
COSET ENUMERATION OF GROUPS GENERATED BY
SYMMETRIC SETS OF INVOLUTIONS

MOHAMED SAYED

Received 4 June 2005 and in revised form 9 October 2005

All non-abelian finite simple groups can be symmetrically generated by involutions. An
algorithm which performs coset enumeration for a group defined in this manner on the
cosets of a subgroup of automorphisms of these involutions is presented.

1. Introduction

The well-known Todd-Coxeter algorithm [14], which may be viewed as a means of con-
structing permutation representations of finitely presented groups, remains a primary
reference for coset enumeration programs. All the strategies and variants of this algo-
rithm perform essentially the same calculations as the original algorithm, merely choos-
ing different orders in which to process the available information. A statement of the
basic technique and the early study appear in [7, 8]. A detailed survey and comparison of
different strategies are given in [2]. A contemporary work is described in [6, 9].

In more recent work, see [11, 12], we developed two related algorithms for enumerat-
ing single and double cosets of any group generated by a finite conjugacy class of invo-
lutions. Several finite groups, including all non-abelian finite simple groups, can be sym-
metrically generated by involutions. Curtis showed how various sporadic simple groups
can be so generated, see for instance [4].

The enumerator described in this paper, which can still be viewed as another vari-
ant of the Todd-Coxeter algorithm, has substantial improvements (for space, speed, and
simplicity of programming) to the version described in [11]. In particular, the additional
algebraic information, in the form of coset stabilizing subgroups, is not needed.

2. Involutory symmetric generation of groups

Let G be a group and let T = {t0, t1, . . . , tn−1} be a set of elements of order m in G. Making
the definitions Ti = 〈ti〉 and T = {T0,T1, . . . ,Tn−1} allows us to define N =�G(T), the set
normalizer in G of T . We say that T is a symmetric generating set for G if the following
two conditions hold:

(i) G= 〈T〉,
(ii) N permutes T transitively.
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We call N the control subgroup. Conditions (i) and (ii) imply that G is a homomorphic
image of the progenitor

m∗n : N , (2.1)

where m∗n represents a free product of n copies of the cyclic group Cm and N is a group
of automorphisms of m∗n which permutes the n cyclic subgroups by conjugation. For
further information about the symmetric generations of groups the reader is referred to
[4, 5, 10].

Since in this paper we are only concerned with involutory symmetric generators, we
restrict our attention to the case m= 2 (while N will simply act by conjugation as permu-
tations of the n involutory symmetric generators).

Theorem 2.1. All finite non-abelian simple groups can arise as finite homomorphic images
of progenitors of the form 2∗n : N , whereN is a transitive subgroup of the symmetric group Sn.

Proof. Let H be a maximal subgroup of a finite simple group G. Suppose that 1 �= t∈ G,
t2 = 1. Under the subgroup H , tG, the conjugacy class of t in G, splits into orbits as

tG =�1∪̇�2∪̇···∪̇�r . (2.2)

Without loss of generality, we may assume that �1 = {t0, t1, . . . , tn−1} is not a subset of H .
It is clear that

�G
(〈

�1
〉)≥ 〈H ,�1

〉=G, (2.3)

since H is maximal in G and �1 is not a subset of H . Therefore,

1 �= 〈�1
〉
�G, (2.4)

and, since G is simple, we have

〈
�1
〉=G. (2.5)

Moreover, if π ∈ H and tπi = ti (i = 0,1, . . . ,n− 1), then π ∈ �(G) and so π = 1, that is,
H permutes the elements of �1 faithfully (and transitively). Now, let 2∗n denote a free
product of n copies of the cyclic group C2 with involutory generators t0, t1, . . . , tn−1 and let
N ∼=H consist of all automorphisms of 2∗n which permute the ti as H permutes the ti:

π−1tiπ = tπi = tπ(i) for π ∈N. (2.6)

Then, clearly G is a homomorphic image of 2∗n : N , a split extension of 2∗n by the per-
mutation automorphisms N . �

Since the progenitor is a semidirect product (of 〈T〉 with N), we may use the equation

tiπ = πtπi = πtπ(i) (2.7)
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or iπ = πiπ as we will more commonly write (see below), to gather the elements of N over
to the left. We thus have

2∗n : N = {πw |where π ∈N , w is a word in the ti
}
. (2.8)

Indeed, this representation is unique provided w is simplified so that adjacent symmetric
generators are distinct. Thus any additional relation by which we must factor the progen-
itor to obtain G must have the form

πw
(
t0, t1, . . . ,tn−1

)= 1 or π =w
(
t0, t1, . . . , tn−1

)
, (2.9)

where π ∈ N and w is a word in T . Another consequence of this is that a relation of the
form (πti)n = 1 for some π ∈N in a permutation progenitor becomes

πn = titπ(i) ··· tπn−1(i). (2.10)

We will allow i to stand for the coset Nti, i j for the coset Ntit j , and so forth. The coset
N is denoted by∗. We will also let i stand for the symmetric generator ti when there is no
danger of confusion. Thus we write, for instance, i j ∼ k to mean Ntit j = Ntk and i j = k
to mean tit j = tk.

We define the subgroups Ni,Nij ,Nijk, . . . (for i, j, and k distinct) as follows:

Ni =�N
(〈
ti
〉)

,

Nij =�N
(〈
ti, t j

〉)
,

Nijk =�N
(〈
ti, t j , tk

〉)
,

(2.11)

or, more generally,

Ni1i2···im =�N
(〈
ti1 , ti2 , . . . , tim

〉)
(2.12)

for i1, i2, . . . , im distinct.
It is sometimes useful to have the notation of a length of a coset. The fact that for π ∈N

we have

Nw
(
ti
)
π =Nπ−1w

(
ti
)
π =Nw

(
tπi
)=Nw′

(
ti
)
, (2.13)

shows that all N-cosets have a representative in 〈T0∪T1∪···∪Tn−1〉. We are in a posi-
tion to define the length, L(Nw)= L(w), of a coset Nw. Firstly, we have L(N)= 0. If Nw
has length k and t ∈ T , then Nwt has length at most k + 1 and has length precisely k + 1
if it does not have (or has not been proved to have) length at most k. We specify that all
cosets of length k+ 1 have the form Nwt where L(Nw)= k and t ∈ T .
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3. Coset enumeration algorithm

We describe how a factor group

G∼= 2∗n : N
π1 =w1,π2 =w2, . . . ,πs =ws

(3.1)

may be identified. We need to establish the order of G by enumerating the cosets of a
subgroup (of G) of known order. Naturally, we would like this subgroup to be the control
subgroup N .

The coset decomposition of the progenitor 2∗n : N is

2∗n : N =N ∪Nt0∪Nt1∪···∪Ntn−1∪Nt0t1∪Nt0t2∪···∪Nt0t1t0∪··· . (3.2)

Therefore, the set of right cosets corresponds to the set of all ordered k-tuples, k ∈ {0,1,
2, . . .}, of the letters of {0,1,2, . . . ,n− 1} which have no adjacent repetitions. We see that
the progenitor has 1 coset of length 0 and at most n(n− 1)k−1 cosets of length k, k ≥ 1.
Once the progenitor is factored by nontrivial relations, coincidences between these cosets
appear, and so lead to reduce the number of cosets.

Note that if the Cayley graph of G in its action on the cosets of N has bounded diam-
eter, then the index |G : N| is finite, and the procedure does finish and succeed in finding
the permutation representation of the group G. The proof is very similar to the proof of
a theorem of Mendelson (see, e.g., [13]) which states that the Todd-Coxeter method will
succeed in finding the permutation representation of a group G provided that the index
|G : H| is finite, where H is a subgroup of G.

In this section, we show how the algorithm generates cosets and give an efficient
method for identifying the coincidences between cosets and for handling the collapses.

3.1. Input to the algorithm. The input to the algorithm begins with the control sub-
group N (of G) as a permutation group of degree n. Now Magma [1] and other theoreti-
cal packages handle permutations of a high degree with immense ease. The next piece is
a finite set of relations, πi =wi, given as two sequences,

π = [π1,π2, . . . ,πs
]
, w = [w1,w2, . . . ,ws

]
, (3.3)

where the πi are elements of N and the wi are sequences of integers from the set {0,1,
. . . ,n− 1}.

3.2. Initialization. It is worth noting that all conjugates (conjugation by elements of N)
of the relations πi = wi are also relations. So that, in any homomorphic image G of the
progenitor 2∗4 : S4, the relation (2,3)= [t0t1]2 can be considered as (i, j)= [tktl]2 for all
distinct i, j,k, l. Thus, if σ = v is an element of the set of additional relations

{
π1 =w1,π2 =w2, . . . ,πs =ws

}
, (3.4)

then in G we have σπ = vπ for π ∈N .
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We point out the procedure which determines a permutation p of N such that, for any
two sequences of symmetric generators,

u= [a1,a2, . . . ,ar
]
, v = [b1,b2, . . . ,br

]
, ai,bi ∈ {0,1, . . . ,n− 1

}
, (3.5)

vp = u. It can be used (during the processing coincidences step) to establish new emerged
relations. We know that

N ≥Nb1 ≥Nb1b2 ≥ ··· ≥Nb1b2···br . (3.6)

Assume that

n1 =
∣∣N : Nb1

∣∣, ni =
∣∣Nb1···bi−1 : Nb1···bi∣∣, i∈ {2,3, . . . ,r}. (3.7)

Consequently, there exist transversals

{
τ1, . . . ,τn1

}
,
{
σ1, . . . ,σn2

}
,
{
ρ1, . . . ,ρn3

}
, . . . ,

{
φ1, . . . ,φnr

}
(3.8)

such that

N =Nb1τ1∪̇Nb1τ2∪̇···∪̇Nb1τn1 ,

Nb1 =Nb1b2σ1∪̇Nb1b2σ2∪̇···∪̇Nb1b2σn2 ,

Nb1b2 =Nb1b2b3ρ1∪̇Nb1b2b3ρ2∪̇···∪̇Nb1b2b3ρn3 ,
...

Nb1···br−1 =Nb1···br φ1∪̇Nb1···br φ2∪̇···∪̇Nb1···br φnr .

(3.9)

If vp = u, p ∈N , then we can find the permutation p = φ′ ···ρ′σ ′τ′, where τ′ ∈ {τ1, . . . ,
τn1}, σ ′ ∈ {σ1, . . . ,σn2}, ρ′ ∈ {ρ1, . . . ,ρn3}, . . . , φ′ ∈ {φ1, . . . ,φnr}, as follows. Since σ ′,ρ′, . . . ,
φ′ fix b1, the equation bP1 = a1 can be reduced to bτ

′
1 = a1. Also, the permutations ρ′, . . . ,φ′

fix b2, so the equation bP2 = a2 can be reduced to bσ
′τ′

2 = a2. Similarly we have b
ρ′σ ′τ′
3 = a3,

. . . , b
φ′···ρ′σ ′τ′
r = ar . Thus, we can easily identify (in a recursive manner) the permutations

τ′,σ ′,ρ′, . . . ,φ′ and consequently p.
The variable level stands for the length of the coset corresponding to the last row in

the coset tables.

3.3. The tables and the actions. Following the Todd-Coxeter algorithm, we maintain a
sequence of sequences C whose terms are the complete set of coset representative words
and a table, for each additional relation, which can be considered as a function f : C×
T → C. We read f (w, ti) = w′ as meaning that Nwti = Nw′ where w and w′ are words
in the symmetric generators of length k and at most k + 1, respectively. Also, we apply
a consistency condition to our tables that f (w, ti) = w′ ⇔ f (w′, ti) = w, so that inverses
have the behavior we expect.

Of course, as we proceed we will discover identifications between cosets that were con-
sidered different. So it is convenient to have some way of recording in the sequence C
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when a coset w′ has been proved to be the same (in G) as an earlier coset w so that refer-
ences to w′ can be diverted to w. We demand that if Nw is earlier in the table than Nw′,
then L(Nw)≤ L(Nw′).

3.4. Pushing relations and processing coincidences. For each additional relation, we
start with an empty table and progressively modify it, using the above function, until it
represents the permutation action of T on the cosets of N (in G). We will know that we
have completed the coset enumeration when the set of right cosets obtained is closed
under right multiplication.

During this process, no other representations of group elements are used; any word w
in the symmetric generators are simply put into its canonically shortest form by applica-
tion of the relations (and their conjugates under N). All the relations,

πi =wi, i∈ {1,2, . . . ,s}, (3.10)

where πi ∈N and wi = ti1 ti2 ··· tir , together with their conjugates, are written as

ti1 ti2 ··· tik = πitir tir−1 ··· tik+1 , (3.11)

where k equals r/2 or (r + 1)/2 according to whether r is even or odd, respectively.
The procedure checks if a part of any given word w in the symmetric generators of

length k is equal to ti1 ti2 ··· tik , the left-hand side of one of the previous relations, then
the procedure replaces this part by tir tir−1 ··· tik+1 and moves the permutation πi over to
the left of the whole word.

If a new word w′ of length less than the length of w is obtained, the procedure replaces
the coset represented by w by the new coset represented by w′. References to the coset
represented by w can be diverted to the coset represented by w′. On the other hand,
if a new word w′ of length equal to the length of w is obtained, we say that the coset
represented by w′ has been proved to be the same (in G) as the coset represented by w.
In both cases, we wish w′ to have t j as a last letter whenever t j is the next symmetric
generator, in the relation table, to be pushed.

3.5. Processing collapses. From time to time we pack the sequence of the coset repre-
sentative words, reclaiming the space that was occupied by the redundant elements and
this might lead to the collapse of part or the entire coset diagram. During the pushing
relations step we may discover identifications between cosets that are considered differ-
ent from the additional relations (and their conjugates under N). It is convenient to have
some way of recording, in a sequence, all of these coincidences, and so we can use them
together with the problem relations to rereduce the coset tables. The strategy here is to
use the collapse procedure at the end of each level. If the coincidences generate further
coincidences, the process must be repeated.

3.6. Output of the algorithm. We say that a coset table is closed if it has no cosets in our
tables of length greater than level. In this case, we say that the set of right cosets obtained
is closed under right multiplication. Since N is a finitely generated subgroup of countable
index in a finitely presented group G, the point of termination will always be reached.
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Table 4.1. The relation table of the enumeration of S5 over S4.

(0,1)
︷ ︸︸ ︷
0 1 0

∗ 0 01∼ 0 ∗
0 ∗ 1 10∼ 1

1 10∼ 1 ∗ 0

2 20∼ 2 21∼ 2 20∼ 2

3 30∼ 3 31∼ 3 30∼ 3

The program returns what is essentially a Cayley graph of the action of G on the cosets
of N . Each element of G is represented by a permutation of N followed by a word in the
symmetric generators. Indeed, the program allows the user readily to pass between the
symmetric representation of an element of G and its action on the cosets of N .

4. Illustrative examples

With the observations of the previous section, we are in a position to carry out simple
coset enumerations. We will consider the progenitors 2∗n : N , for N ∼= S3,S4 and L2(5),
for n= 3,4, and 6, respectively.

Example 4.1. Consider the group

G∼= 2∗4 : S4

(0,1)= t0t1t0
, (4.1)

which means that the progenitor 2∗4 : S4 quotiented out by the relation (0,1) = t0t1t0.
Here the control subgroup N ∼= S4 acts on the 2∗4 in its normal action on four points.

It is clear that N = N(0,1) = Nt0t1t0, which we write as ∗ ∼ 010 in our notation. By
postmultiplying both sides by t0, we deduce that Nt0 =Nt0t1, that is, 01∼ 0. In general,
we have ∗∼ i ji and thus i j ∼ i. The relation table for the coset enumeration of G over N
is given in Table 4.1.

The symmetric generator t0 acts on these five cosets by right multiplication as the
transposition interchanging the coset ∗ with the coset 0. Since (∗,0)(∗,1)(∗,0)= (0,1),
we see that our additional relation is satisfied by these transpositions, and we have a
symmetric presentation of S5.

Example 4.2. Let

G∼= 2∗3 : S3

(0,1)= t0t1t0t1t0, (0,2,1)= t0t1t2t0t1
. (4.2)

The result of the coset enumeration of G over S3 is shown in Tables 4.2 and 4.3. Thus,
|G : N| ≤ 10, so |G| ≤ 60= |L2(4)|, and the (relatively) easy task of finding generators for
L2(4) satisfying the required relations completes the identification of G with L2(4).
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Table 4.2. The first relation table of the enumeration of L2(4) over S3.

(0,1)
︷ ︸︸ ︷
0 1 0 1 0

∗ 0 01 010∼ 01 0 ∗
0 ∗ 1 10 101∼ 10 1

1 10 101∼ 10 1 ∗ 0

2 20 201∼ 02 020∼ 02 021∼ 20 2

01 010∼ 01 0 ∗ 1 10

10 1 ∗ 0 01 010∼ 01

02 020∼ 02 021∼ 20 2 21 210∼ 12

20 2 21 210∼ 12 121∼ 12 120∼ 21

12 120∼ 21 2 20 201∼ 02 020∼ 02

21 210∼ 12 121∼ 12 120∼ 21 2 20

Table 4.3. The second relation table of the enumeration of L2(4) over S3.

(0,2,1)
︷ ︸︸ ︷
0 1 2 0 1

∗ 0 01 012∼ 10 1 ∗
0 ∗ 1 12 120∼ 21 2

1 10 101∼ 10 102∼ 01 010∼ 01 0

2 20 201∼ 02 0 ∗ 1

01 010∼ 01 0 02 020∼ 02 021∼ 02

10 1 ∗ 2 20 201∼ 02

02 020∼ 02 021∼ 20 202∼ 20 2 21

20 2 21 212∼ 21 210∼ 12 121∼ 12

12 120∼ 21 2 ∗ 0 01

21 210∼ 12 121∼ 12 1 10 101∼ 10

Example 4.3. Let

G∼= 2∗6 : L2(5)
[
(0,1,2,3,4)t0

]4 = 1
. (4.3)

Here the L2(5) acts on the 2∗6 as the group of linear fractional transformations (of
determinant 1) on the projective line of order 5 whose points may be labelled with the
elements of F5 ∪{∞}. The result of the coset enumeration of G over L2(5) is shown in
Table 4.4. It is easy to recognize the group G—in this case the projective general linear
group PGL2(11) of order 22× 60 = 1320—and check that it does contain such a sym-
metric generating set.
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Table 4.4. The relation table of the enumeration of PGL2(11) over L2(5).

(0,4,3,2,1)
︷ ︸︸ ︷
0 1 2 3

∗ 0 01∼ 32 3 ∗
∞ ∞0∼ 12 121∼ 212 21∼∞3 ∞
0 ∗ 1 12∼ 43 4

1 10 101∼ 242 24∼ 03 0

2 20∼ 41 4 42∼ 13 1

3 30∼ 14 141∼ 232 23 2

4 40∼ 21 2 ∗ 3

∞0 ∞ ∞1∼ 23 232∼ 323 32∼∞4

∞1∼ 04 040∼ 131 13∼ 42 4 43∼∞0

∞2∼ 10 1 ∗ 2 23∼∞1

∞3∼ 40 4 41∼ 20 202∼ 343 34∼∞2

∞4∼ 01 010∼ 101 10∼∞2 ∞ ∞3

0∞ 0∞0∼ 141 14∼ 2∞ 2∞2∼ 313 31∼ 4∞
1∞∼ 03 030∼ 121 12 1 13∼ 0∞
2∞∼ 30 3 31∼ 02 0 03∼ 1∞
3∞∼ 20 2 21 212∼ 303 30∼ 2∞
4∞∼ 02 020∼ 1∞1 1∞∼ 24 242∼ 3∞3 3∞
∞0∞∼ 0∞0 0∞∼ 13 131∼ 2∞2 2∞∼ 30 303∼∞4∞
∞1∞∼ 020 02∼ 31 3 32 323∼∞0∞
∞2∞∼ 040 04∼∞1 ∞ ∞2∼ 34 343∼∞1∞
∞3∞∼ 010 01 0 02∼ 31 313∼∞2∞
∞4∞∼ 030 03∼ 1∞ 1∞1∼ 202 20∼ 3∞ 3∞3∼∞3∞

We conclude with a computer example of the use of the program.

Example 4.4. Consider the group

G∼= 2∗4 : S4

(3,4)= [t1t2
]2 . (4.4)

The input takes the form

N := permutation group
〈

4 | (1,2,3,4),(3,4)
〉

;

π := [N !(3,4)
]
;

w := [[1,2,1,2]
]
.

(4.5)

The result of the coset enumeration of G over S4 shown in Table 4.5 indicates that
|G : N| ≤ 14, so |G| ≤ 336= |PGL2(7)|. In fact, if we make the correspondence between
the N-cosets and the 7 points and the 7 lines of the projective plane of order 2, see [10],
we can easily identify G with PGL2(7).
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Table 4.5. The relation table of the enumeration of PGL2(7) over S4.

(3,4)
︷ ︸︸ ︷
1 2 1 2

1 2 6 3 1

2 1 3 6 2

3 6 2 1 3

4 11 14 9 5

5 10 13 7 4

6 3 1 2 6

7 13 10 5 9

8 12 8 12 8

9 14 11 4 7

10 5 9 14 11

11 4 7 13 10

12 8 12 8 12

13 7 4 11 14

14 9 5 10 13

The list of the 14 single cosets together with their equivalent names is as follows:

[
[],

[1],[2],[3],[4],
[
[12],[21]

]
,
[
[23],[32]

]
,
[
[34],[43]

]
,
[
[24],[42]

]
,
[
[14],[41]

]
,
[
[13],[31]

]
,

[
[123],[213],[432],[342],[124],[214],[431],[341]

]
,

[
[143],[413],[234],[324],[142],[421],[231],[321]

]
,

[
[132],[312],[423],[243],[134],[314],[421],[241]

]]
.

(4.6)

The action of the element x = (1,2,3,4) on single cosets is given by xp = (2,3,4,5)
(6,7,8,10)(9,11)(12,13). Also, the action of our 4 symmetric generators is given as fol-
lows:

t1 : (1,2)(3,6)(4,11)(5,10)(7,13)(8,12)(9,14),

t2 : (1,3)(2,6)(4,7)(5,9)(8,12)(10,13)(11,14),

t3 : (1,4)(2,11)(3,7)(5,8)(6,12)(9,14)(10,13),

t4 : (1,5)(2,10)(3,9)(4,8)(6,12)(7,13)(11,14).

(4.7)

5. Concluding remark

In this enumerator several modifications have been introduced. For instance, rather than
applying the additional relations to all cosets in the relation tables, it is more efficient to
apply conjugates of the relations to representatives of the cosets. Moreover, the algorithm
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Table 5.1. Result of the coset enumeration of G over N .

G 2∗n : N Additional relations Cosets Time taken (s)

PGL2(11) 2∗6 : L2(5) (0,4,3,2,1)= t0t1t2t3 22 0.05

J1 2∗11 : L2(11)
(0,8,1)(2,7,9,x,6,5)

266 0.20
(3,4)= t0t1t8t0t1

G2(4) : 2 2∗100 : (J2 : 2) π01 = t0t1t0 416 0.50

3·Suz : 2 2∗416 : (G2(4) : 2) π01 = t0t1t0 5346 1.40

is different from existing coset enumeration techniques in the way that it handles the
elements of the group and for informing the user more about the structure of the group.
In addition, the operations of inversion and multiplication can be performed manually
(or mechanically) by means of short algorithms. Also, it is helpful to define the group in
terms of generators and relations in the standard way; we can find a symmetric generating
set for the group and from this generating set we can determine the relations which we
need to add to our progenitor presentation.

This implementation, of course, contains a more detailed description which is omitted
here for the sake of brevity. It, although written in Magma, can be readily written in any
high-level language. Our next aim is to implement the algorithm as a C++ program and
introduce more modifications. For example, we will try to find all coincidences between
cosets without using relation tables; only by pushing the additional relations (and their
conjugates under N).

The program is run on a Sun Sparc Station 5 with CPU clock rate 110 MHz. In Table
5.1, results are given for some symmetric presentations of G, see [10]. For the notation of
the group structures, the reader is referred to [3]. A straightforward coset enumeration
[1] for each considered group, using the same machine, takes almost the same CPU time.
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