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We showed previously that the first antieigenvalue and the components of the first
antieigenvectors of an accretive compact normal operator can be expressed either by
a pair of eigenvalues or by a single eigenvalue of the operator. In this paper, we pin
down the eigenvalues of T that express the first antieigenvalue and the components of
the first antieigenvectors. In addition, we will prove that the expressions which state the
first antieigenvalue and the components of the first antieigenvectors are unambiguous.
Finally, based on these new results, we will develop an algorithm for computing higher
antieigenvalues.

1. Introduction

An operator T on a Hilbert space is called accretive if Re(T f , f )≥ 0 and strictly accretive
if Re(T f , f ) > 0 for every vector f �= 0. For an accretive operator or matrix T on a Hilbert
space, the first antieigenvalue of T , denoted by µ1(T), is defined by Gustafson to be

µ1(T)= inf
T f �=0

Re(T f , f )
‖T f ‖‖ f ‖ (1.1)

(see [2, 3, 4, 5]). The quantity µ1(T) is also denoted by cosT and is called the cosine of T .
Definition (1.1) is equivalent to

µ1(T)= inf
T f �=0
‖ f ‖=1

Re(T f , f )
‖T f ‖ . (1.2)

µ1(T) measures the maximum turning capability of T . A vector f for which the infi-
mum in (1.1) is attained is called an antieigenvector of T . Higher antieigenvalues may be
defined by

µn(T)= inf
T f �=0

Re(T f , f )
‖T f ‖‖ f ‖ , f ⊥

(
f (1), . . . , f (n−1)

)
, (1.3)
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where f (k) denotes the kth antieigenvector. In [8, 9] (see also [7]), we found µ1(T) for
normal matrices directly, by first expressing Re(T f , f )/‖T f ‖ in terms of eigenvalues of
T and components of vectors on eigenspaces and then minimizing it on the unit sphere
‖ f ‖ = 1. The result was the following theorem.

Theorem 1.1. Let T be an n by n accretive normal matrix. Suppose λi = βi + δii, 1≤ i≤m,
are the distinct eigenvalues of T . Let E(λi) be the eigenspace corresponding to λi and P(λi) the
orthogonal projection on E(λi). For each vector f let zi = P(λi) f . If f is an antieigenvector
with ‖ f ‖ = 1, then one of the following cases holds.

(1) Only one of the vectors zi is nonzero, that is, ‖zi‖ = 1, for some i and ‖zj‖ = 0 for
j �= i. In this case it holds that

µ1(T)= βi∣∣λi∣∣ . (1.4)

(2) Only two of the vectors zi and zj are nonzero and the rest of the components of f are
zero, that is, ‖zi‖ �= 0, ‖zj‖ �= 0, and ‖zk‖ = 0 if k �= i and k �= j. In this case it holds
that

∥∥zi∥∥2 = βj

∣∣λj

∣∣2− 2βi
∣∣λj

∣∣2
+βj

∣∣λi∣∣2(∣∣λi∣∣2−∣∣λj

∣∣2
)(
βi−βj

) ,

∥∥zj∥∥2 = βi
∣∣λi∣∣2− 2βj

∣∣λi∣∣2
+βi

∣∣λj

∣∣2(∣∣λi∣∣2−∣∣λj

∣∣2
)(
βi−βj

) .

(1.5)

Furthermore

µ1(T)=
2
√(

βj −βi
)(
βi
∣∣λj

∣∣2−βj

∣∣λi∣∣2
)

∣∣λj

∣∣2−∣∣λi∣∣2 . (1.6)

In [12], we were able to extend the above theorem to the case of normal compact op-
erators on an infinite-dimensional Hilbert space by modifying our techniques in [8, 9] to
fit the situation in an infinite-dimensional space. However, in [12] we also took a com-
pletely different approach to compute µ1(T) for general strictly accretive normal opera-
tors on Hilbert spaces of arbitrary dimension. In that approach, we took advantage of the
fact [11] that µ2

1(T)= inf{x2/y : x+ iy ∈W(S)} for strictly accretive normal operators T .
Here, S = ReT + iT∗T and W(S) denotes the numerical range of S. The result was the
following.

Theorem 1.2. Let T be a strictly accretive normal operator such that the numerical range of

S= ReT + iT∗T (1.7)

is closed. Then one of the following casesholds:
(1) µ1(T)= βi/|λi| for some λi = βi + δii in the spectrum of T ,
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(2)

µ1(T)=
2
√(

βj −βi
)(
βi
∣∣λj

∣∣2−βj

∣∣λi∣∣2
)

∣∣λj

∣∣2−∣∣λi∣∣2 (1.8)

for a pair of distinct points

λi = βi + δii, λj = βj + δj i, (1.9)

in the spectrum of T .

Mirman’s [11] observation that µ2
1(T) can be obtained in terms of S = ReT + iT∗T

is so immediate that no proof was given in [7, 11, 12], or this paper where this fact is
employed. So for completeness, S = ReT + iT∗T and ‖z‖ = 1 implies numerical range
element (Sz,z)≡ x+ iy = Re(Tz,z) + i‖Tz‖2⇒ µ2

1(T)= inf{x2/y : x+ iy ∈W(S)}.
It is both interesting and important to pinpoint the pair of eigenvalues of T , among

all possible pairs, that actually express µ1(T) in (1.6) in case (2) of Theorem 1.1. In the
next section we will introduce the concept of the first and the second critical eigenvalues
for an accretive normal operator and show that, among all possible pairs of eigenvalues
of T , these two eigenvalues are the ones that express µ1(T). This will help us further to
discover which pair of eigenvalues of T express µ2(T) and other higher antieigenvalues
of T . Based on the properties of the first and the second critical eigenvalues of T , we will
also show that the denominators in (1.5), and (1.6) are all nonzero for this particular pair
of eigenvalues. We will also show that the radicand in the numerator of (1.6) is nonzero
if (1.6) expresses µ1(T).

It should be mentioned that Davis [1] first showed that for strictly accretive normal
matrices, the antieigenvalues are determined by just two of the eigenvalues T . However,
quoting Davis [1, page 174] “in general normal case I’m afraid I know no simple criterion
for picking out a critical pair of eigenvalues to which attention can at once be confined.” In
[8, 9] we implicitly answered this question, with the ordering of the eigenvalues according
to their real parts and absolute values, which more or less determines which ones led to
µ1(T) according to Theorem 1.1. Also we knew that an appearance of zero denominators
and undefined numerators would not represent a problem, since the convexity arguments
usually lead to the determination of µ1 by λi and λj with ‖λi‖ �= ‖λj‖.

2. The eigenvalues expressing antieigenvalues

AssumeT is a strictly accretive normal n by nmatrix with distinct eigenvalues λi = βi + δii,
1 ≤ i ≤m. Then as noted above, we have µ2

1(T) = inf{x2/y : x + iy ∈W(S)}, where S =
ReT + iT∗T and W(S) denotes the numerical range of S. Since T is normal, so is S. By
spectral mapping theorem, if σ(S) denotes the spectrum of S, then σ(S) = {βi + i|λi|2 :
λi = (βi + δii)∈ σ(T)}. Since S is normal, we have W(S)= co(σ(S)), where co(σ(S)) de-
notes the convex hull of σ(S). Therefore W(S) is a convex polygon contained in the first
quadrant. Throughout this paper, for convenience, we consider an eigenvalue βi + i|λi|2
of S and the point (βi,|λi|2) in the Cartesian plane to be the same. Therefore, in place of
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βi + i|λi|2, we may refer to (βi,|λi|2) as an eigenvalue of S. The convexity of the function
f (x, y)= x2/y implies that the minimum of this function on W(S) is equal to the small-
est value of k such that a member of the family of convex functions y = x2/k touches just
one point of the polygon representing W(S). Obviously, if any parabola from the family
y = x2/k touches only one point of W(S), that point should be on ∂W(S), the boundary
of W(S). Therefore to find µ2

1(T), first we need to identify those values of k for which
y = x2/k touches only one point of ∂W(S) and then select the smallest such value. The
trivial case is when a member of the family of convex functions y = x2/k touches ∂W(S)
at a corner point such as (βi,|λi|2). If y = x2/k is the parabola that is passing through
(βi,|λi|2), then the components of this point should satisfy y = x2/k. Hence we must have
|λi|2 = β2

i /k, which implies k = β2
i /|λi|2. Next consider the more interesting case when a

member of the family y = x2/k touches ∂W(S) at an interior point of an edge. In this
case the parabola y = x2/k must be tangent to that edge at the point of contact. It is clear
that such parabolas cannot be tangent to an edge of ∂W(S) if that edge has a slope which
is negative, zero, or undefined because the slopes of tangent lines to the right half of
parabolas y = x2/k are always positive for positive values of k. For example, in Figure 2.1
no member of the family y = x2/k can be tangent to edges AG, DE, and EF. It is also clear
that no member of the family of parabolas y = x2/k can be tangent to an edge with posi-
tive slope if W(S) is above the line of support of W(S) which contains that edge without
having other points in common with W(S). For instance, in Figure 2.1 no parabola of
the form y = x2/k can be tangent to the edge GF at an interior point of that edge without
actually entering into the interior of W(S). A member of the family y = x2/k can however
be tangent to an edge at an interior point of that edge, without having any other common
point with W(S), if the slope of that edge is positive and W(S) falls below the line of sup-
port which contains that edge. For example, in Figure 2.1 members of the family y = x2/k
can be tangent to edges AB, BC, and CD, without having any other common points with
W(S).

Definition 2.1. An edge of the polygon representing W(S) is called an upper positive edge
if the slope of that edge is positive and W(S) falls below the line of support of W(S) which
contains that edge.
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Definition 2.2. Let d = inf{βi : (βi + i|λi|2)∈ σ(S)}. Define D to be

D = sup
{∣∣λi∣∣2

:
(
βi + i

∣∣λi∣∣2
)
∈ σ(S), d = βi

}
. (2.1)

Let βp + i|λp|2 be that eigenvalue of S for which βp = d and |λp|2 = D. βp + i|λp|2 is the
first critical eigenvalue γp of S. The corresponding eigenvalue λp = βp + δpi of T is called
the first critical eigenvalue of T .

The point A labelling (βp,|λp|2) is shown in Figures 2.2, 2.3, 2.4, 2.5, and 2.6. It repre-
sents that eigenvalue of S which has the highest imaginary component among all eigen-
values of S which have the smallest real component.

Definition 2.3. If A(βp,|λp|2), the first critical eigenvalue of S, is on the upper posi-
tive edge AB and B(βq,|λq|2) corresponds to the eigenvalue γq = βq + i|λq|2 of S, then
γq = βq + i|λq|2 is called the second critical eigenvalue of S and the corresponding eigen-
value λq = βq + δqi of T is called the second critical eigenvalue of T . The second critical
eigenvalue of S (of T) is not defined if A is not on an upper positive edge.

Theorem 2.4. If A(βp,|λp|2), the first critical eigenvalue of S, is not on any upper positive
edge, then the minimum of the function f (x, y)= x2/y on W(S) is attained at A(βp,|λp|2).
If A(βp,|λp|2) belongs to an upper positive edge, then the minimum of the function f (x, y)=
x2/y on W(S) is attained at a corner point belonging to an upper positive edge or at a point
in the interior of the line segment joining the first and second critical eigenvalues A(βp,|λp|2)
and B(βq,|λq|2).
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Proof. Assume AB (AA1) has a positive slope. The convexity of the polygon representing
W(S) implies that if there is any set of consecutive upper positive edges Ai−1Ai, 2 ≤ i ≤
r following AA1, then their slopes should decrease as we move from left to right. For
example, in Figure 2.1 the edge AB is followed by the edge BC whose slope is positive
but less than the slope of AB. Also BC is followed by CD whose slope is positive but less
than the slope of BC. Suppose the slope of AA1 is m1 and y = x2/k1 is tangent to AA1

at a point with x-component x1. Then we have m1 = 2x1/k1 which implies k1 = 2x1/m1.
Now suppose the slope of the segment Ai−1Ai, 2≤ i≤ r is mi and y = x2/ki is tangent to
Ai−1Ai at an interior point with x-component xi,then we have ki = 2xi/mi. Since m1 >mi

and xi > x1, we have k1 < ki. �

The first critical eigenvalue A(βp,|λp|2) and the upper positive edge that contains A
(if it exists) are important in computing µ2

1(T). For example, suppose in Figure 2.2 the
polygon ABCD represents ∂W(S). It is obvious that the only point of this polygon that
can be touched by a member of the family of functions y = x2/k is point A. Depending
on the signs of the slopes of the two edges of the polygon that meet at A(βp,|λp|2), we
have two different cases that will be analyzed below.

(1) A(βp,|λp|2) does not belong to an upper positive edge. Figures 2.2–2.5 show the
situations when this occurs. In this case the only parabola from the family y = x2/k that
can touch W(S) at only one point is the one which touches W(S) at A.

(2) A(βp,|λp|2) belongs to an upper positive edge AB. By Theorem 2.4 the convex
function y = x2/k that touches W(S) at one point with minimum value of k should either
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be tangent to AB or pass through a corner point of an upper positive edge (see Figures
2.1 and 2.6).

Assume that B(βq,|λq|2) is the higher end of the upper positive edge AB in case (2)
above.

Note that since the polygon representing W(S) is the convex hull of all eigenvalues of
S, there might be other eigenvalues of S located on the edge AB. However, point B is the
end point of that edge and thus has the maximum distance from point A among all other
points on that edge. Also note that besides eigenvalues which are located at the corners of
W(S), the matrix S may have other eigenvalues which are in the interior of W(S). How-
ever, given one such eigenvalue βi + δii there exists points x + yi∈W(S) such that x < βi
and y < βi, and hence these eigenvalues do not play any role in the computation of µ1(T).
The first and second critical eigenvalues can be found algebraically and in practice one
does not have to construct the polygon representing W(S) to find them. The procedure
for finding µ1(T) is outlined in the following theorem.

Theorem 2.5. Let T be a strictly accretive normal matrix and γp = βp + i|λp|2 the first
critical eigenvalue of S= ReT + iT∗T . Let βi + i|λi|2 represent any other eigenvalue of S for
which βi > βp. Let mi = |λi|2 − |λp|2/βi − βp be the slopes of line segments connecting the
point (βp,|λp|2) to points (βi,|λi|2). Define m = max{mi}. Then the following two cases
hold:

(1) if m≤ 0, the second critical eigenvalue of S does not exist and µ1(T)= βp/|λp|,
(2) if m> 0, let R= {(βj ,|λj|2) : (βj ,|λj|2)εσ(S) and mj =m}, and let

t = sup
{(
βj −βp

)2
+
(∣∣λj

∣∣2−∣∣λp∣∣2
)2

:
(
βj ,
∣∣λj

∣∣2
)
εR
}
. (2.2)

If (βq,|λq|2) is that element of R for which t = (βq − βp)2 + (|λq|2 − |λq|2)2, then
(βq,|λq|2) is the second critical eigenvalue of S. In this case µ1(T) is equal to

2
√

(βq−βp)(βp|λq|2−βq|λp|2)/|λq|2−|λp|2 or βi/|λi| for an eigenvalue λi = βi +

δii of T such that (βi,|λi|2) is a corner point on an upper positive edge.
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Table 2.1

Point (2,11) (3,25) (4,50) (5,60)
Slope 4 9 14.333 13.25

Proof. Based on the arguments that preceded this theorem, we know that in case (1)
the infimum of the function f (x, y) = x2/y on W(S) is attained at (βp,|λp|2). There-
fore the minimum value is f (βp,|λp|2) = β2

p/|λp|2. Hence µ2
1(T) = β2

p/|λp|2, which im-
plies µ1(T)= βp/|λp|. In case (2), Theorem 2.4 shows that the minimum of the function
f (x, y)= x2/y on W(S) is attained at a corner point belonging to an upper positive edge
or at a point in the interior of the line segment joining the first and second critical eigen-
values (βp,|λp|2) and (βq,|λq|2). As we just showed if the minimum of f (x, y)= x2/y on
W(S) is attained at (βi,|λi|2), we have µ1(T) = βi/|λi|. If the minimum of the function
f (x, y) = x2/y on W(S) is attained at a point in the interior of the line segment joining
(βp,|λp|2) and (βq,|λq|2), one can use Lagrange multiplier method (see [12] for details)
to show that the point of contact is at (x1, y1), where

x1 = 2
βp

∣∣λq∣∣2−βq
∣∣λp∣∣2

∣∣λq∣∣2−∣∣λp∣∣2 ,

y1 =
βp

∣∣λq∣∣2−βq
∣∣λp∣∣2

βq−βp
.

(2.3)

Therefore, in this case the minimum of the function f (x, y)= x2/y on W(S) is

f
(
x1, y1

)= x2
1

y1
=

4
(
βp

∣∣λq∣∣2−βq
∣∣λp∣∣2

)(
βq−βp

)
(∣∣λq∣∣2−∣∣λp∣∣2

)2 . (2.4)

Thus µ2
1(T)= 4(βp|λq|2−βq|λp|2)(βq−βp)/(|λq|2−|λp|2)2, which implies

µ1(T)=
2
√(

βq−βp
)(
βp

∣∣λq∣∣2−βq
∣∣λp∣∣2

)
∣∣λq∣∣2−∣∣λp∣∣2 . (2.5)

�

Example 2.6. Find µ1(T) if T is a normal matrix with eigenvalues 1 +
√

6i, 2 +
√

7i, 3 +
4i, 4 +

√
34i, and 5 +

√
35i. First, we need to compute the corresponding eigenvalues

of S = ReT + iT∗T . These eigenvalues are 1 + 7i, 2 + 11i, 3 + 25i, 4 + 50i, and 5 + 60i.
The first critical eigenvalue of S is γp = 1 + 7i. Thus λp = 1 +

√
6i is the first critical

eigenvalue of T . Table 2.1 shows the slopes (or approximate values for slopes) of the
line segments between the point (1,7) and points (2,11), (3,25), (4,50), and (5,60).
Since the largest slope obtained is 14.333, the second critical eigenvalue for S is γq =
4 + 50i. The corresponding second critical eigenvalue for T is therefore 4 +

√
34i. To find

out exactly what µ1(T) is, we need to compare the values 1/
√

7, 2/
√

11, 3/
√

25, 4/
√

50,

5/
√

60, and 2
√

(βq−βp)(βp|λq|2−βq|λp|2)/|λq|2 − |λp|2 = 2
√

(4− 1)(50− 28)/50− 7 =
2
√

66/43. The smallest of these numbers is 2
√

66/43. Hence we have µ1(T)= 2
√

66/43.
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We can indeed develop an algorithm to compute all higher antieigenvalues of a strictly
accretive normal matrix T . Notice that if T is the direct sum of two operators T1 and T2,
T = T1 ⊕T2, and S = ReT + iT∗T ; then S = S1 ⊕ S2 where S1 = ReT1 + iT∗1 T1 and S2 =
ReT2 + iT∗2 T2. Hence, by Halmos [10, page 116], we have W(S) = co(W(S1),W(S2)),
where co(W(S1),W(S2)) denotes the convex hull of the numerical ranges of S1 and S2. To
compute µ2(T), strike out those eigenvalues of S that express µ1(T). Let E1 be the direct
sum of the eigenspaces that correspond to eigenvalues which are stricken out and let E2

be the direct sum of the eigenspaces corresponding to the remaining eigenvalues. We have
T = T1 ⊕T2 where T1 is the restriction of T on E1 and T2 is the restriction of T on E2.
Therefore,

µ2(T)= µ1
(
T2
)= inf

{
x2

y
: x+ iy ∈W

(
S2
)}

. (2.6)

Thus, to compute µ2(T), we can replace T with T2 and compute µ1(T2) as discussed
above.

Example 2.7. Compute all antieigenvalues of a normal matrix T whose eigenvalues are
1 +

√
6i, 2 +

√
7i, 3 + 4i, 4 +

√
34i, and 5 +

√
35i. When computing µ1(T) in the previous

example we found out that the first and the second critical eigenvalues of S are 1 + 7i and
4 + 50i, respectively, and they express µ1(T). Hence the corresponding first and second
eigenvalues of T are 1 +

√
6i and 4 +

√
34i, respectively. If we strike out the first and the

second eigenvalues of S, the remaining eigenvalues of S are 2 + 11i, 3 + 25i, and 5 + 60i.
The first critical eigenvalue for S2 is (2,11). The slope of the line segment connecting
(2,11) to (3,25) is 14, and the slope of the line segment connecting (2,11) to (5,60) is
16.33. Therefore, the second critical eigenvalue of S2 is (5,60). Hence µ2(T) is the mini-
mum of the numbers 2/

√
11, 5/

√
60, 3/

√
25, and 2

√
(5− 2)((2)(60)− (5)(11))/50− 11=

2
√

195/49. The minimum of these numbers is 2
√

195/49. Thus µ2(T)= 2
√

195/49. After
striking out the first and second critical eigenvalues of S2, which express µ1(T2), the only
eigenvalue left is (3,25) and hence µ3(T)= 3/

√
25.

If T is a positive matrix with n distinct eigenvalues r1 < r2 < ··· < rn, it was proved by
Gustafson (see [2, 3]) that

µ1(T)= 2
√
r1r2

r1 + r2
. (2.7)

In [6] Gustafson extended the notion of first antieigenvalue µ1 to arbitrary A, with polar
decomposition A=U‖A‖. According to [6], the first antieigenvalue of A is defined to be
the first antieigenvalue of ‖A‖. In that case r1 and r2 in (2.7) are the smallest and largest
singular values σn and σ1 of A.

A new proof for (2.7) may be obtained within the context of this paper by clarifying
that r1 and rn are the first and the second critical eigenvalues of T , respectively.

Theorem 2.8. Let T be a positive matrix with n distinct eigenvalues r1 < r2 < ··· < rn. Then

µi(T)= 2
√
rirn−i+1

ri + rn−i+1
, 1≤ i≤ n, (2.8)

correspond to the critical eigenvalues criteria of this paper.
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Proof. Eigenvalues of S are r1 + r2
1 i, r2 + r2

2 i, . . . ,rn + r2
ni. By definition r1+ r2

1 i is the first
critical eigenvalue of S. To find the second critical eigenvalue of S, we look at the slopes
of line segments joining (r1,r2

1 ) to points (r2,r2
2 ), (r3,r2

3 ), . . . ,(rn,r2
n). These slopes are

(r2
2 − r2

1 )/(r2 − r1) = r1 + r2, (r2
3 − r2

1 )/(r3 − r1) = r1 + r3, . . . ,(r2
n − r2

1 )/(rn − r1) = r1 + rn.
The largest among these slopes is r1 + rn which shows that (rn,r2

n) is the second criti-

cal eigenvalue of T . Therefore µ1(T) is the minimum of the three numbers r1/
√
r2

1 = 1,

rn/
√
r2
n = 1, and 2

√
(rn− r1)(r1r2

n − rnr
2
1 )/r2

n − r2
1 = 2

√
r1rn/r1 + rn. This minimum is obvi-

ously 2
√
r1rn/r1 + rn. The expression for µ2(T) is obtained by striking out the first and

second critical eigenvalues of S we just obtained and by looking at matrix S2 whose eigen-
values are (r2,r2

2 ), (r3,r2
3 ), (rn−1,r2

n−1). Higher antieigenvalues are obtained similarly. �

3. Antieigenvalues and antieigenvectors are well defined

Now that we have pinned down which pair of eigenvalues express the first antieigenvalue
µ1(T), we can restate our previous results as follows.

Theorem 3.1. Let T be an n by n accretive normal matrix. Suppose λi = βi + δii, 1≤ i≤m,
are eigenvalues of T . Let E(λi) be the eigenspace corresponding to λi and P(λi) the orthogonal
projection on E(λi). For each vector f let zi = P(λi) f . Let λp = βp + δpi be the first critical
eigenvalue of T , then one of the following cases holds:

(1) if the second critical eigenvalue of T does not exist, then µ1(T)= βp/|λp|. In this case
antieigenvectors of norm 1 satisfy ‖zp‖ = 1 and ‖zi‖ = 0 if i �= p,

(2) if λq = βq + δqi, the second critical eigenvalue of T , exists then one of the following
cases holds:
(a) µ1(T)= βi/λi for some eigenvalue λi = βi + δii of T and antieigenvectors of norm

1 satisfy ‖zi‖ = 1 and ‖zj‖ = 0 if i �= j,
(b)

µ1(T)=
2
√(

βq−βp
)(
βp

∣∣λq∣∣2−βq
∣∣λp∣∣2

)
∣∣λq∣∣2−∣∣λp∣∣2 , (3.1)

and antieigenvectors of norm 1 satisfy

∥∥zp∥∥2 = βq
∣∣λq∣∣2− 2βp

∣∣λq∣∣2
+βq

∣∣λp∣∣2(∣∣λq∣∣2−∣∣λp∣∣2
)(
βq−βp

) , (3.2)

∥∥zq∥∥2 = βp

∣∣λp∣∣2− 2βq
∣∣λp∣∣2

+βp

∣∣λq∣∣2(∣∣λq∣∣2−∣∣λp∣∣2
)(
βq−βp

) , (3.3)

and ‖zi‖ = 0 if i �= p and i �= q.
In particular, the antieigenvalues and antieigenvectors are well defined.

Proof. We must clarify that the denominators of the expressions (3.1), (3.2), and (3.3) are
nonzero for the critical eigenvalues selected for computing the antieigenvalues. We also
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clarify that the radicand in the expression (3.1) is nonnegative for these critical eigenval-
ues. The first and second critical eigenvalues are so defined that we always have βq > βp.
Also, by the definition of second critical eigenvalue, the slope mq = (|λq|2−|λp|2)/(βq −
βp) of the line segment between the two points (βq,|λq|2) and (βq,|λq|2) is always pos-
itive. Hence both of the terms βq − βp and |λq|2 − |λp|2 are positive. This implies that
the denominators in expressions (3.1), (3.2), and (3.3) are positive. Also note that the
radicand in the numerator of expression (3.1) is negative if βp|λq|2− βq|λp|2 < 0. In this
case µ1(T) is not defined by (3.1). In fact, if this happens, no member of the family of the
convex functions y = x2/k can touch the interior of the line segment between (βp,|λp|2)
and (βq,|λq|2) since the components of such a point of contact, which are given by ex-
pressions (2.3), cannot be negative (recall that W(S) is a subset of the first quadrant).
We also need to show that the quantities on the right side of (3.2) and (3.3) are positive
numbers between 0 and 1. We have already shown that the denominators of those ex-
pressions are positive for the first critical eigenvalue λp = βp + δpi and the second critical
eigenvalue λq = βq + δqi. We now prove that the numerators of these expressions are also
positive for the first and second critical eigenvalues. Recall that Theorem 3.1(2b) occurs
only when a member of the family of parabolas y = x2/k intersects the line segment with
end points at (βp,|λp|2) and (βq,|λq|2) at an interior point of this segment. Therefore,
x1 = 2(βp|λq|2− βq|λp|2)/(|λq|2− |λp|2), which is the x component of the point of con-
tact, must be between βp and βq. In other words

βp < 2
βp

∣∣λq∣∣2−βq
∣∣λp∣∣2

∣∣λq∣∣2−∣∣λp∣∣2 < βq, (3.4)

which is equivalent to the following two inequalities:

βp

∣∣λq∣∣2−βp

∣∣λp∣∣2
< 2βp

∣∣λq∣∣2− 2βq
∣∣λp∣∣2

, (3.5)

2βp

∣∣λq∣∣2− 2βq
∣∣λp∣∣2

< βq
∣∣λq∣∣2−βq

∣∣λp∣∣2
. (3.6)

The inequality (3.5) is equivalent to the inequality βp|λp|2− 2βq|λp|2 + βp|λq|2 > 0. No-
tice that βp|λp|2− 2βq|λp|2 +βp|λq|2 is the numerator of the expression on the right side
of (3.3). Similarly, the inequality (3.6) is equivalent to βq|λq|2 − 2βp|λq|2 + βq|λp|2 > 0.
Notice that βq|λq|2 − 2βp|λq|2 + βq|λp|2 is the numerator of the expression on the right
side of (3.2). Hence the expressions on the right-hand sides of (3.2) and (3.3) are both
positive. Since the sum of these two expressions is 1, each of these expressions is a number
between 0 and 1. �

Since higher antieigenvalues of T are in fact first antieigenvalues of restrictions of T
on certain reducing subspaces of T , the higher antieigenvalues and antieigenvectors are
also well defined.

To conclude, we mention that Davis’s [1, pages 173–174] theorem may not cover one
instance. Thus, for clarity, we mention it here. It is possible that (using his notations) ρ =
max(|λ1|/|λ2|,|λ2|/|λ1|) = 1. An example is λ1 = |λ1|eiθ = eiθ = cosθ + isinθ and λ2 =
|λ2|e−iθ = e−iθ = cosθ− isinθ. This pair of eigenvalues λ1 and λ2 cannot represent a pair
of critical eigenvalues. Recall that, by definition, if λp = βp + δpi and λq = βq + δqi are
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the first and second critical eigenvalues, respectively, we must have βq > βp. Thus we are
in case (1) of Theorem 3.1.
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