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A topology τ on the vertices of a comparability graph G is said to be compatible with G
if each subgraph H of G is graph-connected if and only if it is a connected subspace of
(G,τ). In two previous papers we considered the problem of finding compatible topolo-
gies for a given comparability graph and we proved that the nonexistence of infinite paths
was a necessary and sufficient condition for the existence of a compact compatible topol-
ogy on a tree (that is to say, a connected graph without cycles) and we asked whether this
condition characterized the existence of a compact compatible topology on a compara-
bility graph in which all cycles are of length at most n. Here we prove an extension of
the above-mentioned theorem to graphs whose cycles are all of length at most five and
we show that this is the best possible result by exhibiting a comparability graph in which
all cycles are of length 6, with no infinite paths, but which has no compact compatible
topology.

1. Introduction and preliminary results

Recall that a graph is a comparability graph if and only if it is the graph of some poset.
More formally if we define the graph of a poset (X ,<), denoted by �((X ,<)), on the vertex
set X , by

[x, y]∈ E
(
�
(
(X ,<)

))
if and only if either x < y or y < x, (1.1)

then G is a comparability graph if it is isomorphic to �((X ,<)) for some poset (X ,<).
Note that � is a functor from the category of posets onto the category of comparability
graphs with reflexive graph-homomorphisms as morphisms. Thus if G is a comparability
graph, then there is some (nonunique) poset (X ,<) such that �(X ,<) = G (thus X =
V(G)) and so � induces orderings on the vertices of G (or equivalently, orientations of
the edges of G). In the sequel, a comparability graph G with a (fixed) induced order < will
be denoted by (G,<) (even though strictly speaking, the order is on the set V(G)) and we
refer to such a graph as an ordered comparability graph; clearly the category of posets and
the category of ordered comparability graphs are isomorphic.
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Préa introduced the notion of compatibility between a graph G and a topology on its
vertex set V(G) in [7]. There, a topology τ on V(G) was said to be compatible (resp.,
weakly compatible) with a graph G if every induced subgraph H of G (resp., every finite
induced subgraphH ofG) is connected if and only if the relative topology induced by τ on
V(H) is connected. It was shown that, in the case of a locally finite comparability graph
G with a finite number of components, a compatible topology exists if and only if G is a
comparability graph. This result was generalized to arbitrary comparability graphs in [5].
Clearly, if a topology τ on the vertex set V(G) of a graph G is weakly compatible, then the
graph structure of G is determined by the topology in the sense that whenever x, y are dis-
tinct vertices of G, [x, y]∈ E(G) (the edge set of G) if and only if x ∈ clτ{y} or y ∈ clτ{x}.

We will be studying topologies on the vertex sets of ordered comparability graphs and
in order to relate the topology to the partial order, we require that the specialization or-
der of the topology τ (which we denote by �τ and is defined by x�τ y if and only if
x ∈ clτ{y}) exactly coincide with the given partial order. Such a topology will be said to
be consistent with the poset or ordered comparability graph. Clearly a consistent topology
must be weakly compatible in the sense of [5, 7], but not vice versa. In what follows, in
order to avoid unnecessary terminology, we assume that the conditions of weak compati-
bility and compatibility include the condition of consistency. Thus we make the following
formal definitions.

A topology τ on the vertex set of an ordered comparability graph (G,<) is said to be
compatible (resp., weakly compatible) if for each induced subgraph H of G (resp., each
finite induced subgraph H of G), H is τ-connected if and only if it is graph-connected
and�τ coincides with <.

Recall from [6] that a graph G is said to be cyclically bounded if there is some k ∈N (the
set of positive integers) such that every cycle in G is of length at most k. In [6, Theorem
3.1], we have shown that an (ordered) tree possesses a compact compatible topology if
and only if it has no infinite paths and we asked whether a similar theorem holds in the
case of cyclically bounded ordered comparability graphs.

If ≤ is a partial order on a set X , then we define (←,x]= {y : y ≤ x} and [x,→)= {y :
y ≥ x}; the weak topology ω on X is the topology generated by the sets {X \ (←,x] : x ∈ X}
and the Alexandroff topology α induced by the partial order is that topology with base
{[x,→) : x ∈ X}. It was shown in [5, Theorem 1.10] that if µ is a compatible topology for
a poset (X ,<), then ω⊆ µ⊆ α.

For w ∈ V(G), N(w) will denote the set of graph neighbours of w and a graph G is
said to be blunt if for each v ∈ V(G), G \N(v) has only a finite number of components.
Finally, say that a set of vertices H of a graph G is centred if there exists v ∈ G such that
H ⊆ N(v) \ {v}. v is then said to be a centre for H . Say that H is finitely centred if every
finite subset of H is centred.

For all other undefined topological and graph-theoretical terms we refer the reader to
[1, 2, 3].

Theorem 1.1. If an ordered bipartite graph (G,<) either
(1) has no infinite paths, or
(2) is cyclically bounded,

then the weak topology is compact.
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Proof. We denote the set of minimal (resp., maximal) elements of the order by min(G)
(resp., max(G)). Suppose to the contrary that the weak topology is not compact; then by
[6, Theorem 2.12], there is some (necessarily infinite) subsetV ⊆max(G) of maximal ele-
ments of (G,<) which is finitely centred but not centred. Choose v0 ∈V andm0 ∈min(G)
such that m0 < v0. Suppose now that we have chosen distinct vertices v0,v1, . . . ,vn ∈V and
m0, . . . ,mn ∈min(G) such that

(a) mk is a centre for {v0,v1, . . . ,vk} for each k ∈ {0,1, . . . ,n}, and
(b) [mk,vk+1] �∈ E(G) for each k ∈ {0,1, . . . ,n− 1},

then clearly

T =m0,v0,m1,v1, . . . ,mn,vn (1.2)

is a path in G of length 2n+ 1 and

v0,m1,v1, . . . ,vn−1,mn (1.3)

is a cycle of length 2n. We extend this path to a path of length 2n+ 3 thus showing by
induction that there is an infinite path in G and at the same time construct a cycle of
length 2n+ 2, showing that (G,<) is not cyclically bounded.

Since mn is not a centre for V , there is some vn+1 ∈ V such that mn �≤ vn+1 and then
necessarily vn+1 �∈ {v0,v1, . . . ,vn} by (a) above. However, V is finitely centred and hence
there is some mn+1 ∈min(G) such that mn+1 < vk for all k ∈ {0,1, . . . ,n,n+ 1}; it follows
from (b) that mn+1 �∈ {m0,m1, . . . ,mn} and hence we have extended the path T to a path of
length 2n+ 3, m0,v0,m1,v1, . . . ,mn,vn,mn+1,vn+1. Note also, that since [mn+1,v0]∈ E(G),
we have also constructed a cycle

v0,m1,v1, . . . ,vn−1,mn,vn,mn+1 (1.4)

of length 2n+ 2. �

We recall the following definitions from [6].
A poset (or equivalently, an ordered comparability graph) (X ,<) will be said to be

basal if the set of minimal elements of the order, min(X), is coinitial. Let (X ,<) be a basal
poset; we define a new order ≺ on X as follows:

x ≺ y if and only if x < y and x ∈min(X). (1.5)

The poset (X ,≺) will be called the bipartite skeleton of (X ,<). Similarly, �(X ,≺) will be
called the ordered bipartite skeleton of �(X ,<); it is easy to see that �(X ,≺) is an (ordered)
bipartite graph.

In [6, Section 2], we showed that the existence of a compact compatible (or weakly
compatible) topology on such a graph is equivalent to the existence of such a topology on
its bipartite skeleton [6, Theorems 2.14 and 2.18].

Corollary 1.2. If an ordered comparability graph has no infinite paths or is cyclically
bounded, then it has a compact weakly compatible topology.
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Proof. Suppose (G,<) is an ordered comparability graph which is either cyclically
bounded or has no infinite paths; we claim that G is basal. For if not, then there is some
descending chain x0 > x1 > x2 > ··· of vertices which implies the existence both of an
infinite path and arbitrarily large cycles in G. Thus (G,<) has a bipartite skeleton which
we denote by (H ,≺). Since H is a subgraph of G, it also is either cyclically bounded or
has no infinite paths and hence by the theorem, the weak topology on (H ,≺) is compact.
The result now follows from [6, Theorem 2.14]. �

Corollary 1.3. The weak topology corresponding to either of the two possible orderings of
a tree is compact.

Let us say that a bipartite graph is (weakly) bilaterally compact if for each of the two
possible orderings there is at least one compact (weakly) compatible topology.

The following result is now clear.

Corollary 1.4. A bipartite graph which either has no infinite paths or is cyclically bounded
is weakly bilaterally compact.

Thus a bipartite graph which is not weakly bilaterally compact must have both an in-
finite path and arbitrarily large cycles—such a graph is given as [6, Example 2.19]. Notice
that for this graph neither of the two weak topologies corresponding to the two possible
orderings of the graph are compact. However, by modifying slightly the above-mentioned
example, we obtain a bipartite graph which has a compact compatible topology with re-
spect to one ordering, but which does not even have a weakly compatible compact topol-
ogy with respect to the other.

Example 1.5. The graph G is defined by

V(G)= (N×{0})∪ ((N∪{∞})×{1}),
E(G)= {[(m,0),(n,1)

]
: m, n∈N, m �= n

}∪ {[(∞,1),(n,0)
]

: n∈N}. (1.6)

It is easy to see that with the ordering in which vertices whose second coordinate is 0
are minimal, the weak topology restricted to the set of minimal elements {(n,0) : n∈N}
is discrete (exactly as in [6, Example 2.19]) and hence the weak topology is not com-
pact. However, with the reverse order, the vertex (∞,1) is a centre for the set of maximal
elements {(n,0) : n ∈ N} and hence by [6, Corollary 2.10], for this ordering there is a
compatible compact topology on G.

2. Graphs whose cycles are small

We have shown in [6, Theorem 3.4] that if (G,<) is a cyclically bounded ordered com-
parability graph for which there exists a compact compatible topology, then G has no
infinite paths. Hence we were led to ask the following question, the answer to which will
be given in this section.

Problem 2.1. If a cyclically bounded ordered comparability graph has no infinite paths,
then does it have a compatible compact topology?
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Recall that a block in a graph G is a maximal 2-connected induced subgraph; a block is
trivial if it contains only two vertices (and hence one edge). A well-known construction
(see [3, page 36]) is the block-cut-point tree whose vertices are the set of blocks together
with the set of cut-points of G and whose edges correspond to the adjacency of blocks
and cut-points in the original graph. In the sequel, Kα,β denotes the complete bipartite
graph on α and β vertices.

Theorem 2.2. Let G be a 2-connected ordered bipartite graph in which all cycles are of
length at most 4; then G is bilaterally compact.

Proof. If G is a trivial block, then the result is clear. If not, then we claim that G= K2,γ for
some cardinal γ > 1. To see this, consider the sets min(G) and max(G) of minimal and
maximal elements of G, respectively. Since each pair of points in a 2-connected graph lie
in a cycle, whenever v ∈min(G) and w ∈max(G), there is some 4-cycle containing v and
w and hence [v,w]∈ E(G); thus G is a complete bipartite graph. However, if both min(G)
and max(G) have at least three elements, then G contains a copy of the complete bipartite
graph K3,3 and hence contains a cycle of length 6, thus proving our claim. To complete the
proof of the theorem, it remains only to show that for each cardinal γ, the graph K2,γ is
bilaterally compact; that is to say, for either of the two possible orderings of K2,γ, there is
a compact compatible topology on K2,γ. However, if the set of minimal elements is finite,
then the Alexandroff topology corresponding to that ordering is a compact compatible
topology. If on the other hand, the set of minimal elements is infinite, then letting α
denote the Alexandroff topology induced by the ordering, we can define a topology σ on
G= K2,γ as follows: fixv0 ∈min(G), then

U ∈ σ if and only if U ∈ α and if v0 ∈U , then G \U is finite. (2.1)

If γ is infinite, then the relative topology which σ induces on min(G) is homeomorphic
to the one-point compactification of the discrete space of cardinality γ and hence σ is
compact. We leave the routine verification that σ is compatible to the reader. �

Remark 2.3. We note for future reference that the topology σ constructed in the previous
theorem on the 2-connected ordered bipartite graph G= K2,γ has (at least) one minimal
vertex all of whose neighbourhoods are cofinite. If the set of <-minimal elements of G
is finite, then the topology on G is precisely the Alexandroff topology α induced by the
order <; if on the other hand, the set of minimal elements is infinite, then all vertices but
one (the vertex v0 of Theorem 2.2) have Alexandroff neighbourhoods. In either case, σ
will be termed a canonical topology for the block G. A minimal vertex all of whose neigh-
bourhoods are cofinite in G will be called determining for G. Hence, if σ is a canonical
topology for G, then either there are a finite number of minimal vertices, all of which are
determining or there is a unique minimal vertex which is determining, in which case this
vertex will be termed special. It is also clear that every maximal element of G is σ-open
and each minimal element is σ-closed.

The following lemma shows that in the search for compact compatible topologies, we
may restrict our attention to connected graphs.
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Lemma 2.4. If each graph component of an ordered comparability graph (G,<) has a com-
pact compatible topology, then so does (G,<).

Proof. Let {Cα : α∈ I} be the set of graph components of (G,<) and let σα be a compact
compatible topology for Cα. If I is finite, then the disjoint topological union of the spaces
(Cα,σα) is the required compact space. If on the other hand I is infinite, then fix α∈ I and
x ∈ Cα and define a topology τ on G as follows:

U ∈ τ if and only if U ∩Cα ∈ σα and if x ∈U ,

then U ⊇
⋃{

Cα : α∈ I \F} for some finite F ⊆ I.
(2.2)

We omit the straightforward proof that τ is a compact compatible topology for (G,<).
�

In order to prove our main theorem, we need some more notation. Suppose that G
has no infinite paths, then G has a non-cut-point. Let B0—the root block of G—be the
block containing the non-cut-point which we denote by vB0 . Every block C of G distinct
from B0 contains a unique cut-point vC of G whose distance from vB0 is minimal among
all other vertices of C. Say that a block C is an immediate successor block to a block B (or
equivalently that B is an immediate predecessor to C) if B∩C �= ∅, vB �= vC, and every
path from vC to vB0 contains vB. Each block other than B0 has a unique immediate pre-
decessor, but in general may have many immediate successors. Finally, say that a block C
is a successor to a block B if there is a finite sequence of blocks B = B0,B1, . . . ,Bn = C such
that Bk+1 is an immediate successor of Bk for each k ∈ {0,1, . . . ,n− 1}.
Theorem 2.5. Let (G,<) be a connected ordered bipartite graph in which all cycles are of
length no greater than 4. Then (G,<) has a compact compatible topology if and only if the
associated block-cut-point tree has no infinite paths.

Proof. Suppose that (G,<) is such a connected ordered bipartite graph whose associated
block-cut-point tree has no infinite paths.

Using the notation of the paragraph preceding this theorem, the ordering < on G de-
termines an ordering <B0 on the root block B0. Let σ0 be a canonical compact topology
for B0 in which, if the non-cut-point vB0 (henceforth denoted by v0) is minimal in (G,<),
then it is a determining vertex for (B0,σ0). If G has no cut-points, then G consists of the
single bilaterally compact block B0 and we define τ = σ0 and we are done. Otherwise, we
proceed to define a topology σ on G as follows.

Let {Bα : α∈ κ} be a well-ordering of the blocks of G in such a way that B0 is the root
block fixed previously and for α > 0, let vα be the cut-point of G in Bα whose distance
from v0 is minimal.

The ordering < on G determines an ordering <B on each block B of G. Since each block
B is either trivial or isomorphic to K2,γ for some cardinal γ and each block has a unique
immediate predecessor, it is clear that we can choose a canonical compact compatible
topology σα on Bα (in which every maximal element of (Bα,<Bα) is σα-open and each
minimal element is σα-closed) and such that
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(1) if vα is a minimal vertex of the block Bα, then σα is chosen in such a way that vα
is a determining vertex for Bα (and thus if Bα has an infinite number of minimal
vertices, vα will be the unique special vertex of (Bα,σα)).

We now define a topology σ on G by

U ∈ σ if and only if U ∩Bα ∈ σα for each block Bα of G. (2.3)

A moment’s reflection now shows that the topology σ is well defined and that
(2) each vertex which is maximal with respect to < is σ-open, and each vertex which

is minimal with respect to < is σ-closed; furthermore, for each α∈ κ, σ | Bα = σα;
(3) if z is minimal (resp., maximal), then the graph components of G \ {z} are σ-

open (resp., σ-closed) in G. Furthermore, for each z ∈ G, the graph components
of G \ {z} are open and closed in G \ {z};

(4) if z is a maximal (resp., minimal) vertex of G, then o(z)=∪{Bβ : every path from
vβ to v0 contains z} is σ-open (resp., σ-closed). (o(z) may be thought of as those
points which are separated from v0 by z together with z itself.)

The topology σ on G is weakly compatible since if [v,w]∈ E(G), it follows that v,w ∈
Bα for some block Bα of G and then by (2), since σα is a compatible topology for Bα, it
follows that {v,w} is σα-connected and hence σ-connected. Conversely, if [v,w] �∈ E(G),
then there are two possibilities. If v, w lie in some block Bα of G, then since σα is a com-
patible topology for Bα, it follows again from (2) that {v,w} is not σ-connected. If there
is no block of G containing both v and w, then there is some cut-point z of G such that
v and w lie in different graph components of G \ {z}. Condition (3) now shows that the
relative σ topology on {v,w} is discrete.

We claim that σ is a compatible topology for G. To show this, by [6, Lemma 2.7], it
suffices to show that if H is a σ-connected subset of G and v is a vertex of G such that
N(v)∩H =∅, then v �∈ clσ(H). Now, to prove our claim, note that by Remark 2.3, if
v ∈G is not a special determining vertex of any block, then each σ-neighbourhood of v in
G is an Alexandroff neighbourhood of v in G and hence v has a neighborhood contained
in N(v). Hence if we assume that N(v)∩H =∅ and v ∈ clσ(H), then v must be a special
vertex of some block. However, if v is special in some block, then each σ-neighborhood
of v contains all maximal vertices and all but finitely many minimal vertices of that block
and so H must meet o(z) for infinitely many minimal (nonspecial) vertices z(�= v) lying
in some block B in which v is special. By (4), each such o(z) is σ-closed and o(z) \ {z} is σ-
open; since H cannot contain any maximal vertices of B (they all lie in N(v)), H ∩ o(z)=
H ∩ (o(z)∪N(z)) is a proper open and closed subset of H , a contradiction.

We now wish to modify the topology σ so as to obtain a compact compatible topology
τ on G. Let w0 be a determining vertex for B0 and for each α > 0 pick a determining vertex
in Bα, with the condition that if vα is closed (and hence by the definition of the topology
σα, vα is determining in Bα), then vα is the determining vertex so chosen. Denote by W
this set of determining vertices and for each distinct vertex w ∈W , we fix a block Bα such
that w is determining in Bα. There may be many such blocks, but we assume that if w
is special in some block, then Bα is chosen so that w is special in Bα and also that the
distance from v0 to vα is minimal among all blocks in which w is special; in other words,
if w is special in some block, then Bα is chosen so that w is special in Bα but not in the
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immediate predecessor block of Bα. Also, if z is a vertex of G, then we denote the set of
graph components of G \ {z} which do not contain v0 by �z; it follows from (3) that if z
is maximal (resp., minimal), then each element of �z is closed (resp., open) in (G,σ).

Now for each w ∈W and each block Bα so chosen and for each finite set F of minimal
vertices in o(vα) \ {w}, each finite set K of maximal vertices of o(vα) \ {w} and each finite
set �⊆∪{�z : z ∈ K}, we define

V(w,F,K ,�)= (N(w)∪ o(vα)
) \∪{o(z) : z ∈ F

} \∪�. (2.4)

If w �= vα, then vα is maximal and hence by (4), o(vα) is σ-open and N(w) ⊆ o(vα).
While if w = vα, then since w is not special in the immediate predecessor block of Bα, it
follows again that N(w)∪ o(w) is a σ-open neighbourhood of w. Thus in both cases, it
follows from (3) and (4) that for each vertex w ∈W , V(w,F,K ,�) is σ-open. We now
define

�= {U ∈ σ : whenever w ∈W ∩U , then U ⊇V(w,F,K ,�)

for some finite set of minimal vertices F ⊆ o(vα) \ {w},
some finite set of maximal vertices K ⊆ o(vα) \ {w}
and some finite set �⊆∪{�z : z ∈ K}}.

(2.5)

After a moment’s thought it is clear that � is closed under finite intersections and
hence � is a base for a topology which we denote by τ. Note also that if Bα is a block of
G and w ∈ Bα is determining in Bα, then w has a σ-open neighbourhood U such neigh-
bourhood U such that Bα \U consists of minimal vertices. Moreover, every other point
of Bα has a σ-neighborhood which misses w and hence τ | Bα = σ | Bα and clearly τ ⊆ σ .

Finally it is clear from the definition of τ that
(5) if z is a maximal vertex, then each element C ∈�z is τ-closed and C∪{z} (and

hence o(z)) is τ-open, and if z is a minimal vertex, then each element C ∈�z is
τ-open and o(z) is closed.

We will prove that τ is a compact compatible topology for (G,<). To this end, we show
first that τ is a weakly compatible topology for G. However, if [x, y] ∈ E(G), then there
is some block Bα of G such that x, y ∈ Bα and hence {x, y} is σα-connected and hence
τ-connected. Conversely, if [x, y] �∈ E(G) and x, y lie in some block Bα of G, then since σα
is a compatible topology for Bα, it follows again that {x, y} is not σ-connected. If there is
no block of G containing both x and y, then there is some cut-point z �∈ {x, y} of G such
that x and y lie in different components of G \ {z}. That {x, y} is discrete in (G,τ) now
follows from (5) by considering the cases in which z is maximal or minimal and whether
or not one of the vertices x or y lies in the component of G \ {z} which contains v0.

Next we show that τ is a compatible topology for G. Since τ is weakly compatible, it
follows from [6, Lemma 2.7] that it suffices to show that if H is any τ-connected subgraph
of G and N(w)∩H = ∅, then w �∈ clτ(H). If w �∈W , then w has a τ-neighbourhood
contained in N(w) and the result follows trivially; hence we suppose that w ∈W and that
Bα has been chosen as above, that is to say, w is determining in the block Bα and if w
is special in some block, then Bα was chosen so that the distance of vα to v0 is minimal
among all blocks in which w is special.
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If w ∈ clτ(H), then since N(w)∪ o(vα) is a τ-open neighbourhood of w and H ∩N(w)
=∅, it follows we can assume that H ⊆ o(vα). There are two cases to consider.

(a) If H meets some block B containing w, then since H ∩N(w)=∅ and N(w) con-
tains all maximal vertices of B, it follows that H ∩ B is a finite set of minimal vertices,
say z1, . . . ,zn. By (5), o(zi) is τ-closed for each i ∈ {1, . . . ,n} and so for each such zi,
H ∩ o(zi) = H ∩ (o(zi)∪N(zi)) is a τ-clopen subset of H . Thus for some i ∈ {1, . . . ,n},
H ⊆ o(zi) and so (N(w)∪ o(vα)) \ o(zi) is a τ-open neighbourhood of w missing H .

(b) If on the other hand, H ∩ B =∅ for each block B containing w, then for some
block B containing w there is a vertex z ∈ B such that H ∩ o(z) �= ∅, for otherwise, H ∩
o(vα) =∅. Since w is determining in each block which contains it, z is not special in B.
If z is a minimal vertex, then since H ∩ o(z)=H ∩ (o(z)∪N(z)), it follows from (5) that
H ∩ o(z) is a τ-clopen subset of H and hence H ⊆ o(z) \ {z}. Thus (N(w)∪ o(vα)) \ o(z)
is a τ-open neighbourhood of w missing H . If on the other hand z is maximal, then H
must meet some graph component C ∈�z. However, again using (5), C is τ-closed and
C∪ {z} is τ-open, thus since H ∩C = H ∩ (C∪ {z}), it follows that C∩H is a proper
τ-clopen subset of H . Thus H ⊆ C and then G \C is a τ-open neighbourhood of w which
misses H .

Finally, we need to show that (G,τ) is compact. To this end, let � be a cover of G by
τ-open sets. There is some U0 ∈ � such that w0 ∈ U0. Since w0 is a determining vertex
for B0 and U0 ∈ τ0, it follows that U covers G except for a finite number of sets {o(zi) : i∈
{1, . . . ,n}} for some finite set of minimal vertices {zi : 1≤ i≤ n} ⊆ B0 and a finite number
of graph components {Ci : 1≤ y ≤m} in ∪{�z : z ∈ K} for some finite set K of maximal
vertices in B0. Let Bαi (1≤ i≤m) be the (unique) immediate successor block of B0 which
meets Ci. Since zi is determining in each block which contains it, zi ∈W and each block
Bαi contains a determining vertex wαi ∈W . The above argument can now be repeated for
the finite family of subgraphs {o(zi) : 1 ≤ i ≤ n}∪ {Ci : 1 ≤ i ≤m}. Since the block-cut-
point tree of G has no infinite paths, it follows from König’s lemma (see [4, page 298])
that the process stops after a finite number of steps and we obtain a finite subcover of �,
thus proving that (G,τ) is compact.

Conversely, suppose that τ is a compact compatible topology for G and the block-cut-
point tree of G has an infinite path. Then G contains an infinite path of distinct vertices
P = {pn : n∈N}. The intersection of this path with each block B of G must be finite since
B is either trivial or isomorphic to K2,γ for some cardinal γ. Hence, considering P as an
induced subgraph of G, each vertex pn ∈ P has only a finite number of graph neighbours
and so P is blunt. Thus by [5, Corollary 2.15], the only compatible topology for P is the
Alexandroff topology. Thus τ | P is the Alexandroff topology on P and hence is locally
finite; it follows that (P,τ | P) is not compact and hence is not closed in (G,τ).

However, clτ(P) is compact, and if y ∈ clτ(P) \P, then since the intersection of P with
each block is finite, it follows that N(y)∩P is finite. Thus N(y) misses some final interval
of P, say N(y)∩ {pn : n ≥ k} = ∅. Since τ is a compatible topology for G, it follows
from [6, Lemma 2.7] that there is some τ-neighbourhood U of y which misses the τ-
connected set {pn : n ≥ k} and hence U ∩ P is finite. Thus each vertex of clτ(P) has a
τ-neighbourhood whose intersection with P is finite, contradicting the fact that clτ(P) is
compact. �
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We note that in the final paragraph of the proof of Theorem 2.5, we have effectively
shown that G has an infinite path if and only if its block-cut-point tree has an infinite
path and hence we have proved the following.

Corollary 2.6. Let (G,<) be a connected ordered bipartite graph in which all cycles are of
length no greater than 4. Then (G,<) has a compact compatible topology if and only if G has
no infinite paths.

Since the operation of passing to the bipartite skeleton destroys all odd cycles, after
applying Lemma 2.4 we have shown the following.

Theorem 2.7. Let (G,<) be an ordered comparability graph in which every cycle is of length
at most 5, then G has a compact compatible topology if and only if it has no infinite paths.

Since every minimal vertex of a finite block is determining, similar methods can be
used to prove the following theorem, but we omit the laborious details.

Theorem 2.8. Let (G,<) be an ordered comparability graph in which every block is finite,
then G has a compatible compact topology if and only if it has no infinite paths.

Example 2.9. For each n∈N, let An be a copy of C6 (the 6-cycle) where we suppose that
V(An) = {v1,n, . . . ,v6,n}. We denote the disjoint union of the graphs An by H and let G
be the quotient graph obtained from H by identifying each of the vertices {v1,n : n∈N}
and each of the vertices {v4,n : n ∈ N}. G is clearly 2-connected and since if v ∈ V(An)
either v1,n �∈ N(v) or v4,n �∈ N(v), it follows that G is blunt. It is then a consequence of
[5, Corollary 2.15], that the only compatible topology for G is the Alexandroff topology.
However, the Alexandroff topology (corresponding to either of the two possible orderings
of G) is not compact since, as is easily seen, the set of minimal elements is infinite and
discrete in the relative topology.

We have shown that there exists a bipartite graph with no infinite paths and all of
whose cycles are of length 6, but which has no compact compatible topology. Thus
Theorem 2.5 and Corollary 2.6 do not generalize to comparability graphs, all of whose
cycles are of length at most 6 so proving that Theorem 2.7 is the best possible result and
together with Example 2.9 gives a complete answer to Problem 2.1.

An interesting question arises in regard to local connectivity of compact compatible
topologies. The Alexandroff topology on a poset or ordered comparability graph is locally
connected as is the topology τ constructed in Theorem 2.5. On the other hand, the trivial
graph (no edges) on a countably infinite set of vertices has a compact compatible topology
but no locally connected compact topology. However we do not know the answer to the
following.

Problem 2.10. If a connected ordered comparability graph has a compact compatible
topology does it have a locally connected compact compatible topology?
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[7] P. Préa, Graphs and topologies on discrete sets, Discrete Math. 103 (1992), no. 2, 189–197.
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