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We consider the problem of selecting an optimality criterion, when total costs diverge,
in deterministic infinite horizon optimization over discrete time. Our formulation allows
for both discrete and continuous state and action spaces, as well as time-varying, that
is, nonstationary, data. The task is to choose a criterion that is neither too overselective,
so that no policy is optimal, nor too underselective, so that most policies are optimal.
We contrast and compare the following optimality criteria: strong, overtaking, weakly
overtaking, efficient, and average. However, our focus is on the optimality criterion of
efficiency. (A solution is efficient if it is optimal to each of the states through which it
passes.) Under mild regularity conditions, we show that efficient solutions always exist
and thus are not overselective. As to underselectivity, we provide weak state reachability
conditions which assure that every efficient solution is also average optimal, thus provid-
ing a sufficient condition for average optima to exist. Our main result concerns the case
where the discounted per-period costs converge to zero, while the discounted total costs
diverge to infinity. Under the assumption that we can reach from any feasible state any
feasible sequence of states in bounded time, we show that every efficient solution is also
overtaking, thus providing a sufficient condition for overtaking optima to exist.

1. Introduction

The problem of optimally selecting a sequence of decisions over an infinite horizon is
complicated by the criterion issue of imposing preferences over the collection of associ-
ated cost streams. Even in the case where the infinite stream of cost flows is discounted,
the resulting discounted total costs may all be infinite. Failure of an optimality criterion to
distinguish among different policies is a problem of underselectivity of the criterion. At the
other extreme is a notion of optimality so strong that none of the feasible policies satisfies
its conditions, a problem of over-selectivity. In a recent paper, Schochetman and Smith
[18] considered the notion of optimality-termed efficiency (see [16]) or sometimes finite
optimality (Halkin [9]). A solution is termed efficient if, roughly speaking, it is optimal
to each of the states through which it passes. Efficient solutions avoid being overselective
in that their existence is assured by mild topological conditions. Nor are they particularly
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underselective in that the requirement that they be optimal to each state constrains prior
states to be along optimal paths to those states. In this paper, we compare and contrast
the selectivity of efficiency with more traditional notions of optimality, namely, strong,
overtaking, weakly overtaking, and average optimalities. In particular, we develop a state
reachability condition which, in the presence of discounting, assures us that efficient so-
lutions are overtaking optimal. Since efficient solutions always exist, the latter condition
provides a new sufficient condition for the existence of overtaking optimal solutions. In
the discrete control setting of Schochetman and Smith [18], it was shown that, under a
state reachability condition, every efficient solution is average optimal. Here, we weaken
this reachability condition and extend this result to the continuous control case.

The discrete-time, deterministic framework within which we work, and the very gen-
eral nature of the underlying optimization problem, represent significant departures from
the traditional context for the comparison of optimality criteria. We consider an ex-
tremely general deterministic infinite horizon optimization problem, formulated as a dy-
namic programming problem. Essentially, the only restriction in this work, apart from
being a deterministic model, is the requirement that the set of feasible decision alterna-
tives be compact at each decision epoch. In particular, we do not assume that data are sta-
tionary. Moreover, we do not assume complete reachability, that is, the ability of the system
to transition from any state to another in the very next period. This is not an uncommon
assumption in the literature. Also since we have imposed no linear space structure, we do
not make any convexity assumptions. In general, our model framework includes produc-
tion planning under nonstationary demand, parallel and serial equipment replacement
under technological change, capacity planning under nonlinear demand, and optimal
search in a time-varying environment.

In this paper, we compare and contrast the selectivity of efficiency with the more tradi-
tional notions of optimality including strong, overtaking, weakly overtaking, and average
optimalities. Strong optimality is conferred on any strategy that attains minimum total
cost. Of course, it can happen (Example 3.13) that all total costs over the infinite horizon
diverge, thus necessitating alternate notions of optimality. Overtaking optimality was in-
troduced in the economic literature by Gale (1965) and von Weiszacker (1967), and later
adopted by optimal control theorists. Shortly thereafter, the notion of weakly overtaking
optimality was introduced by Brock [4] for economic growth models, followed by Halkin
[9] for optimal control problems. In the latter, Halkin also implicitly defined the notion
of finite optimality, which we refer to here as efficiency. Finally, average optimality was
extensively studied by Veinott [19]. See also Bertsekas [2, 3].

We will see that the efficiency criterion is not overselective, since the existence of effi-
cient solutions is assured by relatively mild topological conditions. (We give a reasonable
sufficient condition for efficient optimal solutions to exist in our discrete-time, nonsta-
tionary, continuous state and control framework.) Nor is it particularly underselective,
since such a strategy must be optimal to every state attained along that path. In the dis-
crete action setting of Schochetman and Smith [18], it was shown that, under a (rather
strong) state-reachability condition, every efficient solution is average optimal. Here, we
weaken this state-reachability condition and extend this result to the case of continuous
states and controls. Consequently, this provides a sufficient condition for average optimal
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solutions to exist. Moreover, we give a stronger state-reachability condition which, in
the presence of discounting, assures us that efficient solutions are overtaking optimal.
Since (as we have noted) efficient solutions commonly exist, this state-reachability condi-
tion provides a new sufficient condition for the existence of overtaking optimal solutions.
Analogously, we show that a “weaker” reachability condition is sufficient for the existence
of average optima.

In Section 2, we formulate the state-transition and cost structures of our discrete-time,
infinite horizon, deterministic, nonstationary, continuous state and control problem. In
Section 3, we introduce the optimality criteria of interest (with and without discount-
ing), and compare them in the absence of any additional assumptions. In particular, we
present a mild condition which is sufficient to guarantee the existence of efficient solu-
tions (Theorem 3.4). It is also known (Halkin [9]), that weakly overtaking optima are
efficient for continuous-time and vector states. We give a discrete-time proof of the fact
that overtaking optima are average optimal (Theorem 3.9). We also show by counterex-
amples that, in general, the following holds:

(i) the optimal average value may or may not be attained (Examples 3.12, 3.14),
(ii) overtaking optima need not be strong optima (Example 3.13),

(iii) weakly overtaking optima need not be overtaking optima (Example 3.15),
(iv) average optima need not be overtaking optima (Example 3.13),
(v) efficient optima need not be weakly overtaking optima (Example 3.13),

(vi) efficiency and average optimalities are not comparable criteria in general (Exam-
ples 3.12, 3.15),

(vii) weakly overtaking optimality and average optimality are not comparable in gen-
eral (Examples 3.13, 3.15).

In Section 4, we introduce various state reachability conditions which are consider-
ably weaker than complete reachability. In the presence of average cost reachability, we
show that efficient solutions are average optimal (Theorem 4.3). In the presence of total
cost reachability, we show that the overtaking solutions are precisely the efficient solu-
tions (Theorem 4.4). Finally, as a consequence of this fact, we obtain an easily verified
sufficient condition involving bounded time reachability which guarantees the existence
of overtaking optimal solutions (Theorem 4.7).

Some of the results contained herein are known for either the continuous-time setting
or the discrete-time setting. In some instances, we give simpler, discrete-time proofs of
certain examples of the continuous-time results. In addition to the references already
cited, we recommend Brock and Haurie [5], Zaslavski [22], Haurie [10], Leizarowitz [14,
15], Lasserre [13], and Carlson et al. [6]. Finally, in [22, Section 5.3], the authors give a
discrete-time version of their continuous-time model. However, implicit in this model are
stationarity and complete reachability. In addition, states are required to belong toRn. We
make no such assumptions here. Moreover, they do not consider the average optimality
criterion at all there.

2. Problem formulation

We formulate a deterministic infinite horizon optimization problem within a discrete-
time framework. Otherwise, our problem is quite general. In particular, the problem is
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nonstationary, allows for compact state and action spaces, is discounted or not, and as-
sumes no reachability properties (as part of the problem definition). Moreover, by a fa-
miliar device, stochastic infinite horizon problems can be modelled by our framework
(see below).

Consider a sequence of decisions, where each decision is made at the beginning of each
of a series of equal time periods, indexed by j = 1,2, . . . . The set of all possible decisions
available in period j (irrespective of the period’s beginning state) is denoted by Yj . For
convenience, we assume that Yj is a compactum, that is, a compact, nonempty metric
space with metric ρj , for all j = 1,2, . . . . Without loss of generality, we may assume that
ρj(xj , yj)≤ 1, for all xj , yj ∈ Yj , for all j = 1,2, . . . .

We consider a dynamic system governed by the state equation s j = f j(s j−1, yj), for all
xj , yj ∈ Yj , for all j = 1,2, . . . , where s0 is the fixed and given initial state of the system
(beginning period 1), s j is the state of the system at the end of period j, that is, beginning
period j + 1, yj is the control (or action) selected in period j with knowledge of the state
s j−1, Sj is the compact metric space of feasible states ending period j (with S0 = {s0}),
so that s j ∈ Sj , for all j = 1,2, . . . , Yj(s j−1), is the given closed, nonempty subset Yj of
feasible controls available in period j when the beginning state is s j−1 ∈ Sj−1, so that yj ∈
Yj(s j−1)⊆ Yj , and f j is the given continuous state transition function in period j, where
f j : Fj → Sj , with

Fj =
{(
s j−1, yj

)∈ Sj−1×Yj : yj ∈ Yj
(
s j−1

)}
, ∀ j = 1,2, . . . . (2.1)

(Note that the nonemptiness of Yj(s j−1), for s j−1 ∈ Sj−1, is equivalent to the assumption
that all finite horizon feasible solutions can be feasibly continued from state s j−1 in pe-
riod j.) We assume that the set-valued mapping s j−1 � Yj(s j−1) of Sj−1 into Yj has the
following (closed graph).

Continuity property. For each j, if snj−1 → s j−1 in Sj−1, and ynj → yj in Yj , as n→∞, where
ynj ∈ Yj(snj−1), for all n, then yj ∈ Yj(s j−1).

In this event, each Fj is the closed (hence, compact) graph of the set-valued mapping
s j−1 � Yj(s j−1) in the compact space Sj−1 ×Yj . We require that Sj = f j(Fj) for all j =
1,2, . . . , so that, in particular, S1 = f1(F1), where F1 = {s0}×Y1(s0). Thus, each Sj consists
of the set of feasible, that is, attainable, states in period j.

Remarks 2.1. Before proceeding, it is worth noting that continuous-time optimization
problems can be adapted to our model. For the sake of simplicity, assume that strategies
are the same as state trajectories, that is, decisions are system states. Then proceed as in
[22]. Moreover, stochastic optimization problems can also be adapted to our model. Once
again, for simplicity, assume decisions are finite in number, so that policies correspond
to probability mass functions over underlying stochastic states. Then proceed as in [14].
We leave it to the interested reader to pursue those cases where decisions are not system
states and probability distributions are more general.

The product set Y =∏∞
j=1Yj of all potential decision sequences or strategies is then a

compact topological space relative to the product topology, that is, the topology of com-
ponentwise convergence. The product topology on Y is metrizable with metric d given
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by

d(x, y)=
∞∑
j=1

βjρj
(
xj , yj

)
, ∀x, y ∈ Y , (2.2)

where β is chosen arbitrarily so that 0 < β < 1.
Now let y ∈ Y and fix a positive integer N . Then y is feasible through period N if

yj ∈ Yj(s j−1), where s j = f j(s j−1, yj), for all j = 1,2, . . . ,N. Denote all such strategies by
XN , which is thus a closed, nonempty subset of Y . Note that if y is feasible through period
N and M < N , then y is feasible through period M, that is, XN ⊆ XM . Moreover, y is
a feasible strategy if y is feasible through period N , for each N = 1,2, . . . . We define the
feasible region X to be the subset of Y consisting of all those y which are feasible through
each period N , that is, x ∈ XN , for all N , so that X = ∩∞N=1XN . This set is closed in Y
and nonempty, since Yj(s j−1) is nonempty, for all j, and all s j−1 ∈ Sj−1. In fact, as a
consequence of this assumption, if y is feasible through a given period N , then it may
be feasibly extended over all remaining periods.

If y is feasible through period N , then we may define

s1(y)= f1
(
s0, y1

)
, s2(y)= f2

(
s1(y), y2

)
, . . . , sN (y)= fN

(
sN−1(y), yN

)
,

(2.3)

so that sN (y)∈ SN , and y ∈ XN if and only if yj ∈ Yj(s j−1(y)), for all j = 1,2, . . . ,N . We
will refer to each such sN (y) as the state through which y passes at the end of periodN . Thus,
for each N , we obtain a mapping sN : XN → SN , which is onto since SN consists of feasible
states. If y ∈ Y , z ∈ XN , and yj = zj , for all j = 1,2, . . . ,N , then y ∈ XN and sN (y)= sN (z).
Moreover, if x ∈ X , then for each period N , sN (x) is defined, and s ∈ SN implies that
there exists x ∈ X for which sN (x) = s. Finally, if x ∈ X , then (s j−1(x),xj) ∈ Fj , for all
j = 1,2, . . . .

Lemma 2.2. For each N , the mapping sN : XN → SN is continuous.

Proof. This follows from the continuity of f j . �

For convenience, we introduce the following notation. If N is a positive integer and
x, y ∈ Y , then we define

(
x|N y

)= (x1,x2, . . . ,xN , yN+1, yN+2, . . .
)
. (2.4)

The following is then immediate.

Lemma 2.3. If N is a positive integer and x, y ∈ X are such that sN (x) = sN (y), then z =
(x|N y) is also in X . Moreover, sM(z) = sM(x), for all M ≤ N , and sM(z) = sM(y), for all
M >N .

Turning to the objective function, we allow the cost of a decision made in period j
to also depend (indirectly) on the sequence of previous decisions, or more directly, on
the state resulting from these decisions. Specifically, we let cj(s j−1, yj) be the (undis-
counted) nonnegative cost of decision yj in period j, when s j−1 is the state beginning
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period j. We thus obtain cost functions cj : Fj → [0,∞) which we require to be continu-
ous. Thus, each cj attains its maximum, denoted by ‖cj‖, for all j. We say that the period
costs cj are exponentially bounded if there exist B > 0 and γ � 1 such that ‖cj‖ ≤ Bγ j ,
that is,

0≤ cj
(
s j−1, yj

)≤ Bγ j , ∀(s j−1, yj
)∈ Fj , ∀ j = 1,2, . . . . (2.5)

Of course, if γ = 1, then the period costs are actually uniformly bounded by B.
Throughout the following, let α be a discount factor, 0 < α≤ 1. For each strategy x ∈ X

and positive integer N , we define the associated total N-horizon cost CN (x|α) by

CN (x|α)=
N∑
j=1

αj−1cj
(
s j−1(x),xj

)
, (2.6)

so that 0 ≤ CN (x|α) <∞, and CN+1(x|α) � CN (x|α). If α < 1, this cost is discounted. If
α= 1, then the cost is undiscounted; in this event, we will write CN (x) for CN (x|1), so that
CN (x|α)≤ CN (x), for all N , x, and α. Note that each CN (·|α) is a continuous real-valued
function on X .

Our general problem is to find an infinite horizon feasible strategy x ∈ X which, in
some suitable sense, is optimal, that is, minimal. The fundamental question is: what does
“optimal” mean? There is no guarantee that the total cost of any strategy over the infinite
horizon will be finite, even if it is discounted. In the next section, we compare and contrast
five more-or-less familiar optimality criteria, each of which responds to this question.

3. Optimality criteria

There are many optimality criteria which exist in the literature, the most popular being
strong optimality. Others include overtaking optimality, weakly overtaking optimality, fi-
nite optimality, also known as efficiency, and average optimality. In this paper, we contrast
and compare these optimality criteria for our discrete-time problem, with and without
discounting. We begin with strong optimality.

For each x ∈ X and discount factor α, define the infinite horizon total cost C(x|α) by

C(x|α)=
∞∑
j=1

αj−1cj
(
s j−1(x),xj

)= lim
N→∞

CN (x|α)= sup
N

CN (x|α). (3.1)

Thus, the function C(·|α) : X → [0,∞] is both the pointwise limit and the supremum of
the continuous functions CN (·|α). Hence, C(·|α) is lower semicontinuous on X (Hewitt
and Stromberg [11, page 89]), for each α. As above, we will write C(x) for C(x|1). Thus,

0≤ C(x|α)≤ C(x)≤∞, ∀0 < α≤ 1, ∀x ∈ X. (3.2)
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Consequently, for a given x ∈ X , if C(x) <∞, then C(x|α) <∞, for each α. However, for
0 < α < 1, if C(x) =∞, it is possible that C(x|α) <∞. This depends on the behavior of
cj(s j−1(x),xj) versus that of αj−1, with respect to j. Accordingly, for each x in X for which
CN (x) > 0 eventually, that is, C(x) > 0, we define

k(x)= limsup
N

ln
(
CN (x)

)

N
. (3.3)

Note that if C(x) <∞, then k(x)= 0; if C(x)=∞, then ln(CN (x)) ↑ ∞.

Theorem 3.1. Fix x ∈ X for which C(x) > 0. If 0 < k(x) <∞, then C(x|α) <∞, for all α
such that 0 < α < e−k(x) < 1.

Proof. Fix 0 < α < 1. For σ =− lnα, we have

CN (x|α)=
N∑
j=1

cj
(
s j−1(x),xj

)
αj−1 =

N∑
j=1

cj
(
s j−1(x),xj

)(
e−σ
) j−1

, ∀N = 1,2, . . . . (3.4)

Applying Widder [21, Theorem 2.5], with λn = n− 1 and an = cn(sn−1(x),xn), we obtain
that C(x|α) <∞, for all α satisfying

− lnα > limsup
N

ln
(
CN (x)

)

N − 1
> 0. (3.5)

But

limsup
N

ln
(
CN (x)

)

N − 1
= limsup

N

ln
(
CN (x)

)

N
= k(x), (3.6)

so that C(x|α) < ∞, for all α satisfying − lnα > k(x) > 0; equivalently, α < e−k(x) < 1.
�

Our total cost optimization problem is then formulated as follows:

C∗(α)= inf
x∈X

C(x|α), (3.7)

so that 0≤ C∗(α)≤∞, and C∗(α)≤ C∗(1), for all 0 < α≤ 1. Note that C∗(α) <∞ if and
only if there exists at least one x ∈ X for which C(x|α) <∞. In any event, C∗(α) is always
attained. If C∗(α)=∞, then C(x|α)=∞, for all x ∈ X . If C∗(α) <∞, since X is compact
and C(·|α) is lower semicontinuous, it follows that C∗(α) is attained.

Strong optimality. Let x ∈ X . Then x is strongly optimal (relative to α) ifC(x|α)= C∗(α) <
∞, that is, C(x|α) <∞ and C(x|α)≤ C(y|α), for all y ∈ X .

For each 0 < α ≤ 1, we will denote the set of such strongly optimal solutions to our
problem by Xs(α). Thus,

∅⊆ Xs(α)⊆ {x ∈ X : C(x|α) <∞}⊆ X , (3.8)
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in general, with all inclusions possibly proper. If C∗(α) <∞, then Xs(α) �= ∅. It is possible
that C∗(α)=∞ (see our examples), equivalently Xs(α)=∅, by our definition. (For our
purposes here, this is the interesting case.) At the other extreme, if the period costs cj are
exponentially bounded by Bγ j , then, for α < 1/γ, we have

0≤ C∗(α)≤ C(x|α)≤ Bγ

1−αγ
, ∀x ∈ X , (3.9)

and C(·|α) is the uniform limit of the CN (·|α), that is, it is continuous on compact X .
Hence, it attains its minimum value, so that Xs(α) �= ∅, in particular.

Lemma 3.2. For each 0 < α≤ 1, the set Xs(α) is closed in X .

Proof. For a fixed α, this set is the inverse image of the point C∗(α) under the lower
semicontinuous mapping C(·|α). Hence, it is necessarily closed (Hewitt and Stromberg
[11, 7.21(d)]). �

The following well-studied optimality criteria are particularly useful if C∗(α)=∞, in
which case there does not exist a strongly optimal strategy. We recall the familiar notions
of overtaking and weakly overtaking optimalities.

Let x, y ∈ X . As in the continuous-time case, we will say that x overtakes y (relative to
α) if

liminf
N

[
CN (y|α)−CN (x|α)

]
� 0, (3.10)

and x weakly overtakes y (relative to α) if

limsup
N

[
CN (y|α)−CN (x|α)

]
� 0. (3.11)

Overtaking and weakly overtaking optimalities. Let x ∈ X . Then x is overtaking optimal
if x overtakes y, for all y ∈ X . The same goes for weakly overtaking optimal. Clearly,
overtaking optimality implies weakly overtaking optimality. Overtaking optimality was
originally introduced by von Weiszacker [20], who called it catching up optimality, while
weakly overtaking optimality, also called sporadically catching up optimality, first appeared
in Halkin [9].

Denote the set of such optimal strategies in X by Xo(α) (resp., Xw(α)), so that

∅⊆ Xo(α)⊆ Xw(α)⊆ X , (3.12)

in general. Of course, the sets Xo(α) and Xw(α) are different in general (Example 3.12).
Both overtaking and weakly overtaking optimality have received considerable attention in
the economics and optimal control literature, primarily for continuous-time problems.

The following can be found in Halkin [9] for the continuous-time case.

Theorem 3.3. Suppose 0 < α ≤ 1. Then, in general, strong optimality implies overtaking
optimality. Specifically, if C∗(α)=∞, then

∅= Xs(α)⊆ Xo(α)⊆ Xw(α). (3.13)



I. E. Schochetman and R. L. Smith 65

If C∗(α) <∞, that is, there exists x ∈ X for which C(x|α) <∞, then strong optimality and
weakly overtaking optimalities are equivalent, that is,

∅ �= Xs(α)= Xo(α)= Xw(α), (3.14)

for such α.

Proof. Let x ∈ Xs(α). Then C(x|α)= C∗(α) <∞, and C(x|α)≤ C(y|α), for all y ∈ X . Let
y ∈ X . Then either C(y|α)=∞ or C(y|α) <∞. In either case,

liminf
N

[
CN (y|α)−CN (x|α)

]= lim
N→∞

CN (y|α)− lim
N→∞

CN (x|α)= C(y|α)−C(x|α) � 0.

(3.15)

Therefore, x ∈ Xo(α).
Conversely, assume C∗(α) <∞, that is, there exists z ∈ Xs(α), so that C(z|α)= C∗(α).

Let x ∈ Xw(α). Then liminfN [CN (z|α)−CN (x|α)] � 0, by definition and

C(z|α)−C(x|α)

= lim
N→∞

CN (z|α)− lim
N→∞

CN (x|α)= limsup
N

[
CN (z|α)−CN (x|α)

]
� 0, (3.16)

so that C(x|α)≤ C(z|α). Necessarily, C(x|α)= C∗(α) <∞. Thus, x ∈ Xs(α). �

Next we turn to the much less well-known finite-optimality notion which we call ef-
ficiency. The state-space construction introduced above associated a unique state at the
end of each time period with every infinite horizon feasible strategy. Strategies that have
the property of optimally reaching each of the states through which they pass have been
called efficient strategies, see [12, 16, 17, 18] for an early introduction of a similar con-
cept. This efficiency of movement through the state space suggests efficient solutions as
candidates for optimality.

Efficiency (finite optimality). Let x ∈ X . Then x is efficient (relative to α) if, for each y ∈ X ,
and for each N such that sN (y)= sN (x), we have CN (x|α)≤ CN (y|α). Also known as finite
optimality, this criterion was originally introduced in a special case by Halkin [9], who
called it finite horizon clamped endpoint optimality.

Let Xe(α) denote the subset of X consisting of efficient strategies. It was shown in [18,
Lemma 3.5] that efficient strategies exist in our context, that is,∅⊂ Xe(α)⊆ X , provided
each of the spaces Yj and Sj−1 is discrete. (Although in Schochetman and Smith [18] we
assumed that the period costs were uniformly bounded, while here we do not, this has no
effect on the definition of efficient strategy.)

Before continuing with our comparisons of optimality criteria, we give a sufficient
condition for efficient solutions to exist in the case of nondiscrete Yj and Sj−1. Fix N , and
for each s∈ SN , let XN (s) denote the set of N-horizon feasible strategies which attain state
s at the end of period N , that is,

XN (s)= {x ∈ XN : sN (x)= s
}= s−1

N (s). (3.17)
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Since sN is continuous, we thus obtain a partition {XN (s) : s ∈ SN} of XN consisting of
compact sets, as well as a set-valued mapping s � XN (s) of SN into XN with compact,
nonempty values.

Now, for each N and s∈ SN , consider the optimization problem

min
x∈XN (s)

CN (x|α). (3.18)

If we let X∗N (s|α) denote the set of optimal solutions to this problem, then this set is a
closed, nonempty subset of XN . We thus obtain another compact-valued set mapping of
SN into XN given by s� X∗N (s|α). If we define

�∗
N (α)=∪s∈SNX

∗
N (s|α), (3.19)

so that �∗
N (α) are nonempty and nested downward, and

�∗(α)=∩∞N=1�∗
N (α), (3.20)

then it is not difficult to see that the efficient solutions are precisely the elements of �∗(α),
that is, Xe(α)=�∗(α).

The following gives a sufficient condition for the existence of efficient solutions—in
the continuous action/state case.

Theorem 3.4. If, for each N , the set-valued mapping s � XN (s) is continuous in the sense
of [8, page 116], then efficient solutions exist, that is, Xe(α) �= ∅, and Xe(α) is compact, for
all 0 < α≤ 1.

Proof. It follows from our hypothesis and [8] that the set-valued mapping s � X∗N (s|α)
is upper semicontinuous in the sense of [8, page 109]. Consequently, the space �∗

N (α) is
compact (Berge [8, page 110]), for each N . Hence, �∗(α) is the intersection of a descend-
ing sequence of compact, nonempty sets, and is thus, compact and nonempty. �

The previous generalizes the following existence result for efficient solutions estab-
lished in Schochetman and Smith [18, Lemma 3.5]—for the discrete action/state case.

Corollary 3.5. If the SN are discrete, then efficient solutions exist in this case.

Proof. As is the case for single-valued functions, set-valued functions defined on discrete
spaces are continuous. �

The next result compares Xw(α) with Xe(α).

Theorem 3.6. In general, weakly overtaking optimality implies efficiency, that is, Xw(α)⊆
Xe(α), for all 0 < α≤ 1.

Proof. The proof given in [9, Theorem 4.1] for continuous-time may be adapted here for
discrete time. We leave the details for the interested reader. �



I. E. Schochetman and R. L. Smith 67

Corollary 3.7. Suppose 0 < α≤ 1. If C∗(α)=∞, then

∅= Xs(α)⊆ Xo(α)⊆ Xw(α)⊆ Xe(α). (3.21)

If C∗(α) <∞, then

∅ �= Xs(α)= Xo(α)= Xw(α)⊆ Xe(α), (3.22)

for such α.

Finally, we consider the well-studied notion of average optimality. As is customary, we
define the infinite horizon average cost (per period) of x ∈ X to be

A(x|α)= limsup
N

AN (x|α), ∀0 < α≤ 1, (3.23)

where, for all N = 1,2, . . . ,

AN (x|α)= CN (x|α)
N

, (3.24)

so that 0≤AN (x|α)≤ CN (x|α), and AN (x|α)≤ AN (x|1). Then A(x|α)≤ C(x|α), and

0≤A(x|α)≤ A(x|1)≤∞, (3.25)

in general. Note that the function A(·|α) = limsupN AN (·|α), where AN (·|α) is contin-
uous, for all N . However, A(·|α) need not be lower semicontinuous, as was the case for
C(·|α).

Our average cost optimization problem is then

A∗(α)= inf
x∈X

A(x|α). (3.26)

Average optimality. Let x ∈ X . Then x is average optimal (relative to α) if A(x|α)= A∗(α)
<∞, that is, A(x|α) <∞ and A(x|α) ≤ A(y|α), for all y ∈ X . This optimality criterion
has been studied by a number of authors. For example, see [1, 3], as well as the references
therein.

We will denote the set of average optimal solutions to our problem by Xa(α). As was
the case for Xo(α) and Xw(α), the set Xa(α) need not be closed in X (Example 3.13). Of
course,

{
x ∈ X : A(x|α)= 0

}⊆ Xa(α)⊆ {x ∈ X : A(x|α) <∞}, (3.27)

in general. In particular, Xa(α) =∅ if A∗(α) =∞, that is, A(x|α) =∞, for all x ∈ X , or
if A∗(α) <∞ and is not attained. Moreover, we have the following properties for A∗(α)
versus C∗(α).

(i) In general, 0≤ A∗(α)≤ C∗(α)≤∞.
(ii) If A∗(α)=∞, then C∗(α)=∞ also, in which case both Xs(α) and Xa(α) are empty.
(iii) It is possible for Xs(α) to be empty while Xa(α) is not, that is, C∗(α)=∞, while

A∗(α) <∞.
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(iv) If C∗(α) <∞, that is, there exists x ∈ X such that C(x|α) <∞, then A(x|α)= 0, so
that A∗(α)= 0 and is attained by all such x.

(v) We have A∗(α)= C∗(α) if and only if A∗(α)=∞ or C∗(α)= 0.
(vi) If A∗(α) <∞ is not attained, then C∗(α)=∞ necessarily.

Lemma 3.8. If cj are exponentially bounded by Bγ j , and α < 1/γ, then A(x|α) = 0, for all
x ∈ X , so that A∗(α)= 0 and Xa(α)= X in this case.

Theorem 3.9. Suppose A∗(α) <∞. Then overtaking optimality implies average optimality,
so that

Xs(α)⊆ Xo(α)⊆ Xa(α), (3.28)

for all such α.

Proof. Suppose x ∈ Xo(α). Let y ∈ X and ε > 0. Then there exists M sufficiently large
such that CN (x|α)≤ CN (y|α) + ε, for all N �M. Consequently,

CN (x|α)
N

≤ CN (y|α)
N

+
ε
N

, (3.29)

for all such N . Hence,

limsup
N

CN (x|α)
N

≤ limsup
N

CN (y|α)
N

, (3.30)

that is, A(x|α)≤ A(y|α), so that x ∈ Xa(α), since A(x|α) is necessarily finite by hypothe-
sis. �

In general, weakly overtaking solutions are not average optimal, that is, Xw(α) need
not be contained in Xa(α) (Example 3.14).

Corollary 3.10. If C∗(α) <∞, so that A∗(α)= 0, then

∅ �= Xs(α)= Xo(α)= Xw(α)⊆ Xa(α)= {x ∈ X : A(x|α)= 0
}
. (3.31)

Proof. Recall that Xs(α) �= ∅ in this case. �

We have shown that for α such that A∗(α) <∞, and without any additional assump-
tions,

∅⊆ Xs(α)⊆ Xo(α)⊆


Xw(α)⊆ Xe(α),

Xa(α),
(3.32)

where the following hold:

(i) Xs(α) �= ∅ if and only if C∗(α) <∞;
(ii) C∗(α) is always attained;

(iii) Xa(α) �= ∅ if and only if A∗(α) <∞ and is attained;
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(iv) A∗(α) may or may not be attained, in general;
(v) it is always the case that Xe(α) �= ∅, if the set-valued mappings s � XN (s) are

continuous, for all N (e.g., discrete state-spaces).

Moreover, we will see (by Examples 3.12–3.15) that

(vi) Xs(α) may or may not be equal to Xo(α);
(vii) Xo(α) may or may not be equal to Xw(α);

(viii) Xw(α) may or may not be equal to Xe(α);
(ix) Xo(α) may or may not be equal to Xa(α);
(x) Xe(α) and Xa(α) are not comparable in general;

(xi) Xw(α) and Xa(α) are also not comparable, in general.

Thus, the previous inclusions are the best possible, barring any additional assumptions.

Remarks 3.11. (1) Observe that if there exists x ∈ X for which C(x|α) <∞ (i.e., C∗(α) <
∞), then Xs(α) is not empty, is equal to Xo(α)= Xw(α), and is contained in both Xe(α)
and Xa(α) (Corollaries 3.7 and 3.10), that is,

∅ �= Xs(α)= Xo(α)= Xw(α)⊆


Xe(α),

Xa(α).
(3.33)

In this case, Xs(α) “dominates” all the other optimal sets in the sense that it is nonempty
and contained in each of them. Thus, if C∗(α) <∞, then strong optimality is the op-
timality criterion of choice because such optimal strategies exist and have all the other
properties. However, if C(x|α)=∞, for all x ∈ X (i.e., C∗(α)=∞), then Xs(α)=∅, and
the remaining optimality criteria become important, particularly efficiency, since we have
a reasonable sufficient condition for such optima to exist in our model (Theorem 3.4).
Needless to say, the strong emphasis here is on the case C∗(α)=∞.

(2) Intuitively speaking, strong optimality is short term biased, in that the earlier the
decision, the greater the impact on the total cost. On the other hand, average optimality is
long term biased because average cost is influenced only by cost to go. However, efficiency
appears to be neither short term nor long term biased. It is reasonable to expect that
a suitable infinite horizon optimization criterion should not be short term biased. The
general concept of bias for optimality criteria has been studied formally by Chichilnisky
[7]. We will not pursue this issue here.

We next describe four examples. Without loss of generality, it suffices to consider only
the case α= 1. If α �= 1, then replace each cj(s j−1, yj) by cj(s j−1, yj)/αj−1 to get the same
conclusions.

Example 3.12. Let the data be as follows for j � 1:

Yj = {0,1}, Sj =
{

( j,0),( j,1)
}

, s0 = (0,0),

Yj
(
s j−1

)= Yj( j− 1,k)= Yj = {0,1},

f j
(
s j−1, yj

)= f j
(
( j− 1,k), yj

)=



(
j,k+ yj

)
, if k = 0,(

j,k− yj
)
, if k = 1, j � 2.

(3.34)
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Figure 3.1. State-space diagram for Example 3.12.

To introduce the cost structure, let rk =
∑k

j=0(1/2) j , for k = 0,1, . . . , so that rk ↑ 2, as k→
∞. Define

cj
(
s j−1, yj

)= cj
(
( j− 1,k), yj

)=




1, if yj �= 0,

0, if yj = 0, j + k is odd,

r j , if yj = 0, j + k is even.

(3.35)

(See Figure 3.1.)
Note that the period costs are uniformly bounded. We leave it to the reader to verify

that this example has the following properties for α= 1, that is, the undiscounted case:

(i) C∗(1)=∞ and A∗(1)= 1, which is attained,
(ii) ∅ = Xs(1) = Xo(1) ⊂ {θ} = Xw(1) = Xe(1) ⊂ {x ∈ X : A(x) = 1} = Xa(1) = X ,

where θ = (0,0, . . .), so that Xa is not contained in Xw, in general.

That is, there is exactly one efficient optimal solution, no overtaking optimal solution, and
all feasible solutions are average optimal.

Example 3.13. Let the data be as follows for j � 1:

Yj = {0,1}, Sj =
{

( j,0),( j,1), . . . , ( j, j)
}

,

s0 = (0,0), Yj
(
s j−1

)= Yj( j− 1,k)=


{0}, if 0≤ k < j− 1,

{0,1}, if k = j− 1,

f j
(
s j−1, yj

)= f j
(
( j− 1,k), yj

)=



( j,k), if 0≤ k ≤ j− 1, yj = 0,

( j,k+ 1), if k = j− 1, yj = 1.

(3.36)

To introduce the cost structure, define

cj
(
s j−1, yj

)= cj
(
( j− 1,k), yj

)=




1, if 0≤ k < j− 1, yj = 0,

0, if k = j− 1, yj = 0,

2, if k = j− 1, yj = 1,

(3.37)

for yj ∈ {0,1}. (See Figure 3.2.)
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Figure 3.2. State-space diagram for Example 3.13.

Note that the period costs are uniformly bounded. We leave it to the reader to verify
that this example has the following properties for the undiscounted case:

(i) C∗(1)=∞ and A∗(1)= 1, which is attained,
(ii) ∅= Xs(1)⊂ {x0} = Xo(1)= Xw(1)⊂ {x j : j � 0} = Xa(1)⊂ Xe(1)= X , where x j

is equal to 1 in the first j positions and zero thereafter.

That is, there is exactly one (weakly) overtaking optimal solution, all but one of the
feasible strategies are average optimal, and all feasible solutions are efficient. Thus, Xw is
properly contained in Xe, Xe is not contained in Xa, and Xa is not contained in Xw.

Example 3.14. Let the state-space structure be as in the previous example, but define the
cost structure as follows:

cj
(
s j−1, yj

)= cj
(
( j− 1,k), yj

)=



1
k+ 1

, if 0≤ k ≤ j− 1, yj = 0,

1, if k = j− 1, yj = 1,
(3.38)

(see Figure 3.3.)
Note that the period costs are uniformly bounded. We leave it to the reader to verify

that this example has the following properties for α= 1, that is, the undiscounted case:

(i) C∗(1)=∞ and A∗(1)= 0,
(ii) ∅= Xs(1)= Xo(1)= Xw(1)= Xa(1)⊂ Xe(1)= X ,

that is, all feasible strategies are efficient, and no feasible strategy is optimal in any other
sense. Thus, Xw is properly contained in Xe and Xe is not contained in Xa. Moreover,
A∗(1) is not attained.
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Figure 3.4. State-space diagram for Example 3.15.

Example 3.15. Let the data be as follows for j � 1:

Yj =


{0,1}, if j = 1,

{0}, if j > 1,
Sj =

{
( j,0),( j,1)

}
, s0 = (0,0),

Yj
(
s j−1

)= Yj( j− 1,k)=


{0,1}, if j = 1,

{0}, if j � 2,

f j
(
s j−1, yj

)= f j
(
( j− 1,k), yj

)=



(
j,k+ yj

)
, if j = 1,

( j,k), if j � 2,

cj
(
s j−1, yj

)= cj
(
( j− 1,k), yj

)=




1, if j = 1, k = 0, yj = 0,

2, if j = 1, k = 0, yj = 1,

1, if j > 1, k = 0, yj = 0,

nj , if j > 1, k = 1, yj = 0,

(3.39)

where nj = 0, if j + 1 is not a power of 2, and nj = 2m, if j + 1 = 2m, for some integer
m� 1, (see Figure 3.4.)
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Note that the period costs are not uniformly bounded, but they are exponentially
bounded; specifically, 0 ≤ cj(s j−1, yj) ≤ 2 j . Clearly, there are just two feasible solutions
x0 and x1, given by x0 = (0,0,0, . . .) and x1 = (1,0,0, . . .). Moreover, for each N � 1, we
have CN (x0)=N and

CN
(
x1)=

�log2(N+1)�∑
j=1

2 j = 2
(
2�log2(N+1)� − 1

)
, (3.40)

so that C(x0)=∞= C(x1), C∗(1)=∞, and Xs =∅. For each NM = 2M − 2, we have

CNM

(
x1)= 2

(
2M−1− 1

)= CNM

(
x0), ∀M � 2, (3.41)

that is, CN (x0) and CN (x1) are each equal to N , for all such N . Next, suppose that N is
strictly between two such indices, that is, 2M − 2 < N < 2M+1− 2, for M � 2. Then

CN
(
x1)−CN

(
x0)� 2M+1− 2− (2M+1− 3

)= 1, (3.42)

for such N . From these facts, it follows that

CN
(
x1)−CN

(
x0)� 0, ∀N , (3.43)

and, in particular, for NM = 2M+1− 3,

CNM

(
x1)−CNM

(
x0)� 1, ∀M � 1. (3.44)

Consequently,

liminf
N

(
CN
(
x1)−CN

(
x0))� 0,

liminf
N

(
CN
(
x0)−CN

(
x1))≤−1,

limsup
N

(
CN
(
x0)−CN

(
x1))� 0,

(3.45)

that is, x0 overtakes x1 (so that x0 weakly overtakes x1), x1 does not overtake x0, and x1

weakly overtakes x0. Hence, Xo(1)= {x0} and Xw = X . Clearly, Xe(1)= X also since, for
each state, only one of the strategies attains that state.

As we have observed, for each N � 2, there exists a unique M � 2 such that 2M − 2 <
N ≤ 2M+1− 2, and CN (x1)= 2M+1− 2, so that

CN
(
x1
)

2M+1− 2
≤ CN

(
x1
)

N
≤ CN

(
x1
)

2M − 1
. (3.46)
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Consequently,

A
(
x1)= limsup

N

CN
(
x1
)

N
= lim

M→∞
2M+1− 2
2M − 1

= 2. (3.47)

Thus, C∗(1)=∞, A∗(1)= 1 and Xa(1)= {x0}, since clearly A(x0)= 1.
We thus obtain the following inclusions:

∅= Xs(1)⊂ {x0} = Xo(1)= Xa(1)⊂ Xw(1)= Xe(1)= X , (3.48)

so that, in particular, Xw and Xe are not contained in Xa. There is exactly one overtaking
(average) optimal solution, no strongly optimal solutions, and all feasible solutions are
weakly overtaking and efficient.

Remark 3.16. Example 3.14 shows that there exist problems for which our five optimality
criteria are indiscriminate. In such cases, other criteria are called for, of which there are
many. See Carlson et al. [6], for example.

4. Reachability conditions

In this section, we consider certain additional state-reachability conditions for our prob-
lem which will prove to be useful for comparing our optimality criteria in the case C∗(α)
=∞. These conditions are controllability notions. A very strong version of such a notion
in the literature is complete reachability, which requires that the system be able to transi-
tion from any state in any period to any state in the very next period. This was assumed
in Zaslavski [22], and most notably in [6, Section 5.3]. Another strong controllability no-
tion (used in [14]) requires that transition from any state at any time to any future state
be accomplished by a feasible stationary strategy. Our state-reachability conditions are
considerably weaker than these.

First, we recall (a slightly weaker version of) the bounded reachability condition intro-
duced in [18].

Bounded time reachability (BTR). There exists a positive integer R such that for each
1≤ K <∞ and each x, y ∈ X , there exist K ≤ L≤ K +R and z ∈ XL (depending on K , x,
y) for which sK (z) = sK (y) and sL(z) = sL(x). If such R exists, then our problem is said
to satisfy the bounded time reachability, that is, property (BTR). Roughly speaking, there
exists a strategy z which steers the system from state sK (y) at time K to state sL(x) at some
time L, which is at most R periods from K .

Note that property BTR is independent of the cost structure and the discount factor.
Consequently, we introduce two other notions of state-reachability which do depend on
these data.

Total cost reachability (TCR|α). Let x, y ∈ X , 0 < α ≤ 1. For each ε > 0, there exists a
positive integer M (depending on ε), such that for all N �M, there exist 0≤ K ≤N and
z ∈ X (depending on N) such that sK (z)= sK (y), sN (z)= sN (x) and CN (z|α)−CK (z|α) <
ε. Thus, given ε > 0, for sufficiently large N , there exists an earlier period K and a strategy
z which steers state sK (y) at time K to state sN (x) at time N with cost less than ε.
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Average cost reachability (ACR|α). Let x, y ∈ X . Given ε > 0, there exists a positive integer
M such that for all N � M, there exists 0 ≤ K ≤ N and z ∈ X such that sK (z) = sK (y),
sN (z)= sN (x) and CN (z|α)−CK (z|α) < Nε. Thus, here steering is as in the previous case,
but with average cost less than ε.

Obviously, these reachability properties do depend on the cost structure and the dis-
count factor. Moreover, the average cost reachability property is weaker than the total cost
reachability property, that is, (TCR|α)⇒ (ACR|α), for all 0 < α≤ 1. The converse is false,
in general (Example 4.5).

If cj are exponentially bounded, say by Beγ j , and α < 1/γ, then strong optima exist
(Section 3), and they are optimal in every other sense. However, if α � 1/γ or cj are not
exponentially bounded, then what can we say? The next result sets the stage for our re-
sponse to this question, which depends on the relationship between α and cj .

Theorem 4.1. Suppose property BTR holds.
(i) If α is such that

lim
j→∞

αj−1
∥∥cj
∥∥

j
= 0, (4.1)

then property (ACR|α) holds. In particular, if

lim
j→∞

∥∥cj
∥∥
j
= 0, (4.2)

then property (ACR|α) holds for all 0 < α≤ 1.
(ii) If α is such that

lim
j→∞

αj−1
∥∥cj
∥∥= 0, (4.3)

then property (TCR|α) holds. In particular, if

lim
j→∞

∥∥cj
∥∥= 0, (4.4)

then property (TCR|α) holds for all 0 < α≤ 1.

Proof. (i) Let R � 1 be as property BTR. Given x, y ∈ X and ε > 0, let J be sufficiently
large such that

αj−1
∥∥cj
∥∥

j
<
ε
R

, ∀ j � J. (4.5)

Let M = J +R and N �M. Set K =N −R� J . By property BTR, there exists L such that

N −R= K ≤ L≤ K +R=N , (4.6)
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and w ∈ XL such that sK (w) = sK (y) and sL(w) = sL(x). Let z = (w|Lx) so that sK (z) =
sK (w)= sK (y) and sN (z)= sN (x). Also,

CN (z|α)−CK (z|α)=
N∑

j=K+1

αj−1cj
(
s j−1(z),zj

)

≤
N∑

j=K+1

αj−1
∥∥cj
∥∥≤ ε

R

N∑
j=K+1

j

≤N(N −K)
ε
R
= εN.

(4.7)

Thus, property (ACR|α) holds. Part (ii) is proved similarly. �

Remark 4.2. It is worth noting that, for each 0 < α≤ 1, it can happen that the hypotheses
of Theorem 4.1 hold, together with the property that C∗(α)=∞. For example, it happens
when α= 1 and ‖cj‖ = B/ j.

In Schochetman and Smith [18, Theorem 4.2], we showed that, in the presence of
property BTR, every efficient strategy is average optimal, that is, Xe(α) ⊆ Xa(α), for all
0 < α≤ 1. We next give a stronger version of this result. Thus, we obtain reasonable suf-
ficient conditions for the existence of average optima—which need not exist in general
(Example 3.15). Note that if A∗(α)=∞, then Xa(α)=∅, for such α, and, at least in the
discrete case, Xe(α) can’t possibly be contained therein, since it is nonempty.

Theorem 4.3. Suppose α is such that property (ACR|α) is satisfied and A∗(α) <∞. Then
efficient implies average optimal, that is, Xe(α)⊆ Xa(α), so that

Xs(α)⊆ Xo(α)⊆ Xw(α)⊆ Xe(α)⊆ Xa(α), (4.8)

for such α. If, in addition, the set-valued functions s � XN (s) are continuous, then there
exists an efficient optimum which is also average optimal.

Proof. Let x ∈ Xe(α), and suppose there exists y ∈ X such that A(y|α) < A(x|α), that is,
x /∈ Xa(α). In particular, A(y|α) <∞. Let

ε =



1
2

(
A(x|α)−A(y|α)

)
, if A(x|α) <∞,

1, if A(x|α)=∞,
(4.9)

so that ε > 0. Also let M be as in property (ACR|α) for x, y and ε. Then, for each N �M,
there exist 0 ≤ K ≤ N and z ∈ X such that sK (z) = sK (y), sN (z) = sN (x), and CN (z|α)−
CK (z|α) < Nε. If K =N , then z = y, sN (z)= sN (x)= sN (y), and CN (y|α) � CN (x|α), that
is, AN (y|α) �AN (x|α), so that AN (y|α) + ε > AN (x|α) in this case.
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If K < N , define w = (y|K z), so that w ∈ X and sN (w) = sN (z) by Lemma 2.3. Then,
necessarily, CN (x|α) ≤ CN (w|α), since x ∈ Xe(α) and w ∈ X with sN (w) = sN (x). More-
over, CN (y|α) � CK (y|α), since each cj � 0. Thus,

CN (y|α) +
N∑

j=K+1

αj−1cj
(
s j−1(z),zj

)
� CK (y|α) +

N∑
j=K+1

αj−1cj
(
s j−1(z),zj

)

= CK (w|α) +
[
CN (w|α)−CK (w|α)

]

= CN (w|α)

� CN (x|α)

=
N∑
j=1

αj−1cj
(
s j−1(x),xj

)
,

(4.10)

which implies that

1
N
CN (y|α) +

1
N

N∑
j=K+1

αj−1cj
(
s j−1(z),zj

)
� 1

N

N∑
j=1

αj−1cj
(
s j−1(x),xj

)
, (4.11)

that is,

AN (y|α) +
1
N

(
CN (z|α)−CK (z|α)

)
�AN (x|α). (4.12)

Since CN (z|α)−CK (z|α) < Nε, we have that

AN (y|α) + ε > AN (y|α) +
1
N

(
CN (z|α)−CK (z|α)

)
�AN (x|α), (4.13)

for the case K <N . Thus, AN (y|α) + ε > AN (x|α), for all N �M. Consequently,

limsup
N

AN (y|α) + ε = limsup
N

(
AN (y|α) + ε

)

= limsup
N�M

(
AN (y|α) + ε

)

� limsup
N�M

AN (x|α)

= limsup
N

AN (x|α),

(4.14)

so that,A(y|α) + ε� A(x|α). IfA(x|α)=∞, thenA(y|α)=∞. Contradiction. Otherwise,
substituting for ε, we conclude that A(y|α) � A(x|α). Contradiction. Hence, A(x|α) ≤
A(y|α), for all y ∈ X . This result, together with our assumption that A∗(α) <∞, implies
that A(x|α) <∞. To complete the proof, apply Theorem 3.4. �

We next give a sufficient condition for the efficient strategies and the overtaking op-
timal strategies to be the same. The following theorem is a central result of this paper,
allowing us to conclude the existence of an overtaking optimum (in particular) in the
presence of easily verified conditions.
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Theorem 4.4. If α is such that property (TCR|α) is satisfied, then every efficient strategy is
overtaking optimal, that is, Xe(α)⊆ Xo(α), so that

Xs(α)⊆ Xo(α)= Xw(α)= Xe(α). (4.15)

If, in addition, A∗(α) <∞, then

Xs(α)⊆ Xo(α)= Xw(α)= Xe(α)⊆ Xa(α). (4.16)

Proof. By Corollary 3.7, it suffices to show the set inclusion for the first claim. Fix x ∈
Xe(α) and let y ∈ X . We show that x overtakes y. Let ε > 0. By property (TCR|α), there
exists a positive integer M such that for all N � M, there exist 0 ≤ K ≤ N and z ∈ X
such that sK (z)= sK (y), sN (z)= sN (x), and CN (z|α)−CK (z|α) < ε. Let w = (y|K z). Then
w ∈ X , sK (w)= sK (y), sN (w)= sN (z)= sN (x), and

CN (w|α)−CK (w|α)= CN (z|α)−CK (z|α) < ε. (4.17)

Hence, by the efficiency of x at horizon N , we have

CN (x|α)≤ CN (w|α)= CK (w|α) +CN (w|α)−CK (w|α)

< CK (y|α) + ε

≤ CN (y|α) + ε.
(4.18)

Therefore, x ∈ Xo(α). To complete the proof, apply Theorem 4.3, together with the fact
that (TCR|α)⇒ (ACR|α). �

Example 4.5. Let the data be as in Example 3.12. We leave it to the reader to verify that
this example has properties BTR with R= 1, (ACR|α), for all 0 < α≤ 1, and (TCR|α), for
all 0 < α < 1, that is, it does not have property (TCR|1).

Examples 4.6. Let the data be as in Examples 3.13, 3.14, or 3.15. We leave it to the reader
to verify that, for each example, and for each 0 < α ≤ 1, all three reachability properties
fail.

Before leaving this section, we summarize our main results.

Theorem 4.7. The following are true for our general optimization problem.
(i) If the set-valued mappings s� XN (s) are continuous, thenXe(α) �= ∅, that is, efficient

optima exist, for each 0 < α≤ 1.
(ii) If C∗(α)=∞, then Xs(α)=∅.
(iii) If C∗(α) <∞, then it is attained, A∗(α) <∞, and

∅ �= Xs(α)⊆ Xo(α)⊆


Xw(α)⊆ Xe(α),

Xa(α),
(4.19)

so that there exists a strong optimum which is optimal in every sense.
(iv) If A∗(α)=∞, then C∗(α)=∞, Xs(α)= Xa(α)=∅, and

Xo(α)⊆ Xw(α)⊆ Xe(α). (4.20)
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(v) If A∗(α) <∞, then

∅⊆ Xs(α)⊆ Xo(α)⊆


Xw(α)⊆ Xe(α),

Xa(α).
(4.21)

(vi) If A∗(α) <∞ and property (ACR|α) holds, then

Xs(α)⊆ Xo(α)⊆ Xw(α)⊆ Xe(α)⊆ Xa(α), (4.22)

and, in particular, efficient optima are average optimal.
(vii) If A∗(α) <∞ and property (TCR|α) holds, then

Xs(α)⊆ Xo(α)= Xw(α)= Xe(α)⊆ Xa(α), (4.23)

and, in particular, efficient optima are overtaking, weakly overtaking, and average optimal.
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