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Fuzzy subgroups of finite groups have been treated recently using the concept of pinned-
flags. In this paper, we consider the operations of intersection, sum, product, and quo-
tient of fuzzy subgroups of finite abelian groups in general, in terms of pinned-flags. We
develop algorithms to construct pinned-flags of fuzzy subgroups corresponding to these
operations and prove their validity. We illustrate some applications of such algorithms.

1. Introduction

Some of the past studies of fuzzy subgroups relied heavily on the usual definitions of inter-
section, union, sum of two fuzzy subgroups by exploiting the lattice properties of mem-
bership values in a simplistic way. For instance, the intersection of two fuzzy subgroups µ
and ν is given by (µ∧ ν)(g)= µ(g)∧ ν(g); the sum is given by (µ+ ν)(g)=∨g1g2=g(µ(g1)
∧ ν(g2)), for g ∈G, and so forth. On the other hand, one form of representation of fuzzy
subgroups, that proved useful in the literature, is by means of their α-cuts. By refining
the chain formed by the α-cuts, we get a maximal chain of subgroups which is called a
flag. The membership values of elements form a decreasing chain of real numbers in the
unit interval known as keychain. A pinned-flag is a pair consisting of a flag and a key-
chain. One can study the operations on fuzzy subgroups by means of pinned-flags, thus
enriching some properties of fuzzy subgroups. It was observed in [6] that the pinned-
flag resulting from operations of intersection and direct sum of fuzzy subgroups does not
form any particular pattern. Example 4.6 of the same paper [6] illustrated the peculiarity
of the determination of pinned-flags for µ∧ ν and µ+ ν in terms of the pinned-flags of
µ and ν. As a consequence, the complete characterization of these operations in terms of
pinned-flags was left open in that paper. We develop algorithms to describe the pinned-
flags of the intersection, sum, product, and quotient of fuzzy subgroups and prove their
validity.

In Section 2, we gather all the preliminaries such as flags, chains and keychains,
pinned-flags of fuzzy subgroups and fix notations. In Section 3, given pinned-flags of
two fuzzy subgroups, we develop algorithms to characterize the pinned-flags of their
intersection and of their sum. In Section 4, we look at the operations of product and
quotient as in Section 3.
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2. Preliminaries

We use I = [0,1], the real unit interval as a chain with the usual ordering in which ∧
stands for infimum (inf) (or intersection) and ∨ stands for supremum (sup) (or union).
Throughout this paper, we take G to be a finite abelian group of order N and take G0 to
be the trivial subgroup {0}. Even though almost all results of this paper are applicable to
any finite group, abelian or not, we use + for the group operation and 0 for the identity
element for convenience of notation, rather than the more conventional multiplicative
notation. By an α-cut of µ, for a real number α in I, we mean a subset µα = {x ∈G : µ(x)≥
α} of G. A fuzzy set µ is said to be a fuzzy subgroup if µ(x+ y)≥ µ(x)∧µ(y) for all x, y ∈G
and µ(x)= µ(−x), see [7]. We assume that µ(0)= 1 throughout this paper. For any fuzzy
subgroup µ of G, the α-cut µα is a subgroup of G. By core and support of µ, we mean the
crisp subsets of G given by {x ∈ G : µ(x) = 1} and {x ∈ G : µ(x) �= 0}, respectively. For
later use, we recall the definitions of sum and product of two fuzzy subgroups µ and ν,

(µ+ ν)(x)= sup
{
µ
(
x1
)∧ ν

(
x2
)

: x1 + x2 = x; x,x1,x2 ∈G
}

,

(µ× ν)(x, y)= µ(x)∧ ν(y),
(2.1)

respectively. For results on product, see [2, 8]. We refer the reader to [6] for results on flag,
keychain, and pinned-flag, but state their definitions here. By a flag � on G, we mean a
maximal chain of subgroups of the form

{0} =G0 ⊂G1 ⊂G2 ⊂ ··· ⊂Gn =G. (2.2)

We call various Gi’s the components of the flag �; in particular, Gi is called the ith com-
ponent of the flag. From the Jordan-Hölder theorem, it is clear that any two flags of G are
of the same length. We assume this length to be n+ 1 for some fixed n less than N .

By a keychain �, we mean an (n+ 1)-tuple (λ0,λ1, . . . ,λn) of real numbers in I of the
form

1= λ0 ≥ λ1 ≥ λ2 ≥ ··· ≥ λn ≥ 0. (2.3)

The λi’s are called pins. The length of keychain � is n+ 1.

Definition 2.1. A pinned-flag on G is a pair (�,�) consisting of a falg � on G and a key-
chain � from I, written as follows:

G1
0 ⊂Gλ1

1 ⊂Gλ2
2 ⊂··· ⊂Gλn

n . (2.4)

Gλi
i , for i= 0,1, . . . ,n, is called the ith component of the pinned-flag. With the pinned-flag

(�,�), a fuzzy subgroup

µ=
n∨
i=0

λiχµλi (2.5)

can be associated. It is easily checked that µ as defined above is a fuzzy subgroup of G.
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Conversely, a pinned-flag (�µ,�µ) is associated with a given fuzzy subgroup µ by refin-
ing the α-cuts to yield a flag �µ on G and by repeating the membership values if necessary
to yield the corresponding keychain �µ. The following example illustrates the process.

Example 2.2. Consider a fuzzy subgroup µ : Z72 → I defined by

µ(x)=




1, x ∈ Z3,

λ1, x ∈ Z18 \Z3,

λ2, x ∈ Z36 \Z18,

λ3, x ∈ Z72 \Z36.

(2.6)

The chain of subgroups obtained by α-cuts of µ can be refined to a flag {0} ⊂ Z3 ⊂
Z9 ⊂ Z18 ⊂ Z36 ⊂ Z72. The corresponding pinned-flag is (�µ,�µ) : {0}1 ⊂ Z1

3 ⊂ Zλ1
9 ⊂ Zλ1

18 ⊂
Zλ2

36 ⊂ Zλ3
72 and its keychain is �µ : (1,1,λ1,λ1,λ2,λ3). Since the α-cuts did not form a flag,

the refinement of the α-cuts to a flag has given rise to repetition of some pins in the
keychain �µ.

3. Pinned-flags for intersection and sum of fuzzy subgroups

In this section, we give algorithms to find the pinned-flags for intersection and the sum
of two fuzzy subgroups whose pinned-flags are known. Suppose the pinned-flags corre-
sponding to two fuzzy subgroups µ and ν of G are given by

(
�µ,�µ

)
: G1

0 ⊂Gλ1
1 ⊂ ··· ⊂Gλn

n ,
(
�ν,�ν

)
: H1

0 ⊂H
β1

1 ⊂ ··· ⊂H
βn
n . Then

(
�µ∧ν,�µ∧ν

)
: K1

0 ⊂ K
γ1

1 ⊂ ··· ⊂ K
γn
n

(3.1)

is the pinned-flag for µ∧ ν.

Algorithm 3.1
Step 1. Firstly, K1

0 =G1
0 =H1

0 . We usually denote this by simply 01 in all cases.
Step 2. Find the least j and i such that G1 ⊆Hj for 1≤ j ≤ n and H1 ⊆ Gi for 1≤ i≤ n,
respectively. Then γ1 = (λ1∧βj)∨ (λi∧β1) and

we define K1 =


G1 if γ1 = λ1∧βj ,

H1 if γ1 = λi∧β1.
(3.2)

Step 3 (inductive step). Suppose we have defined K
γs
s with either Ks = Gs or Ks =Hs. To

obtain K
γs+1

s+1 , we proceed as follows: find the least indices j and i such that Gs+1 ⊆Hj for
s+ 1≤ j ≤ n, and similarly Hs+1 ⊆Gi for s+ 1≤ i≤ n, respectively.
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Case 1. Ks ⊆Gs+1∩Hs+1. Then γs+1 = (λs+1∧βj)∨ (λi∧βs+1) and

Ks+1 =


Gs+1 if γs+1 = λs+1∧βj ,

Hs+1 if γs+1 = λi∧βs+1.
(3.3)

Case 2. Ks �⊆ Gs+1∩Hs+1. Then either Ks ⊂ Gs+1 or Ks ⊂Hs+1 only. In these cases, γs+1 is
defined, respectively, as λs+1∧βj or λi∧βs+1. If Ks = Kn, the algorithm terminates.

Next, we illustrate the above procedure with an example (the same example as in [6,
Example 4.6]).

Example 3.2. Consider two fuzzy subgroups µ and ν of G = Z72, a cyclic group of order
72 with the following pinned-flags:

(
�µ,�µ

)
: G1

0 ⊂ Z1/2
3 ⊂ Z1/5

9 ⊂ Z1/6
18 ⊂ Z1/9

36 ⊂ Z1/10
72 ,

(
�ν,�ν

)
: H1

0 ⊂ Z1/3
3 ⊂ Z1/4

6 ⊂ Z1/7
12 ⊂ Z1/8

36 ⊂ Z1/11
72 .

(3.4)

Carrying out Algorithm 3.1, we get the following pinned-flag for the intersection of µ
and ν:

(
�µ∧ν,�µ∧ν

)
: 01 ⊂ Z1/3

3 ⊂ Z1/6
6 ⊂ Z1/8

18 ⊂ Z1/9
36 ⊂ Z1/11

72 . (3.5)

Note 3.3. In this note, we justify that the above algorithm indeed yields the pinned-flag
corresponding to the intersection µ∧ ν. Therefore, let x ∈G and find the least subscripts
i and j such that x ∈ Gi \Gi−1 and x ∈ Hj \Hj−1 so that (µ∧ ν)(x) = λi ∧ βj . We must
show now that if x ∈ Ks \Ks−1, then γs = λi∧βj .

Now, either Ks = Gs or Ks =Hs. Suppose that Ks = Gs, then s = i; for otherwise s > i,
implying that Ks ⊂ Ki. But Ki is either Gi or Hi by the algorithm. This leads to a contra-
diction. Therefore, Ks = Ki =Gi or Ks = Kj =Hj . From the algorithm again, γs = λi∧βj .

We next construct the pinned-flag of the sum µ+ ν of two fuzzy subgroups from their
associated pinned-flags. Suppose that µ and ν are represented by pinned-flags as in (3.1).
Algorithm 3.4 constructs the pinned-flag (�µ+ν,�µ+ν) : K1

0 ⊂ K
γ1

1 ⊂ ··· ⊂ K
γn
n for µ+ ν.

Algorithm 3.4
Step 1. Firstly, K1

0 =G1
0 =H1

0 . We usually denote this by simply 01 in all cases.
Step 2. To find K

γ1

1 , the second component of the pinned-flag, we proceed as follows: let
γ1 = λ1∨β1. Then K1 =G1 if γ1 = λ1. Otherwise, K1 =H1.
Step 3 (inductive step). Suppose that we have defined K

γs
s . To obtain K

γs+1

s+1 , we proceed as
follows: we base our cases on whether both Gs+1 and Hs+1 split or not.
Case 1. Suppose that both do not split, then set γs+1 = λs+1 ∨ βs+1 and Ks+1 = Gs+1 if
γs+1 = λs+1, otherwise Ks+1 =Hs+1.
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Case 2. Suppose that one of them splits and the other does not, say, Gs+1 = Gi +Hj for
some indices i and j (choose the least values), then set γs+1 = (λi∧ βj)∨ λs+1∨ βs+1 and
Ks+1 =Gs+1 when γs+1 = (λi∧βj)∨ λs+1, otherwise Ks+1 =Hs+1 provided that Ks ⊆Gs+1∩
Hs+1. If the last condition is not satisfied, then simply K

γs+1

s+1 = G
(λi∧βj )∨λs+1

s+1 provided that
Ks ⊆Gs+1 and Ks �⊆Hs+1. We handle the case when G and H swop places similarly.
Case 3. When both Gs+1 and Hs+1 split, firstly they are equal. Secondly, we follow the steps
in Case 2. If Ks = Kn, the algorithm terminates.

Carrying out the above algorithm in Example 3.2, we get the following pinned-flag for
the sum µ+ ν:

(
�µ+ν,�µ+ν

)
: 01 ⊂ Z1/2

3 ⊂ Z1/4
6 ⊂ Z1/5

18 ⊂ Z1/7
36 ⊂ Z1/10

72 . (3.6)

Note 3.5. The argument for the justification of the above algorithm is similar to the one
given in Note 3.3, and therefore omitted here.

4. Pinned-flags for product and quotient of fuzzy subgroups

In this section, we study the operations of product and quotient. We describe below al-
gorithms to find the pinned-flags for the product and quotient of two fuzzy subgroups.
First, we take up the product operation.

Suppose that the pinned-flags corresponding to two fuzzy subgroups µ of G and ν of
H are given by

(
�µ,�µ

)
: G1

0 ⊂Gλ1
1 ⊂ ··· ⊂Gλn

n ,
(
�ν,�ν

)
: H1

0 ⊂H
β1

1 ⊂ ··· ⊂H
βm
m .

(4.1)

The pinned-flag (�µ×ν,�µ×ν) : K1
0 ⊂ K

γ1

1 ⊂ ··· ⊂ K
γp
p for µ× ν is constructed as follows.

Algorithm 4.1
Step 1. Firstly, K1

0 = (G0×H0)1. We usually denote this by simply (0× 0)1 in all cases.
Step 2. To find K

γ1

1 , the second component of the pinned-flag, we proceed as follows:

Let γ1 = β1∨ λ1, then K1 =


G1×H0 if γ1 = λ1,

G0×H1 if γ1 = β1.
(4.2)

Step 3 (inductive step). Suppose that we have defined K
γs−1

s−1 . To obtain K
γs
s , we proceed

as follows: suppose that Ks−1 ⊆ (Gs×H0)∩ (Gs−1×H1)∩ (Gs−2×H2)∩···∩ (G0×Hs).
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Let γs = (λ0∧βs)∨ (λ1∧βs−1)∨ (λ2∧βs−2)∨ (λ3∧βs−3)∨···∨ (λs−1∧β1)∨ (λs∧β0).

Then Ks =




Gs×H0 if γs = λs,

Gs−1×H1 if γs = λs−1∧β1,

Gs−2×H2 if γs = λs−2∧β2,
...

G1×Hs−1 if γs = λ1∧βs−1,

G0×Hs if γs = βs.

(4.3)

Suppose for some indices i and j that the products Gi×Hj , (i+ j = s) do not contain
Ks−1, then

(i) γs is defined as above except that the pins λi ∧ βj of the Gi ×Hj are excluded in
taking the supremum,

(ii) Ks is defined as above except that the Gi ×Hj are excluded from the list of possi-
bilities for Ks.

When s= p = n+m the algorithm terminates. It is clear that the chain formed by Ks’s
is maximal and the number of components is p+ 1= n+m+ 1.

We illustrate Algorithm 4.1 with an example below.

Example 4.2. Consider fuzzy subgroups µ and ν of the groups G = Z63 and H = Z40,
respectively, given by the pinned-flags

(
�µ,�µ

)
: 01 ⊂ Z1/2

3 ⊂ Z1/3
21 ⊂ Z1/5

63 ,
(
�ν,�ν

)
: 01 ⊂ Z3/4

2 ⊂ Z1/4
10 ⊂ Z1/5

20 ⊂ Z1/6
40 .

(4.4)

The pinned-flag (�µ×ν,�µ×ν) for µ× ν in this example has 8 components including the
first zero component, and is given by

(0× 0)1 ⊂ (0×Z2
)3/4 ⊂ (Z3×Z2

)1/2 ⊂ (Z21×Z2
)1/3 ⊂ (Z21×Z10

)1/4

⊂ (Z63×Z10
)1/5 ⊂ (Z63×Z20

)1/5 ⊂ (Z63×Z40
)1/6

.
(4.5)

We now take up the study of the pinned-flags for the quotients. There are several no-
tions of quotients of fuzzy subgroups used in the literature, see [1, 3, 4, 5, 9]. We work
with one that is used more often. Note that in the following, we find it convenient to re-
vert to the multiplicative notation when writing cosets of subgroups, for simplicity and
conciseness.

Definition 4.3. Suppose µ and ν are two fuzzy subgroups of G. Then the fuzzy quo-
tient group µ/ν is defined as a fuzzy subgroup of the quotient group G/ core(ν) given by
(µ/ν)(xcore(ν))= sup{µ(a) : a, core(ν)= xcore(ν), a∈G}, see [3].

Algorithm 4.4. Suppose the pinned-flags for µ and ν are given as in (4.1). Since µ and ν
are fuzzy subgroups of the same group G, m= n. If the core(ν)= G, then the quotient is
G/ core(ν)= {e}. In this case, the pinned-flag of the quotient is simply (G/ core(ν))1 with
only one component. Assume that core(ν) �=G. So the core(ν)=Hi for some 0≤ i < n.
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Case 1. Let Hi = Gj . Then firstly i = j. If not, either i > j or i < j. The case i < j implies
that the maximal chain

G0 ⊂G1 ⊂ ··· ⊂Gj−1 ⊂Gj =Hi ⊂Hi+1 ⊂ ··· ⊂Hn (4.6)

has length n− i+ 1 + j = n+ 1 + ( j − i) > n+ 1, a contradiction. Similarly, the case i > j
leads to a contradiction. Secondly,

Hi/Hi =Gi/Hi ⊂Gi+1/Hi ⊂ ··· ⊂Gn/Hi (4.7)

is clearly a maximal chain in G/Hi, leading to a pinned-flag

(
Gi/Hi

)1 ⊂ (Gi+1/Hi
)γi+1 ⊂ ··· ⊂ (Gn/Hi

)γn (4.8)

for the quotient µ/ν, where γk = λk if Gk has no nontrivial decomposition. Otherwise, let
l and m be the least subscripts such that Gk =Gl +Hm, then γk = (λl ∧βm)∨ λk.
Case 2 (Hi �= Gi). Choose the least subscript k such that Hi ⊂ Gk. Clearly, the weighted
chain

(
Gk+1/Hi

)γk+1 ⊂ (Gk+2/Hi
)γk+2 ⊂ ··· ⊂ (Gn/Hi

)γn (4.9)

is part of a pinned-flag for µ/ν, where the γj are as defined in Case 1. We now extend the
above weighted chain to a full pinned-flag for µ/ν. Choose the largest subscript l1 < k
such that Gl1 + Hi = Gk. Then, find the largest subscript l2 such that (Gl1 + Hi)/Hi ⊃
(Gl2 + Hi)/Hi, with l1 > l2. Inductively, continue to find the largest li such that (Gli +
Hi)/Hi ⊂ (Gli−1 +Hi)/Hi, k > l1 > l2 > ··· > ls, and (Gl1 +Hi)/Hi ⊃ (Gl2 +Hi)/Hi ⊃ ··· ⊃
(Gls +Hi)/Hi =Hi/Hi. Consequently, a pinned-flag for the quotient µ/ν is given by

(
Hi/Hi

)1 ⊂ ((Gls−1 +Hi
)
/Hi
)γls−1 ⊂ ··· ⊂ ((Gl1 +Hi

)
/Hi
)γl1

⊂ (Gk+1/Hi
)γk+1 ⊂ (Gk+2/Hi

)γk+2 ⊂ ··· ⊂ (Gn/Hi
)γn .

(4.10)

Note that the γi are as defined in Case 1. We illustrate the above construction with an
example below.

Example 4.5. Suppose µ and ν are two fuzzy subgroups of Z72 given by

(
�µ,�µ

)
: G1

0 ⊂ Z1/2
3 ⊂ Z1/5

9 ⊂ Z1/6
18 ⊂ Z1/9

36 ⊂ Z1/10
72 ,

(
�ν,�ν

)
: H1

0 ⊂ Z1
2 ⊂ Z1

6 ⊂ Z1
12 ⊂ Z1/11

36 ⊂ Z1/12
72 .

(4.11)

By following the steps developed above, we get the pinned-flag for µ/ν in this example as

(
�µ/ν,�µ/ν

)
:
(
Z12/Z12

)1 ⊂ (Z36/Z12
)1/5 ⊂ (Z72/Z12

)1/10
. (4.12)

Notice that Z36/Z12 has a membership value of 1/5 since Z36 splits up into Z9 +Z12.
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5. Concluding remarks

It is clear from a close look at Algorithms 4.1 and 4.4 that their constructions were based
directly on the definitions of various operations on fuzzy subsgroups. Therefore, a jus-
tification is not necessary, but it is self-evident that these algorithms really indeed yield
the correct pinned-flags corresponding to the respective operations on fuzzy subgroups.
In conclusion, we wish to emphasize that the study of operations on fuzzy subgroups
through their pinned-flags is important for at least two reasons. Firstly, they reflect the
membership values of elements to the associated fuzzy subgroups in a transparent and
useful way. Secondly, they bring out the essential features of the ways in which the mem-
bership values of elements to the constituent fuzzy subgroups are tied up to the member-
ship values of the combined fuzzy subgroups under various operations.

Acknowledgments

The first author thanks The Govan Mbeki Research and Development Centre (GMRDC)
of the University of Fort Hare, the second author thanks the Joint Research Committee
(JRC) of Rhodes University, and both thank the National Research Foundation (NRF) of
South Africa for support.

References

[1] P. Bhattacharya and N. P. Mukherjee, Fuzzy groups: some group theoretic analogs. II, Inform. Sci.
41 (1987), no. 1, 77–91.

[2] B. B. Makamba, Direct products and isomorphism of fuzzy subgroups, Inform. Sci. 65 (1992),
no. 1-2, 33–43.

[3] M. Mashinchi and M. Mukaidono, Generalized fuzzy quotient subgroups, Fuzzy Sets and Systems
74 (1995), no. 2, 245–257.

[4] J. N. Mordeson, L-Subspaces and L-Subfields, Lecture Notes in Fuzzy Mathematics and Com-
puter Science, Creighton University, Center for Research in Fuzzy Mathematics and Com-
puter Science, Nebraska, 1996.

[5] N. P. Mukherjee and P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inform. Sci. 34
(1984), no. 3, 225–239.

[6] V. Murali and B. B. Makamba, On an equivalence of fuzzy subgroups. III, Int. J. Math. Math. Sci.
2003 (2003), no. 36, 2303–2313.

[7] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), no. 3, 512–517.
[8] H. Sherwood, Products of fuzzy subgroups, Fuzzy Sets and Systems 11 (1983), no. 1, 79–89.
[9] J. Zhou, S.-Y. Li, and S.-Y. Li, LP-fuzzy normal subgroups and fuzzy quotient groups, J. Fuzzy

Math. 5 (1997), no. 1, 27–40.
[10] H.-J. Zimmermann, Fuzzy Set Theory—and Its Applications, International Series in Manage-

ment Science/Operations Research, Kluwer-Nijhoff, Massachusetts, 1985.

B. B. Makamba: Department of Mathematics (Pure and Applied), University of Fort Hare, Alice
5700, South Africa

E-mail address: bmakamba@ufh.ac.za

V. Murali: Department of Mathematics (Pure and Applied), Rhodes University, Grahamstown
6140, South Africa

E-mail address: v.murali@ru.ac.za

mailto:bmakamba@ufh.ac.za
mailto:v.murali@ru.ac.za

