∑p
i=1 ciai

(
ai + λA(z)γ

)−1 , (5.15)

with λ > 0, 0 < γ ≤ δF , and ai = η−γi > 1, i= 1, . . . , p. By applying Lemma 5.4 to (5.15) with
n1 = 1, n2 = p, a11 = 1, a2 j = aj , and t = λA(z)γ, we obtain

Pε(z)= c′0 + c′1
(
1 + λA(z)γ

)−1
+

p∑
j=2

c′j
(
1 + λβ

γ
jA(z)γ

)−1
(5.16)

with β
γ
j = d−1

j , dj > 1 (by Lemma 5.4), for j = 2, . . . , p. The representation (5.14) then
follows easily from (5.16). �
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The proof of Proposition 5.5 shows that in the case of a stationary F-INAR(p) process
with an F-geometric stable marginal, the solution (5.16) of (5.4) exists for the full range
of p, {ti}, and {ci}. It turns out that the converse is true. That is, if P(z) is the pgf of a
nondegenerate distribution such that (5.16) is the solution of (5.4) (where PXk (z)= P(z)
for all k’s) for the full range of p, {ti}, and {ci}, then P(z) is necessarily F-geometric
stable. This is a direct consequence of Proposition 3.2, since, applied to the case p = 1,
the assumption reduces to (3.11).

Finite mixtures of F-geometric stable distributions can arise as marginals of stationary
F-INAR(p) processes. Such distributions have a pgf of the form

P(z)=
m∑
j=1

qj
(
1 + λjA(z)γ

)−1
, (5.17)

where 0 < γ ≤ δF , λj > 0, qj ≥ 0, and
∑m

j=1 qj = 1. Solving (5.4) for Pε, with PX as in (5.17),
gives

Pε(z)=
∑m

j=1 qjbj
(
bj +A(z)γ

)−1

∑p
i=1

∑m
j=1 ciq jbi j

(
bi j +A(z)γ

)−1 , (5.18)

where bj = 1/λj and bi j = bjη−γi . If

max1≤i≤mλi
min1≤i≤mλi

< min
1≤i≤p

η
−γ
i , (5.19)

then a straightforward application of Lemma 5.4 (n1 =m, n2 = p, the a1k’s are the bk’s, the
a2k’s are the bi j ’s, and t = A(z)γ) shows that Pε(z) is the pgf of a mixture of F-geometric
stable distributions and the degenerate distribution at 0.

One can use the family of semigroups (F(θ), θ ∈ [0,1)) of (3.16) to construct station-
ary F-INAR(p) processes with F-geometric stable (or finite mixtures of F-geometric sta-
ble) marginals. We note that Jayakumar’s [10] discrete Mittag-Leffler INAR(p) process is
the F(0)-INAR(p) process with an F(0)-geometric stable marginal. As seen above, finite
mixtures of discrete Mittag-Leffler distributions can arise as the marginal of a stationary
F(0)-INAR(p) process (under condition (5.19)). This is a counterexample to Jayakumar’s
[10, Theorem 2.2] that states that only discrete Mittag-Leffler distributions can arise as
marginals of stationary INAR(p) processes.

Finally, we mention that a more general F-INAR(p) process can be constructed using
Latour’s [11] definition of an INAR(p) process. In this case, (5.2) becomes

Xn =
p∑
i=1

ηi�F Xn−i + εn, (5.20)

where 0 < ηi < 1, i = 1, . . . , p, and (εn, n ∈ Z) is an i.i.d. sequence of Z+-valued rv’s with
finite mean µε and finite variance σ2

ε . By Latour [11], a finite mean stationary INAR(p)
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process of type (5.20) exists if and only if

p∑
i=1

ηδFi < 1. (5.21)

Proposition 5.2 and Corollary 5.3 remain valid with the following modified formulas for
the mean:

E
(
Xn
)=

(
1−

p∑
i=1

ηδFi

)−1

µε, (5.22)

the autocovariance function (with B1 = σ2
ε + (1−U ′′(1)/U ′(1))E(X0)

∑p
i=1η

δF
i (1−ηδFi ))

Γ(k)=




p∑
i=1

ηδFi Γ(i) +B1 if k = 0,

p∑
i=1

ηδFi Γ(k− i) if k ≥ 1,

(5.23)

and the autocorrelation coefficient

ρk =
p∑
i=1

ηδFi ρk−i. (5.24)
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