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Received 18 September 2004 and in revised form 7 September 2005

We deal with a locally conformal cosymplectic manifold M(φ,Ω,ξ,η,g) admitting a con-
formal contact quasi-torse-forming vector field T . The presymplectic 2-form Ω is a lo-
cally conformal cosymplectic 2-form. It is shown that T is a 3-exterior concurrent vector
field. Infinitesimal transformations of the Lie algebra of ∧M are investigated. The Gauss
map of the hypersurfaceMξ normal to ξ is conformal andMξ ×Mξ is a Chen submanifold
of M×M.

1. Introduction

Locally conformal cosymplectic manifolds have been investigated by Olszak and Rosca
[7] (see also [6]).

In the present paper, we consider a (2m+ 1)-dimensional Riemannian manifold M(φ,
Ω,ξ,η,g) endowed with a locally conformal cosymplectic structure. We assume that M
admits a principal vector field (or a conformal contact quasi-torse-forming), that is,

∇T = sdp+T ∧ ξ = sdp+η⊗T −T�⊗ ξ, (1.1)

with ds= sη.
First, we prove certain geometrical properties of the vector fields T and φT . The exis-

tence of T and φT is determined by an exterior differential system in involution (in the
sense of Cartan [3]).

The principal vector field T is 3-exterior concurrent (see also [8]), it defines a Lie
relative contact transformation of the co-Reeb form η, and the Lie differential of T�

with respect to T is conformal to T�. The vector field φT is an infinitesimal transfor-
mation of generators T and ξ. The vector fields ξ, T , and φT commute and the distri-
bution DT = {T ,φT ,ξ} is involutive. The divergence and the Ricci curvature of T are
computed.

Next, we investigate infinitesimal transformations on the Lie algebra of ∧M.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:21 (2005) 3471–3478
DOI: 10.1155/IJMMS.2005.3471

http://dx.doi.org/10.1155/S0161171205409242


3472 Locally conformal cosymplectic structure

In the last section, we study the hypersurface Mξ normal to ξ. We prove that Mξ is
Einsteinian, its Gauss map is conformal, and the product submanifoldMξ ×Mξ inM×M
is a �-submanifold in the sense of Chen.

2. Preliminaries

Let (M,g) be an n-dimensional Riemannian manifold endowed with a metric tensor g.
Let ΓTM and � : TM→ T∗M, Z �→ Z� be the set of sections of the tangent bundleTM and
the musical isomorphism defined by g, respectively. Following a standard notation, we
set Aq(M,TM)=Hom(ΛqTM,TM) and notice that the elements of Aq(M,TM) are the
vector-valued q-forms (q ≤ n) (see also [9]). Denote by d∇ :Aq(M,TM)→ Aq+1(M,TM)
the exterior covariant derivative operator with respect to the Levi-Civita connection ∇.
It should be noticed that generally d∇2 = d∇ ◦ d∇ 	= 0, unlike d2 = d ◦ d = 0. If dp ∈
A1(M,TM) denotes the soldering form on M, one has d∇(dp)= 0.

The cohomology operator dω acting on ΛM is defined by dωγ = dγ +ω∧ γ, where ω
is a closed 1-form. If dωγ = 0, γ is said to be dω-closed.

Let R be the curvature operator on M. Then, for any vector field Z on M, the second
covariant differential is defined as

∇2Z = d∇(∇Z)∈ A2(M,TM) (2.1)

and satisfies

∇2Z(V ,W)= R(V ,W)Z, Z,V ,W ∈ ΓTM. (2.2)

LetO = vect{eA |A= 1, . . . ,n} be an adapted local field of orthonormal frames over M
and let O∗ = covect{ωA} be its associated coframe. With respect to O and O∗, É. Cartan’s
structure equation can be written, in the indexless manner, as

∇e = θ⊗ e ∈ A1(M,TM),

dω =−θ∧ω,

dθ =−θ∧ θ +Θ.

(2.3)

In the above equations, θ, respectively, Θ are the local connection forms in the bundle
�(M), respectively, the curvature forms on M.

3. Locally conformal cosymplectic structure

LetM(φ,Ω,ξ,η,g) be a (2m+ 1)-dimensional Riemannian manifold carrying a quintuple
of structure tensor fields, where φ is an automorphism of the tangent bundle TM, Ω a
presymplectic form of rank 2m, ξ the Reeb vector field, and η = ξ� the associated Reeb
covector, g the metric tensor.

We assume in the present paper that η is closed and λ is a scalar (λ∈ Λ0M) such that
dλ= λ′η, with λ′ ∈Λ0M.
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We agree to denominate the manifold M a locally conformal cosymplectic manifold if it
satisfies

φ2 =−I +η⊗ ξ, φξ = 0, η ◦φ= 0, η(ξ)= 1,

∇ξ = λ(dp−η⊗ ξ),

dλ= λ′η,

Ω(Z,Z′)= g(φZ,Z′), Ωm∧η 	= 0,

(3.1)

where dp ∈ A1(M,TM) denotes the canonical vector-valued 1-form (or the soldering
form [5]) on M. Then Ω is called the fundamental 2-form on M and is expressed by

Ω=
m∑

i=1

ωi∧ωi∗ , i∗ = i+m. (3.2)

By the well-known relations

θij = θi
∗
j∗ , θi

∗
j = θ j

∗
i , i∗ = i+m, (3.3)

one derives by differentiation of Ω

d−2ληΩ= 0 (dΩ= 2λη∧Ω), (3.4)

which shows that the presymplectic 2-form Ω is a locally conformal cosymplectic form.
Operating on φdp by d∇, it follows that

d∇(φdp)= 2λΩ⊗ ξ + 2η∧φdp. (3.5)

On the other hand, we agree to call a vector field T , such that

∇T = sdp+T ∧ ξ = sdp+η⊗T −T�⊗ ξ, (3.6)

a principal vector field on M, or a conformal contact quasi-torse-forming if

ds= sη. (3.7)

In these conditions, since the qth covariant differential ∇q of a vector field Z ∈ ΓTM
is defined inductively, that is,∇qZ = d∇(∇q−1Z), one derives from (3.6)

∇4T =−λ3η∧T�⊗dp. (3.8)

As a natural concept of concurrent vector fields and by reference to [8], this proves that
T is a 3-exterior concurrent vector field.

Since, as it is known, the divergence of a vector field Z is defined by

divZ =
∑

A

g
(∇eAZ,eA

)
, (3.9)
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one derives from (3.2) and (3.6)

divξ = 2mλ,

divT = T0 + (2m+ 1)s,
(3.10)

where T0 = η(T). On the other hand, from (3.6), we derive

dTa +Tbθab + λT0ωa = sωa +Taη, a,b ∈ {1, . . . ,2m},
dT0 =−(1 + λ)T� +

[
s+ (1 + λ)T0]η.

(3.11)

After some calculations, one gets

dT� = λdT0∧η= λ(1 + λ)η∧T�, (3.12)

which proves that T� is an exterior recurrent form [1].
Taking the Lie differential of η with respect of T , one gets

�Tη = dT0, (3.13)

and so it turns out that

d
(
�Tη

)= 0. (3.14)

Following a known terminology, T defines a relative contact transformation of the co-
Reeb form η.

Next, we will point out some properties of the vector field φT .
By virtue of (3.11), one derives

∇φT = (s− λT0)φdp+φT ⊗η, (3.15)

and so, by (3.6) and (3.2), one gets

[φT ,T]=−λT0φT ,

[φT ,ξ]= (1− λ)φT ,

[T ,ξ]= 0.

(3.16)

The above relations prove that φT admits an infinitesimal transformation of genera-
tors T and ξ. In addition, it is seen that ξ and the principal vector field T commute and
that the distribution DT = {T ,φT ,ξ} is involutive.

By Orsted lemma [1], if one takes

�TT
� = ρT� + [T ,ξ]�, (3.17)

one gets at once by (3.16)

�TT
� = ρT�, (3.18)
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which shows that the Lie differential of T� with respect to the principal vector field T is
conformal to T�.

Moreover, making use of the contact φ-Lie derivative operator (�ξφ)Z = [ξ,φ]−φ[ξ,
Z], one gets in the case under discussion

(
�ξφ

)
T = (λ− 1)φT. (3.19)

Hence, ξ defines a φ-Lie transformation of the principal vector field T .
It is worth to point out that the existence of T and φT is determined by an exterior

differential system
∑

whose characteristic numbers are r = 3, s0 = 1, s1 = 2 (r = s0 + s1).
Consequently, the system

∑
is in involution (in the sense of Cartan [3]) and so T and φT

depend on 1 arbitrary function of 2 arguments (É. Cartan’s test).
Recall Yano’s formula for any vector field Z, that is,

div
(∇ZZ

)−div(divZ)Z =�(Z,Z)− (divZ)2 +
∑

A,B

(∇eAZ,eB
)(∇eBZ,eA

)
, (3.20)

where � denotes the Ricci tensor.
Then, since one has

divT = T0 + (2m+ 1)s,

∇TT =
(
s+T0)T −‖T‖2ξ,

(3.21)

it follows by (3.20) that the Ricci tensor corresponding to T is expressed by

�(T ,T)= (s+T0)(T0 + (2m+ 1)s
)− 4m2− s2. (3.22)

Finally, in the same order of ideas, since one has iφTT� = 0, then, by the Lie differenti-
ation, one derives �φTT� = 0, which shows that φT defines a Lie Pfaffian transformation
of the dual form of the vector field T .

Besides, by the Ricci identity involving the triple T , φT , ξ, that is,

(
�ξg

)
(T ,φT)= g(∇ξT ,φT

)
+ g
(
T ,∇ξφT

)
, (3.23)

one gets (�ξg)(T ,φT)= 0.
Hence, one may say that the Lie structure vanishes.
Thus, we have the following.

Theorem 3.1. Let M(φ,Ω,ξ,η,g) be a (2m + 1)-dimensional Riemannian manifold en-
dowed with a locally conformal cosymplectic structure and a principal vector field T defined
as a conformal contact quasi-torse-forming and structure scalar λ.

The following properties hold.
(i) Ω is a locally conformal cosymplectic 2-form.

(ii) The principal vector field T is 3-exterior concurrent, that is,

∇4T =−λ3η∧T�⊗dp. (3.24)

(iii) T defines a Lie relative contact transformation of the co-Reeb form η.
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(iv) φT is an infinitesimal transformation of generators T and ξ. The vector fields ξ, T ,
and φT commute and the distribution DT = {T ,φT ,ξ} is involutive.

(v) The Lie differential of T� with respect to T is conformal to T�.
(vi) divT = T0 + (2m+ 1)s.

(vii) The Ricci tensor corresponding to T is expressed by

�(T ,T)= (s+T0)(T0 + (2m+ 1)s
)− 4m2− s2. (3.25)

(viii) The dual form T� of T is an exterior recurrent form.

4. Conformal symplectic form

We will point out some problems regarding the conformal symplectic form Ω. Taking the
Lie differential of Ω with respect to the Reeb vector field ξ, we quickly get

d
(
�ξΩ

)= 2λΩ. (4.1)

Hence, we may say that ξ defines a conformal Lie derivative of Ω.
Next, taking the Lie differential of Ω with respect to the vector field φT , one gets in

two steps

�φTΩ= d
(
T0η−T�), (4.2)

and, by (3.12), one derives at once

d
(
�φTΩ

)= 0. (4.3)

Consequently, from above, we may state that the vector field φT defines a relative
almost-Pfaffian transformation of the form Ω (see [6]).

In the same order of ideas, one derives after some longer calculations

d
(
�TΩ

)= 2λη∧d(φT)�− 2λ(1 + λ)T�∧Ω+
[
s+ (1 + s)T0 + 4λ2T0]η∧Ω, (4.4)

and we may say that the principal vector field T defines a Lie almost-conformal transfor-
mationof Ω.

Finally, we agree to define the 3-form

ψ = T�∧Ω, (4.5)

the principal 3-form on the manifold M under consideration.
Making use of (3.4) and (3.12), one derives

dψ = λ(1 + λ)η∧ψ. (4.6)

This shows that ψ is a recurrent 3-form. Consequently, since one gets

iφTT
� = 0, iφTΩ= T0η−T�, (4.7)
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one derives

iφTψ = T0η∧T�, (4.8)

and so one obtains

�φTψ = 0. (4.9)

Hence, we may say that the Lie derivative defines φT as a Pfaffian transformation of ψ.
Thus, we may state the following theorem.

Theorem 4.1. Let M(φ,Ω,ξ,η,g) be a locally conformal cosymplectic manifold. Then, the
following hold.

(i) The Reeb vector field ξ defines a conformal Lie derivative of Ω.
(ii) The vector field φT defines a relative almost-Pfaffian transformation of the 2-form Ω.

(iii) The principal vector field T defines a Lie almost-conformal transformation of Ω.
(iv) Let ψ = T� ∧Ω be the principal 3-form on the manifold M. Then ψ is a recurrent

2-form and the Lie derivative defines φT as a Pfaffian transformation of ψ.

5. Hypersurface Mξ normal to ξ

We denote byMξ the hypersurface ofM normal to ξ. Since dη = 0 (η = ξ�), one may con-
sider the 2m-dimensional manifold Mξ and the 1-dimensional foliation in the direction
of ξ is totally geodesic.

Recall that the Weingarten map

A : Tp
(
Mξ)−→ Tp

(
Mξ
)
, ∀p ∈Mξ , (5.1)

is a linear and selfadjoint application and Ωη is symplectic.
Then, if ZT is any horizontal vector field, one gets by dη = 0

AZT =∇ZT ξ =−ZT , (5.2)

and this shows that ZT is a principal vector field of Mξ .
Recall that II = 〈d p,d p〉 and III = 〈∇ξ,∇ξ〉 denote the second and the third funda-

mental forms associated with the immersion x :Mξ →M.
Then, by the expression of ∇ξ, one finds that II = gT and III = gT , where gT means

the horizontal component of g. Hence, we may conclude that the immersion x :Mξ →M
is horizontally umbilical and has 2m principal curvatures equal to 1.

The expression of III proves that the Gauss map is conformal and it can also be seen
that Mξ is Einsteinian.

On the other hand, since obviously the mean curvature field ξ is nowhere zero, by
reference to [4], it follows that the product submanifold Mξ ×Mξ in M ×M is a �-
submanifold (i.e., its allied mean curvature vanishes), or a Chen submanifold.

We may summarize the above by the following.
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Theorem 5.1. LetM(φ,Ω,ξ,η,g) be a locally conformal cosymplectic manifold and x :Mξ→
M the immersion of one hypersurface normal to ξ. Then, the following hold.

(i) The Gauss map associated to the immersion x :Mξ →M is conformal.
(ii) The product submanifold Mξ ×Mξ in M×M is a �-submanifold.
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