SOME INTERESTING SERIES ARISING FROM THE POWER SERIES EXPANSION OF $(\sin^{-1} x)^q$

HABIB MUZAFFAR

Received 3 February 2005 and in revised form 23 June 2005

Starting from the power series expansions of $(\sin^{-1} x)^q$, for $1 \leq q \leq 4$, formulae are obtained for the sum of several infinite series. Some of these evaluations involve $\zeta(3)$.

1. Introduction

In [10], Choe deduced the formula

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \quad (1.1)$$

from the power series expansion of $\sin^{-1}(x)$ (see also [1, 16]). By applying a generalization of the procedure used by Choe to the power series expansions of $(\sin^{-1} x)^q$ for $1 \leq q \leq 4$, we obtain explicit formulae for the sum of several infinite series, see (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6). For other applications based on the procedure used by Choe, see [11, 12, 17].

2. Main results

Let m denote an integer. For $m \geq 0$, we have the following theorems.

Theorem 2.1.

$$\sum_{k=0}^{\infty} \frac{\binom{2k}{k}}{(2k+1)(2k+2m+1)\binom{2k+2m}{k+m}} = 2^{-4m} \left(\sum_{r=1}^{m} \frac{\binom{2m}{m-r}}{r^2} + \frac{2m}{m} \frac{\pi^2}{8} \right). \quad (2.1)$$

Theorem 2.2.

$$\sum_{k=1}^{\infty} \frac{\binom{2k+2m}{k+m}}{k^2 \binom{2k}{k}} = \sum_{r=1}^{m} \frac{2\binom{2m}{m-r}}{r^2} + \frac{2m}{m} \frac{\pi^2}{6}. \quad (2.2)$$
Theorem 2.3.

\[
\sum_{k=1}^{\infty} \frac{(2k)}{(2k+1)(2k+2m+1)} \sum_{j=1}^{k} \frac{1}{(2j-1)^2} = 2^{-4m-1} \left(- \sum_{r=1}^{m} \frac{(2m-r)}{2r^4} + \pi^2 \sum_{r=1}^{m} \frac{(2m-r)}{8r^2} + \left(\frac{2m}{m} \right) \frac{\pi^4}{192} \right). \quad (2.3)
\]

Theorem 2.4.

\[
\sum_{k=1}^{\infty} \frac{(2k+2m+2)}{(k+1)(2k+1)} \sum_{j=1}^{k} \frac{1}{j^2} = -4 \sum_{r=1}^{m} \frac{(2m-r)}{r^4} + \frac{2\pi^2}{3} \sum_{r=1}^{m} \frac{(2m-r)}{r^2} + \left(\frac{2m}{m} \right) \frac{\pi^4}{60}. \quad (2.4)
\]

In addition, we have the following theorems.

Theorem 2.5.

\[
\sum_{k=1}^{\infty} \frac{1}{k(2k+1)} \sum_{j=1}^{k} \frac{1}{(2j-1)^2} = \frac{\pi^2}{4} \log 2 - \frac{7}{8} \zeta(3),
\]

\[
\sum_{k=1}^{\infty} \frac{1}{(k+1)(2k+1)} \sum_{j=1}^{k} \frac{1}{j^2} = \frac{\pi^2}{3} \log 2 - \frac{3}{2} \zeta(3). \quad (2.5)
\]

Theorem 2.6.

\[
\sum_{k=1}^{\infty} \frac{k}{(k+1)(2k+1)(2k-1)} \sum_{j=1}^{k} \frac{1}{j^2} = -\frac{\pi^2}{36} + \frac{2}{3} \log 2 + \frac{\pi^2}{9} \log 2 - \frac{1}{2} \zeta(3). \quad (2.6)
\]

In (2.5) and (2.6), \(\zeta \) represents the Riemann zeta function.

The following result in [14] \((m \geq 0)\) should be compared with (2.1):

\[
\sum_{k=0}^{\infty} \frac{(2k)}{(2k+2m+1)(2k+4m+1)} = \frac{\pi^2}{2^{8m+3}} \left(\frac{2m}{m} \right)^2. \quad (2.7)
\]

Also, the series appearing above in (2.3), (2.4), (2.5), and (2.6) bear some resemblance to Euler sums (see, e.g., [3, 4, 5, 9]). A very broad generalization which generalizes both Euler sums and polylogarithms is studied in [6]. For other interesting evaluations of series involving binomial coefficients, see, for example, [7, 8, 15, 18].
3. Proofs of Theorems 2.1, 2.2, 2.3, and 2.4

The power series expansions of \((\sin^{-1} x)^q \) for \(1 \leq q \leq 4 \) (valid for \(|x| \leq 1 \)) are given by (see [10], [2, pages 262-263])

\[
\sin^{-1} x = \sum_{k=0}^{\infty} \binom{2k}{k} \frac{x^{2k+1}}{2k+1}, \quad \text{(3.1)}
\]

\[
(\sin^{-1} x)^2 = \sum_{k=1}^{\infty} \frac{2^{2k-1}}{k^2} x^{2k},
\]

\[
(\sin^{-1} x)^3 = 6 \sum_{k=1}^{\infty} \frac{(2k)}{2^{2k}} \left(\sum_{j=1}^{k} \frac{1}{(2j-1)^2} \right) x^{2k+1},
\]

\[
(\sin^{-1} x)^4 = 3 \sum_{k=1}^{\infty} \frac{2k}{(2k)} \left(\sum_{j=1}^{k} \frac{1}{j^2} \right) x^{2k+2} \frac{1}{(k+1)(2k+1)}.
\]

Multiplying each of (3.1) by \(x^{2m} \), where \(m \) is an integer, putting \(x = \sin \theta \) and integrating with respect to \(\theta \) from \(\theta = 0 \) to \(\theta = \pi/2 \), and using the well-known results (valid for nonnegative integers \(p \))

\[
\int_0^{\pi/2} \sin^{2p+1} \theta d\theta = \frac{2^p}{(2p+1) \binom{2p}{p}},
\]

\[
\int_0^{\pi/2} \sin^2 \theta d\theta = \frac{\pi}{2},
\]

we obtain

\[
\int_0^{\pi/2} \theta \sin^{2m} \theta d\theta = 2^{2m} \sum_{k=0}^{\infty} \binom{2k}{k} \frac{1}{(2k+1)(2k+2m+1) \binom{2k+2m}{k+m}}, \quad m \geq 0, \quad \text{(3.3)}
\]

\[
\int_0^{\pi/2} \theta^2 \sin^{2m} \theta d\theta = \frac{\pi}{2^{2m+2}} \sum_{k=1}^{\infty} \frac{\binom{2k+2m}{k+m}}{k^2 \binom{2k}{k}}, \quad m \geq -1, \quad \text{(3.4)}
\]

\[
\int_0^{\pi/2} \theta^3 \sin^{2m} \theta d\theta = 3(2^{2m+1}) \sum_{k=1}^{\infty} \frac{\binom{2k}{k}}{(2k+1)(2k+2m+1) \binom{2k+2m}{k+m}} \sum_{j=1}^{k} \frac{1}{(2j-1)^2}, \quad m \geq -1, \quad \text{(3.5)}
\]

\[
\int_0^{\pi/2} \theta^4 \sin^{2m} \theta d\theta = \frac{3\pi}{2^{2m+3}} \sum_{k=1}^{\infty} \frac{\binom{2k+2m+2}{k+m+1}}{(k+1)(2k+1) \binom{2k}{k}} \sum_{j=1}^{k} \frac{1}{j^2}, \quad m \geq -2. \quad \text{(3.6)}
\]
Series arising from power series of \((\sin^{-1} x)^q\)

For \(m \geq 0\), we evaluate the integrals on the left of (3.3), (3.4), (3.5), and (3.6) using the following formula valid for a nonnegative integer \(m\) (see [13, page 31]):

\[
\sin^{2m} \theta = 2^{-2m} \sum_{j=0}^{m-1} (-1)^{m+j} \binom{2m}{j} \cos (2(m-j)\theta) + \binom{2m}{m},
\]

and the following easily checked formulae (valid for positive integers \(l\)):

\[
\int_0^{\pi/2} \theta \cos(2l\theta) d\theta = \frac{(-1)^l - 1}{4l^2},
\]

\[
\int_0^{\pi/2} \theta^2 \cos(2l\theta) d\theta = \frac{(-1)^l \pi}{4l^2},
\]

\[
\int_0^{\pi/2} \theta^3 \cos(2l\theta) d\theta = \frac{(-1)^l \pi^2}{16l^2} + \frac{1 - (-1)^l}{8l^4},
\]

\[
\int_0^{\pi/2} \theta^4 \cos(2l\theta) d\theta = (-1)^l \pi \left(\frac{\pi^2}{8l^2} - \frac{3}{4} \right).
\]

After some simplification, we obtain (2.1), (2.2), (2.3), and (2.4).

4. Special cases of Theorems 2.1, 2.2, 2.3, and 2.4

We record the special cases corresponding to \(0 \leq m \leq 2\).

Putting \(m = 0, 1, 2\) in (2.1), we get

\[
\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8},
\]

\[
\sum_{k=0}^{\infty} \frac{k+1}{(2k+1)^2(2k+3)} = \frac{1}{8} + \frac{\pi^2}{32},
\]

\[
\sum_{k=0}^{\infty} \frac{\binom{2k}{k} (2k+4)}{(2k+1)(2k+5)\binom{2k+4}{k+2}} = \frac{1}{64} + \frac{3\pi^2}{1024}.
\]

Putting \(m = 0, 1, 2\) in (2.2), we get

\[
\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6},
\]

\[
\sum_{k=1}^{\infty} \frac{(2k+2)}{k^2} \frac{\binom{2k}{k}}{k+1} = 2 + \frac{\pi^2}{3},
\]

\[
\sum_{k=1}^{\infty} \frac{(2k+4)}{k^2} \frac{\binom{2k}{k}}{2k+2} = \frac{17}{2} + \pi^2.
\]

The first results of (4.1) and (4.2) are of course well-known classical results.
Putting $m = 0, 1, 2$ in (2.3), we get

\[\sum_{k=1}^{\infty} \frac{1}{(2k+1)^2} \sum_{j=1}^{k} \frac{1}{(2j-1)^2} = \frac{\pi^4}{384}, \]

\[\sum_{k=1}^{\infty} \frac{\binom{2k}{k}}{(2k+1)(2k+3)} \sum_{j=1}^{k} \frac{1}{(2j-1)^2} = -\frac{1}{64} + \frac{\pi^2}{256} + \frac{\pi^4}{3072}, \quad (4.3) \]

\[\sum_{k=1}^{\infty} \frac{\binom{2k}{k}}{(2k+1)(2k+5)} \sum_{j=1}^{k} \frac{1}{(2j-1)^2} = -\frac{1}{256} + \frac{17\pi^2}{16384} + \frac{\pi^4}{16384}. \]

Putting $m = 0, 1, 2$ in (2.4) gives

\[\sum_{k=1}^{\infty} \frac{1}{(k+1)^2} \sum_{j=1}^{k} \frac{1}{j^2} = \frac{\pi^4}{120}, \]

\[\sum_{k=1}^{\infty} \frac{\binom{2k+4}{k+2}}{(k+1)(2k+1)} \sum_{j=1}^{k} \frac{1}{j^2} = -4 + \frac{2\pi^2}{3} + \frac{\pi^4}{30}, \quad (4.4) \]

\[\sum_{k=1}^{\infty} \frac{\binom{2k+6}{k+3}}{(k+1)(2k+1)} \sum_{j=1}^{k} \frac{1}{j^2} = -\frac{65}{4} + \frac{17\pi^2}{6} + \frac{\pi^4}{10}. \]

We note that the first series evaluated in (4.4) is an Euler sum and the result is classical and was known to Euler (see, e.g., [5]).

5. Proof of Theorem 2.5

We consider the case $m = -1$ of (3.5), (3.6) (the case $m = -1$ of (3.4) gives a trivial result). We need the following result valid for a positive integer n and $|x| < 2\pi$ (see [2, page 260]):

\[\int_{0}^{x} \frac{u^n}{2} \cot \left(\frac{u}{2} \right) du = \cos \left(\frac{n\pi}{2} \right) n! \zeta(n+1) - \sum_{j=0}^{n} (-1)^{(j+1)/2} \frac{\Gamma(n+1)}{\Gamma(n+1-j)} x^{n-j} \text{Cl}_{j+1}(x), \]

where

\[\text{Cl}_{2n}(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k^{2n}}, \]

\[\text{Cl}_{2n+1}(x) = \sum_{k=1}^{\infty} \frac{\cos(kx)}{k^{2n+1}}, \quad (5.2) \]
2334 Series arising from power series of \((\sin^{-1} x)^q\)

and \(\Gamma\) and \(\zeta\) represent the Gamma function and the Riemann zeta function respectively. We note that

\[
\begin{align*}
\text{Cl}_{2n}(\pi) &= 0, \\
\text{Cl}_{2n+1}(\pi) &= \left(\frac{1}{2^{2n}} - 1\right)\zeta(2n+1), \quad n \geq 1, \\
\text{Cl}_1(\pi) &= -\log 2.
\end{align*}
\] (5.3)

Putting \(x = \pi\) in (5.1), we obtain

\[
2^n \int_0^{\pi/2} \theta^n \cot \theta \, d\theta = n! \cos \left(\frac{n\pi}{2}\right)\zeta(n+1) - \sum_{j=0}^{n} (-1)^{j+1/2} \frac{\Gamma(n+1)}{\Gamma(n+1-j)} \pi^{n-j} \text{Cl}_{j+1}(\pi).
\] (5.4)

Using

\[
\int_0^{\pi/2} \theta^n \cot \theta \, d\theta = \frac{1}{n+1} \int_0^{\pi/2} \theta^{n+1} \csc^2 \theta \, d\theta, \quad n \geq 1,
\] (5.5)

in (5.4), we get

\[
\frac{2^n}{n+1} \int_0^{\pi/2} \theta^{n+1} \csc^2 \theta \, d\theta
\]

\[
= n! \cos \left(\frac{n\pi}{2}\right)\zeta(n+1) - \sum_{j=0}^{n} (-1)^{j+1/2} \frac{\Gamma(n+1)}{\Gamma(n+1-j)} \pi^{n-j} \text{Cl}_{j+1}(\pi).
\] (5.6)

From (5.6) and (5.3) we obtain

\[
\int_0^{\pi/2} \theta^2 \csc^2 \theta \, d\theta = \pi \log 2,
\] (5.7)

\[
\int_0^{\pi/2} \theta^3 \csc^2 \theta \, d\theta = \frac{3}{4} \pi^2 \log 2 - \frac{21}{8} \zeta(3),
\] (5.8)

\[
\int_0^{\pi/2} \theta^4 \csc^2 \theta \, d\theta = \frac{\pi^3}{2} \log 2 - \frac{9}{4} \pi \zeta(3).
\] (5.9)

Putting \(m = -1\) in (3.5) and (3.6) and using (5.8) and (5.9) give (2.5).

6. Proof of Theorem 2.6

We consider the case \(m = -2\) of (3.6). We need to evaluate \(\int_0^{\pi/2} \theta^4 \csc^4 \theta \, d\theta\). We have

\[
\int_0^{\pi/2} \theta^4 \csc^4 \theta \, d\theta = \theta^4 \csc^2 \theta (-\cot \theta) \bigg|_0^{\pi/2} + \int_0^{\pi/2} \cot \theta \frac{d}{d\theta} (\theta^4 \csc^2 \theta) \, d\theta
\]

\[
= 4 \int_0^{\pi/2} \theta^3 \cot \theta \csc^2 \theta \cot \theta \, d\theta - 2 \int_0^{\pi/2} \theta^4 \csc^2 \theta \cot^2 \theta \, d\theta.
\] (6.1)
Using \(\cot^2 \theta = \csc^2 \theta - 1 \) in the second integral on the right gives

\[
\int_0^{\pi/2} \theta^4 \csc^4 \theta \, d\theta = \frac{4}{3} \int_0^{\pi/2} \theta^3 \cot \theta \csc^2 \theta \, d\theta + \frac{2}{3} \int_0^{\pi/2} \theta^4 \csc^2 \theta \, d\theta.
\]
(6.2)

Also,

\[
\int_0^{\pi/2} \theta^3 \cot \theta \csc^2 \theta \, d\theta = \theta^3 \csc \theta (- \csc \theta) \bigg|_0^{\pi/2} + \int_0^{\pi/2} \csc \theta \frac{d}{d\theta} (\theta^3 \csc \theta) \, d\theta
\]

\[
= -\frac{\pi^3}{8} + 3 \int_0^{\pi/2} \theta^2 \csc^2 \theta \, d\theta - \int_0^{\pi/2} \theta^3 \cot \theta \csc^2 \theta \, d\theta,
\]
(6.3)

so that

\[
\int_0^{\pi/2} \theta^3 \cot \theta \csc^2 \theta \, d\theta = -\frac{\pi^3}{16} + \frac{3}{2} \int_0^{\pi/2} \theta^2 \csc^2 \theta \, d\theta.
\]
(6.4)

From (6.2), (6.4), (5.7), and (5.9), we obtain

\[
\int_0^{\pi/2} \theta^4 \csc^4 \theta \, d\theta = -\frac{\pi^3}{12} + 2\pi \log 2 + \frac{\pi^3}{3} \log 2 - \frac{3}{2} \pi \zeta(3).
\]
(6.5)

Putting \(m = -2 \) in (3.6) and using (6.5), we obtain (2.6).

7. Final remarks

In a future paper, we plan to investigate what happens when we multiply (3.1) by \(x^{2m+1} \) and carry out the same steps as we did here.

Acknowledgments

The research for this paper was carried out while the author was a Postdoctoral Fellow at the University of Waterloo, Canada, under C. L. Stewart. Also, the author would like to thank J. M. Borwein for valuable comments on earlier versions of the paper.

References

Series arising from power series of $(\sin^{-1}x)^q$

Habib Muzaffar: Department of Mathematics, The University of Toledo, 2801 W. Bancroft Street, MS-942, Toledo, OH 43606-3390, USA

E-mail address: habib.muzaffar@utoledo.edu
The study of dynamic equations on a time scale goes back to its founder Stefan Hilger (1988), and is a new area of still fairly theoretical exploration in mathematics. Motivating the subject is the notion that dynamic equations on time scales can build bridges between continuous and discrete mathematics; moreover, it often reveals the reasons for the discrepancies between two theories.

In recent years, the study of dynamic equations has led to several important applications, for example, in the study of insect population models, neural network, heat transfer, and epidemic models. This special issue will contain new researches and survey articles on Boundary Value Problems on Time Scales. In particular, it will focus on the following topics:

- Existence, uniqueness, and multiplicity of solutions
- Comparison principles
- Variational methods
- Mathematical models
- Biological and medical applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/ade/guidelines.html. Authors should follow the Advances in Difference Equations manuscript format described at the journal site http://www.hindawi.com/journals/ade/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>April 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>July 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>October 1, 2009</td>
</tr>
</tbody>
</table>