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Given a bounded sequence of integers {d0,d1,d2, . . .}, 6 ≤ dn ≤M, there is an associated
abstract triangulation created by building up layers of vertices so that vertices on the nth
layer have degree dn. This triangulation can be realized via a circle packing which fills
either the Euclidean or the hyperbolic plane. We give necessary and sufficient conditions
to determine the type of the packing given the defining sequence {dn}.

1. Introduction

Since Thurston’s conjecture that maps between circle packings could be used to approxi-
mate conformal maps [7, 9], properties of circle packings have been intensely studied as
discrete analogues of classical conformal geometry. For example, Beardon and Stephen-
son showed that a triangulation of an open topological disc has a packing which fills either
the Euclidean or the hyperbolic plane [1]. This is analogous to the classical uniformiza-
tion theorem which states that any open topological disc can be mapped conformally
onto either the Euclidean or the hyperbolic plane.

Many authors have considered the resulting type problem deciding whether a given
triangulation produces a parabolic (filling the Euclidean plane) or hyperbolic packing
[3, 4, 5, 8]. He and Schramm have given the most complete answer, producing character-
izations in terms of discrete extremal length, random walks, and electrical resistance [5].
These conditions can often be difficult to check in practice; thus, we give a more direct
characterization for the special case of layered circle packings.

Layered packings are created from a bounded defining sequence {dn} in such a way
that all the circles in the nth layer are tangent to exactly dn other circles. For infinite lay-
ered packings, we formulate a type criterion based solely on the defining sequence {dn}.

This extends earlier work of Siders [8], who considered only the case dn = 6 or 7.
It follows from the length-area lemma of Rodin and Sullivan [7] that a packing is par-
abolic if the sum of the reciprocals of the number of neighbors in each generation is
infinite. Theorem 3.6 implies that condition is both necessary and sufficient for layered
packings.
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Figure 2.1. A finite portion of the layered circle packing created from the defining sequence
{8,6,8,6, . . .}. The circles of degree 8 are shaded.

2. Circle packings

Consider a collection of nonoverlapping circles in the Euclidean or hyperbolic plane. We
can analyze its combinatorial structure by examining its tangency graph, formed by asso-
ciating each circle to a vertex and connecting by an edge those vertices whose correspond-
ing circles are tangent. Notice that the circles themselves generate a geometric realization
of their tangency graph by placing vertices at the centers of the circles they represent and
embedding edges as geodesic segments connecting these centers. The region thus covered
by the embedded tangency graph is called the carrier.

Definition 2.1. A circle packing is a locally finite configuration of circles whose tangency
graph is a triangulation. A packing fills a surface if its carrier covers the entire surface.

As it is common in the literature, we limit our attention here to packings with a global
bound on the degree of each vertex, that is, a bound on the number of edges incident at
any given vertex. Given a bounded sequence of integers {d0,d1,d2, . . .}, 6 ≤ dn ≤M, we
can construct a layered triangulation by building up layers of vertices so that the nth layer
has degree dn. Such a triangulation can then be realized by a layered circle packing. Notice
that we begin enumerating the layers starting at 0. Layer number 0 consists of a single
central circle C0 surrounded by d0 other circles, see Figure 2.1.

Definition 2.2. For n > 0, the order of a vertex in the nth layer is the number of its neigh-
bors in the (n− 1)th layer.

Proposition 2.3. If dn ≥ 6 for all n, then the order of every circle in the corresponding
layered circle packing is either 1 or 2.

Proof. Notice that all circles in the first layer are tangent to the same central circle C0.
Thus all circles in the first layer have order 1.
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Figure 2.2. The circle C has three consecutive neighbors C1, C2, and C3 in the previous layer. If C2 has
order at most 2, then it can have degree at most 5.
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Figure 2.3. The shaded circles are the offspring of circle A.

Now assume that all circles in the first n layers have order either 1 or 2, but some circle
C in the (n+ 1)th layer has order greater than 2. Then C has at least three consecutive
neighbors C1, C2, and C3 in the nth layer. By our assumption, C2 has at most 2 neighbors
in the (n− 1)th layer, see Figure 2.2. In the nth layer, C2 has exactly 2 neighbors, namely
C1 and C3. But the only circle in the (n+ 1)th layer tangent to C2 is C since both C1 and
C3 are also tangent to C. Consequently, C2 can have degree at most 5, contradicting our
assumption that dn ≥ 6. �

The offspring of a vertex in the nth layer, n > 0, are its neighbors in the (n+ 1)th layer
listed counter-clockwise from its rightmost neighbor up to, but not including, its leftmost
neighbor. The central circle C0 is considered to have d0 offspring. Thus every circle in the
(n+ 1)th layer is the offspring of exactly one circle in the nth layer, see Figure 2.3.

3. Determining the type

The discrete uniformization theorem of Beardon and Stephenson [1] states that every in-
finite simply connected triangulation has a circle packing which fills either the Euclidean
plane C or the hyperbolic plane D (but not both). In the first case, the triangulation and
corresponding packing are designated parabolic, in the second, hyperbolic. Determining
which category a given triangulation falls into is referred to as the type problem.

He and Schramm [5] and Doyle and Snell [2] have produced several important refor-
mulations of the type problem.
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Theorem 3.1. If the defining sequence {dn} for a layered circle packing � is bounded, then
the following are equivalent.

(i) The graph � for � is parabolic.
(ii) The simple random walk on � is recurrent.

(iii) The electrical resistance to infinity of � is infinite.

The electrical resistance to infinity of a graph is determined by treating � as an elec-
trical network in which each edge is a wire with unit resistance. Now fix some vertex v0

and consider the finite portion �m of � consisting of all vertices and edges m generations
from v0. Apply a unit voltage at v0, ground out the boundary, and compute the resistance
Rm from v0 to the boundary. The resistance of � to infinity is

R= lim
m→∞Rm. (3.1)

One should imagine an electron as a random walker starting at v0 and wandering
around the graph. If the resistance to infinity is infinite, the electron cannot “escape,” and
must return to v0. In this case, the circle packing corresponding to � must be parabolic.
Heuristically, there are not enough circles in each generation to allow the electron to
get lost.

Conversely, if the electron can “escape” to infinity, there must be many more circles
in each generation. This can only happen in the hyperbolic plane, where there is much
more room at infinity.

For layered packings, the electrical resistance can be easily described combinatorially.

Theorem 3.2. The electrical resistance to infinity of the graph � of a layered circle packing
� is infinite if and only if the sum

∞∑
n=1

1
En

(3.2)

is infinite, where En is the number of edges connecting vertices in the nth and (n− 1)th layers.

Proof. Suppose that
∑∞

n=1(1/En)=∞. Recall that every order-1 vertex v in � is connected
to exactly one vertex w in the previous layer. For each such v, add a second parallel edge
connecting v and w, see Figure 3.1. This new augmented graph �∗ will obviously no
longer be a triangulation, but the resistance to infinity is still defined and its electrical
interpretation is still valid. By Rayleigh’s monotonicity law, the resistance to infinity R∗

of �∗ is no greater than the resistance R of � [2, 6]. (Heuristically, adding edges makes
it easier for electrons to escape to infinity.) Moreover, if E∗n is the number of edges in �∗

connecting vertices in the (n− 1)th and nth layers, then

En < E∗n < 2En. (3.3)

Let �m and �∗
m denote the portions of � and �∗ consisting of the first m layers about

the central vertex v0. Notice that if d0 is the degree of v0, then �∗
m possesses d0-fold rota-

tional symmetry. Since the voltage at each vertex is uniquely determined by the boundary
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Figure 3.1. Adding edges (dashed) to �3 produces an augmented graph �∗
3 . Vertices on the same

layer are indicated by the darker lines.

conditions, the voltage at each of the neighbors of v0 must be the same. Thus we can short
out this first layer and replace it by a single vertex v1 without changing the resistance.

Next, notice that every vertex in the second layer of �∗
m is connected; now connected

by exactly two edges to v1. The new network is d1-fold rotationally symmetric, so we can
short out the second layer and replace it by a single vertex v2. Repeating this process for
the remaining layers, we form a series of vertices v0,v1, . . . ,vm with vn−1 and vn connected
by E∗n unit resistors in parallel, n = 1,2, . . . ,m. The effective resistance between vn−1 and
vn is then just 1/E∗n , and we can replace these E∗n different resistors with a single resistor
of resistance 1/E∗n , see Figure 3.2.

Thus we can reduce the network �∗
m to a series of m resistors having resistances 1/E∗1 ,

1/E∗2 , . . . ,1/E∗m. The total resistance from v0 to the boundary must then be

R∗m =
m∑
n=1

1
E∗n

. (3.4)

Since adding edges to the triangulation �m does not increase its resistance Rm, we have

Rm ≥ R∗m =
m∑
n=1

1
E∗n

>
m∑
n=1

1
2En

. (3.5)

Consequently, the resistance of � to infinity is

R= lim
m→∞Rm ≥

∞∑
n=1

1
2En

=∞, (3.6)

and � is parabolic.
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Figure 3.2. After shorting out the vertices on the same layer, the network reduces to a series of m
vertices connected by E∗n unit resistors in parallel.

Conversely, if
∑∞

n=1(1/En) <∞, then we create a new graph �∗
m from �m by cutting

one of the edges, say the leftmost edge, joining each order-2 vertex to the previous layer.
Now every vertex in the nth layer of �∗

m is joined to the previous layer by exactly one edge.
If E∗n is the number of edges in �∗

m connecting vertices in the (n− 1)th and nth layers,
then

1
2
En < E∗n < En. (3.7)

Again we use the symmetry of the entire graph to short out the first layer. Now the
resulting graph will be d1-fold rotationally symmetric and we can short out the second
layer. Proceeding in this way, we compute the resistance from v0 to the boundary of �∗

m

to be

m∑
n=1

1
E∗n

. (3.8)

By Rayleigh’s monotonicity law, cutting edges does not decrease resistance [2, 6]. Thus
the resistance of � to infinity is

R≤
∞∑
n=1

1
E∗n

≤
∞∑
n=1

1
(1/2)En

<∞, (3.9)

and � is hyperbolic. �
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Proposition 3.3. Let V0 = 0 and let Vn be the number of vertices in the nth layer for n > 0.
Then En =Vn +Vn−1.

Proof. Every order-1 vertex in the nth layer is connected by exactly one edge to some
vertex in the previous layer. Similarly, every order-2 vertex is connected by exactly two
edges to some vertex in the previous layer. Thus if Vn,1 is the number of order-1 vertices
in the nth layer and Vn,2 is the number of order-2 vertices in the nth layer, then

En =Vn,1 + 2Vn,2. (3.10)

Notice that each order-2 circle fits in the “gap” between two adjacent circles in the
previous layer. Since there are as many of these “gaps” as there are vertices in the previous
layer, Vn,2 =Vn−1. Thus

En =Vn,1 + 2Vn,2

=Vn +Vn,2

=Vn +Vn−1.

(3.11)

�

Lemma 3.4. Every order-1 vertex in the nth layer has dn − 4 offspring, while every order-2
vertex has dn− 5 offspring.

Proof. The number of offspring corresponding to a vertex v is the number of unique
neighbors to that vertex in the next layer, that is, all of the neighbors in the next layer
except the leftmost one which we designate as an offspring of v’s left neighbor in the same
layer. Hence, we have that the number of offspring, for an order-1 vertex is its degree, dn,
minus the 3 neighbors that are already in place in the nth and (n− 1)th layers and also
the 1 neighbor in the (n + 1)th layer that is shared and designated as the offspring for
a different vertex. Consequently, an order-1 vertex must have (dn− 4) offspring. On the
other hand, since order-2 vertices have an extra neighbor in the (n− 1)th layer, they have
only (dn− 5) offspring. �

Lemma 3.4 now yields a second-order recurrence relation for Vn.

Lemma 3.5. For n > 1, the number of vertices contained in the nth layer satisfies the second-
order recurrence relation

Vn =
(
dn−1− 4

)
Vn−1−Vn−2. (3.12)

Proof. To determine Vn, we must count the offspring of the (n− 1)th layer Ln−1. By
Lemma 3.4,

Vn =
(
dn−1− 4

)
(the number of order-1 vertices in Ln−1)

+
(
dn−1− 5

)
(the number of order-2 vertices in Ln−1).

(3.13)
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By Definition 2.2, the number of order-2 vertices in Ln−1 is Vn−2. Because there are
only order-1 and order-2 vertices, the number of order-1 vertices in Ln−1 is Vn−1−Vn−2.
Thus,

Vn =
(
dn−1− 4

)(
Vn−1−Vn−2

)
+
(
dn−1− 5

)
Vn−2

= (dn−1− 4
)
Vn−1 +

[(
dn−1− 5

)− (dn−1− 4
)]
Vn−2

= (dn−1− 4
)
Vn−1−Vn−2.

(3.14)

�

Combining Proposition 3.3 and Lemma 3.5, we have that

En =Vn +Vn−1

= [(dn−1− 4
)
Vn−1−Vn−2

]
+
[(
dn−2− 4

)
Vn−2−Vn−3

]

= (dn−1− 4
)
Vn−1 +

(
dn−2− 5

)
Vn−2−Vn−3.

(3.15)

Thus, we can compute
∑

(1/En) by solving the recurrence equation for Vn. On the
other hand, we can reformulate our type criterion directly in terms of the numbers of ver-
tices.

Theorem 3.6. A layered circle packing with (bounded) defining sequence {dn}, dn ≥ 6, is
hyperbolic if and only if

∞∑
n=1

1
Vn

<∞, (3.16)

where Vn is the number of vertices in the nth layer, n > 0. Moreover, Vn is given by the
second-order recurrence relation

Vn =
(
dn−1− 4

)
Vn−1−Vn−2 (3.17)

with initial conditions V0 = 0 and V1 = d0.

Proof. Recall that {dn} is bounded, say dn ≤M, for all n. Since each vertex has at most M
neighbors, En ≤MVn.

Moreover, since En =Vn +Vn−1 by Proposition 3.3,

Vn ≤ En ≤MVn. (3.18)

Thus, for layered packings,
∑

(1/En) converges or diverges as
∑

(1/Vn) does, and
by Theorem 3.2, the convergence of

∑
(1/En) is equivalent to the hyperbolicity of the

packing. �

4. Examples

We now consider several examples of layered packings with defining sequences which can
be easily analyzed.

One of the first packings to be studied is the “hex packing” in which every circle has
degree 6 and is well known to be parabolic [7, 10]. In this case, dn ≡ 6, and solving our
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Figure 4.1. A portion of the layered packing generated by the sequence {8,8,6,6,6, . . .}. The circles of
degree 8 are shaded.

recursion relation above yields

Vn = 6n. (4.1)

Thus
∑∞

n=1(1/Vn) is indeed infinite.
On the other hand, packings of constant degree d > 6 are known to be hyperbolic

[1, 5]. In this case,

Vn =
d
((
d− 4 +

√
(d− 4)2− 4

)n− (d− 4−√(d− 4)2− 4
)n)

2n
√

(d− 4)2− 4
(4.2)

and
∑∞

n=1(1/Vn) is finite.
More interesting examples arise by mixing layers of degree 6 with higher-degree layers.

For example, the sequence {8,8,6,6,6, . . .} produces parabolic packing with

Vn = 24n− 16, (4.3)

for n > 0, see Figure 4.1.

5. Layers of degree five

Recall that if dn ≥ 6, for all n, then an infinite layered packing always exists. But if dn = 5
for some n, then a packing might exist only for a finite portion of the sequence. For
example, the sequence {5,5,5} produces a layered packing that folds up into a sphere.

Intuitively, degree-5 layers “want” to produce a spherical packing, degree-6 layers
“want” to produce a parabolic packing, and layers of degree 7 or higher “want” to pro-
duce a hyperbolic packing. One might naively guess that alternating layers of degree 5
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Figure 5.1. The layered circle packing with defining sequence {7,5,7,5,7}. The circles of degree 7 are
shaded. Notice that the combinatorics forces the packing to cover a sphere.

Figure 5.2. A portion of the layered packing generated by the sequence {5,7,7,5,7,7, . . .}. The circles
of degree 5 are shaded.

and 7 should “average out” to a parabolic 6, however, this is not the case. The sequences
{7,5,7,5,7} and {5,7,5,7,5} also produce spherical packings, see Figure 5.1.

On the other hand, the sequence {5,7,7,5,7,7, . . .} does produce a parabolic packing.
If n= 3m+ j, then

Vn =



40
3
n, j = 0,

5 + 10(n−m− 1), j = 1,2,
(5.1)

see Figure 5.2.
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Figure 5.3. A portion of the layered packing generated by the sequence {5,8,5,8, . . .}. The circles of
degree 5 are shaded.

Similarly, the layered packing for the periodic sequence {5,8,5,8, . . .} is also parabolic,
having

V2n = 20n,

V2n+1 = 10n+ 5,
(5.2)

see Figure 5.3. A “5” thus requires either two “7’s” or one “8” to reach a parabolic equi-
librium.

For layered packings with dn = 5 for some n, Proposition 2.3 no longer holds. Thus
the recurrence relation for En must include terms for more than two preceding layers,
and consequently is somewhat less useful in practice.
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