ANOTHER VERSION OF "EXOTIC CHARACTERIZATION OF A COMMUTATIVE H^* -ALGEBRA"

PARFENY P. SAWOROTNOW

Received 26 July 2004

Commutative H^* -algebra is characterized in a somewhat unusual fashion without assuming either Hilbert space structure or commutativity. Existence of an involution is not postulated also.

1. Introduction and main result

About 5 years ago, the author wrote an article in which he characterized commutative H^* -algebras in a somewhat unusual way. Now we will show that a similar characterization can be achieved without assuming a Hilbert space structure on the algebra. More specifically we will prove the following theorem.

THEOREM 1.1. Let A be a semisimple complex Banach algebra with the following properties:

- (i) for every closed right ideal R in A, there exists a closed left ideal L such that $R \cap L = \{0\}$ and R + L = A (each $a \in A$ can be written in the form $a = a_1 + a_2$ with $a_1 \in R$, $a_2 \in L$);
- (ii) if a, b in A are such that ab = ba = 0, then $||a + b||^2 = ||a||^2 + ||b||^2$.

Then *A* is a commutative proper H^* -algebra [1].

It is easy to see that each proper commutative H^* -algebra has properties (i) and (ii), stated in the theorem.

A proper H^* -algebra is a Banach algebra A, whose underlying Banach space is a Hilbert space, which has an involution $x \to x^*$ such that $(xy,z) = (y,x^*z) = (x,zy^*)$ for all $x, y \in A$. An idempotent is a member e of A such that $e^2 = e$; e is primitive if it cannot be written as a sum, $e = e_1 + e_2$, of two nonzero idempotents e_1 , e_2 such that $e_1e_2 = e_2e_1 = 0$ $(e = e_1 + e_2$ implies either $e_1 = 0$ or $e_2 = 0$). A Banach algebra A is semisimple if its radical [2] (Jacobson radical) consists of 0 alone. One of the properties of radical [2, Theorem 16] is the following proposition: if R is a right ideal consisting of nilpotents $(x \in R$ implies $x^n = 0$ for some positive integer n), then R is included in the radical. This proposition is relevant to both the present note and [4].

2. Relevant lemmas

We will establish the main result (Theorem 1.1) by proving a series of lemmas first.

Let *A* be a semisimple Banach algebra such that for each closed right ideal $R \subset A$, there is a closed left ideal *L* such that $R \cap L = \{0\}$ and R + L = A.

LEMMA 2.1. The ideal L (for each closed right ideal R) is a two-sided ideal. It coincides with both the right and the left annihilators of R, that is, L = r(R) = l(R), where $r(R) = \{x \in A : Rx = \{0\}\}$ and $l(R) = \{x \in A : xR = \{0\}\}$.

Proof. First note that $L \subset r(R)$ and that r(R) is a two-sided ideal. Hence, $R \cap r(R)$ is also a right ideal. But $x^2 = 0$ for each $x \in R \cap r(R)$ and so $R \cap r(R)$ is included in the radical of A, that is, $R \cap r(R) = \{0\}$ since A is semisimple.

Now let $a \in r(R) \sim L(a \in r(R), a \notin L)$. Write a = b + c with $b \in R, c \in L$. Then b = a - c belongs to r(R) also, and this means that b = 0, a = c. Thus L = r(R), L is a two-sided ideal.

COROLLARY 2.2. Each closed right ideal R in A is a two-sided ideal and R = r(L) = l(L) where L is as above.

LEMMA 2.3. Each closed right ideal R in A contains a nonzero idempotent.

Proof. One can use the argument, which is used in the first part of the proof of Lemma 2.6 in [4]. Let $x \in R$ be such that $x + y + xy \neq 0$ for all $y \in A$ (x has no right quasiinverse; existence of $x \in R$ is guaranteed by semisimplicity of A). Let R^1 be the closure of $\{xy + y : y \in A\}$; write -x = e + u with $e \in r(R^1)$, $u \in R^1$ (we use Lemma 2.1 here). Then it is easy to verify that $e \neq 0$, $e^2 = e$, and $e \in R$ (note that $r(R^1) \subset R$).

Now assume that A has property (ii) above (if $a, b \in A$ and ab = ba = 0, then $||a + b||^2 = ||a||^2 + ||b||^2$).

LEMMA 2.4. Every closed right ideal R contains a primitive idempotent.

Proof. We already know that *R* contains an idempotent *e*. If *e* is not primitive, then we can write $e = e_1 + e_2$, where e_1, e_2 are some nonzero idempotents such that $e_1e_2 = e_2e_1 = 0$. From $e_i^2 = e_i$, it follows that $||e_i|| \ge 1$ for i = 1, 2 and from (ii), it follows that $||e_1||^2 \le ||e||^2 - 1$. One can use the argument of Ambrose in [1, Theorem 3.2] that *e* is a sum, $e = \sum_{i=1}^{n} e_i$ of primitive idempotents e_1, \ldots, e_n such that $e_1e_j = 0$ for $i \ne j$, $(i, j \in \{1, \ldots, n\})$. From $e_1 = ee_i$, it follows that $e_i \in R$ for $i = 1, \ldots, n$.

LEMMA 2.5. An idempotent $e \in A$ is primitive if and only if the closed right ideal R = eA is minimal.

Proof. The proof follows by direct verification.

LEMMA 2.6. If $e \in A$ is a primitive idempotent, then R = eA is 1-dimensional, that is, $R = \{\lambda e : \lambda \text{ is a complex number}\}$.

Proof. One can use an obvious modification of the proof of [4, Lemma 2.8]. (In the present case, we use l(R) = r(R) instead of R^p , the present primitive idempotent corresponds to primitive left projection in [4].) First we show that *e* is also a right identity of *R* and then we prove that each $x \in R$ has both the right and the left inverse (which

do coincide). Then we apply Gelfand-Mazur theorem which states that the only complex Banach algebra, which is a division algebra, is the complex number system. \Box

LEMMA 2.7. The product of any two distinct primitive idempotents e_1 , e_2 in A is zero, $e_1e_2 = e_2e_1 = 0$ if $e_1 \neq e_2$.

The proof is the same as the proof of [4, Lemma 2.9].

COROLLARY 2.8. If e_1 , e_2 are primitive idempotents, $e_1 \neq e_2$ and $a_1 \in e_1A$, $a_2 \in e_2A$ then $||a_1 + a_2||^2 = ||a_1||^2 + ||a_2||^2$.

Proof. Note that $a_1a_2 = a_2a_1 = 0$ since $a_1 = \lambda_1e_1$, $a_2 = \lambda_2e_2$ for some complex numbers λ_1 and λ_2 .

COROLLARY 2.9. If e_1, e_2, \ldots, e_n are primitive idempotents and $x \in \sum_{i=1}^n e_i A$, then $||x||^2 = \sum_{i=1}^n ||e_i x||^2$.

Proof. The proof follows by induction on *n*.

LEMMA 2.10. Let $e_1, ..., e_n$ be primitive idempotents and let x, y be members of $\sum_{i=1}^{n} e_i A$, then $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$.

Proof. It follows from Lemma 2.6 above that there are complex numbers $\lambda_1, ..., \lambda_n$ and $\mu_1, ..., \mu_n$ such that $x = \sum_{i=1}^n \lambda_i e_i$, $y = \sum_{i=1}^n \mu_i e_i$. Lemma 2.7 implies that $\|x\|^2 = \sum_{i=1}^n |\lambda_i|^2 \|e_i\|^2$, $\|y\|^2 = \sum_{i=1}^n |\mu_i|^2 \|e_i\|^2$, and $\|x \pm y\|^2 = \sum_{i=1}^n (|\lambda_i \pm \mu_i|^2) \|e_i\|^2$. Then $\|x + y\|^2 + \|x - y\|^2 = \sum_{i=1}^n (|\lambda_i + \mu_i|^2 + |\lambda_i - \mu_i|^2) \|e_i\|^2 = 2\sum_{i=1}^n (|\lambda_i|^2 + |\mu_i|^2) \|e_i\|^2 = 2(\|x\|^2 + \|y\|^2)$.

3. Proof Theorem 1.1

Let \wedge be the set of all primitive idempotents in A and let R_0 be the set of all finite sums $x = \sum_{i=1}^{n} x_i$ of members of ideals $e_i A : x_i \in e_i A$, i = 1, 2, ..., n, where $e_1, ..., e_n$ are some members of \wedge . Then R_0 is dense in A, otherwise one could find a nonzero primitive idempotent $e_0 \in l(R) = r(R)$, and this would lead to a contradiction.

It follows from Lemma 2.10 that $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$ for all $x, y \in R_0$. Since R_0 is dense in A, we may conclude that this relation holds for all $x, y \in A$. It follows from [3, Section 10A] that A is a Hilbert space with respect to the inner product $(x, y) = (1/4)\{||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2\}$.

We show that L = l(R) = r(R) coincides with $R^p = \{x \in A : (x, y) = 0 \text{ for all } y \in R\}$ for each closed right ideal *R* in *A*. If $x \in R$, $y \in L$, then xy = yx = 0 and it follows that $||x + y||^2 = ||x||^2 + ||y||^2 = ||x - y||^2 = ||x + iy||^2 = ||x - iy||^2$ from which one can conclude that (x, y) = 0. This simply means that $L \subset R^p$. Now let $a \in R^p$. Then a = b + c with $b \in R$, $c \in L$. This means that $c \in R^p$ and so b = a - c is also member of R^p . It follows that $b \in R^p \cap R = \{0\}$. Thus b = 0 and so a = c is a member of *L*.

The theorem now follows from [4, Theorem 2.1].

References

 W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364–386.

- 486 Characterization of a commutative H^* -algebra
- [2] N. Jacobson, *The radical and semi-simplicity for arbitrary rings*, Amer. J. Math. **67** (1945), 300–320.
- [3] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. Van Nostrand, New York, 1953.
- P. P. Saworotnow, An exotic characterization of a commutative H*-algebra, Int. J. Math. Math. Sci. 24 (2000), no. 1, 1–4.

Parfeny P. Saworotnow: Department of Mathematics, The Catholic University of America, Washington, DC 20064, USA

E-mail address: saworotnow@cua.edu