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The classical Banach-Stone theorem characterizes linear surjective isometries between
C(K)-spaces. The main aim of this paper is to present a survey of Banach-Stone-theorem-
type results between some function spaces. The weighted substitution operators play an
important role in characterization of isometries, disjointness preserving operators, and
lattice homomorphisms. Some open problems are given for further investigation.

1. Introduction

Let X and Y be nonempty sets, let E be a Banach space, and let B(E) denote the Banach
space of all bounded linear operators on E. Let F1(X ,E) and F2(Y ,E) be linear spaces
of E-valued functions on X and Y , respectively, with pointwise vector operations. If
ϕ : Y → X is a map such that the composite function f ◦ϕ belongs to F2(Y ,E) for every f
in F1(X ,E), then the correspondence Sϕ taking f to f ◦ϕ is a linear transformation from
F1(X ,E) to F2(Y ,E) and it is called the substitution transformation (composition trans-
formation) induced by ϕ. If θ : Y → C or θ : Y → B(E) is a map such that θ · f ◦ϕ belongs
to F2(X ,E) for every f in F1(X ,E), then the mapping f → θ · f ◦ϕ is a linear transforma-
tion from F1(X ,E) to F2(Y ,E) and it is denoted by Wθ

ϕ . The transformation Wθ
ϕ is called

the weighted substitution transformation induced by the pair (θ,ϕ). In case the function
spaces F1(X ,E) and F2(Y ,E) have topologies compatible with the linear structures, and
Sϕ and Wθ

ϕ are continuous, we call them substitution operator and weighted substitution
operator, respectively. Theory of these operators had extensive developments during the
last four decades or so and they have been studied on several function spaces of holomor-
phic functions, continuous functions, and measurable functions and their combinations.
For details we refer to [8, 10, 11, 15, 25, 28].

Let Y1 be a subset of Y , ϕ : Y1 → X and θ : Y1 → C (or B(E)). For f ∈ F1(X ,E), define
θ · f ◦ϕ on Y as (θ · f ◦ϕ)(y)= θ(y) f (ϕ(y)) for y in Y1 and (θ · f ◦ϕ)(y)= 0 for y in
the complement of Y1. In case the correspondence f → θ · f ◦ϕ is continuous, it is called
a generalized weighted substitution operator. We also denote it by Wθ

ϕ .

The weighted substitution operators Wθ
ϕ are simple and natural type of operators

on function spaces as they come out of two binary operations on functions, namely,
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multiplication and substitution (composition). In some cases, the class of weighted sub-
stitution operators contains the class of substitution operators and the class of multiplica-
tion operators. Among other applications, these operators have played a significant role in
the study of isometries, lattice homomorphisms, and algebra homomorphisms on differ-
ent spaces of functions. In this paper, we have restricted ourselves to applications of these
operators on spaces of continuous functions. These operators have played an important
role in generalizations of the classical Banach-Stone theorem in different directions. The
paper is expository in nature with some deductions and generalizations. Some problems
are presented for further exploration.

2. Classical Banach-Stone theorem for C(K)-spaces

Let X and Y be compact Hausdorff spaces. Let E = C, F1(X ,E) = C(X) and F1(Y ,E) =
C(Y), where C(X) and C(Y) are Banach spaces of complex-valued continuous functions
on X and Y , respectively, with sup norm, that is, ‖ f ‖ = supx∈X | f (x)|. Actually, C(X) and
C(Y) are C∗-algebras with maximal ideal spaces homeomorphic to X and Y , respectively.
These spaces are called C(K)-spaces. In light of the Gelfand-Naimark theorem, we know
that every unital commutative C∗-algebra is a C(K)-space. If X is an uncountable metriz-
able compact space, then in light of Milutin’s theorem [23], there exists a linear homeo-
morphism between C(X) and C[0,1]. The classical Banach-Stone theorem characterized
linear surjective isometries between C(K)-spaces, which turn out to be the weighted sub-
stitution operators.

If ϕ : Y → X and θ : Y → C are continuous mappings, then Sϕ : C(X) → C(Y) and
Wθ

ϕ : C(X)→ C(Y) are continuous operators preserving lattice structures of C(X) and
C(Y). Sϕ is also an algebra homomorphism with ‖Sϕ‖ = 1. In case ϕ is a surjective map,
Sϕ is an embedding of C(X) into C(Y) and preserves the norm, that is, ‖Sϕ f ‖ = ‖ f ‖. In
case ϕ is a bijection, Sϕ is a surjective isometry. If |θ(y)| = 1 for y ∈ Y and ϕ is a bijec-
tion, then it is easy to show that the weighted substitution operator Wθ

ϕ : C(X)→ C(Y)
is a surjective isometry. Banach-Stone theorem shows that every surjective isometry is a
weighted substitution operator of this type.

Theorem 2.1 (Banach-Stone theorem). Let X and Y be compact Hausdorff spaces. Then
a bounded linear operator T : C(X)→ C(Y) is a surjective isometry if and only if T =Wθ

ϕ ,
for some homeomorphism ϕ : Y → X and some continuous function θ : Y → C such that
|θ(y)| = 1 for every y ∈ Y .

Outline of the proof. Let M(X) and M(Y) denote the Banach spaces of all complex-
valued regular Borel measures on X and Y , respectively, with total variation norm. The
spaces M(X) and M(Y) are the dual spaces of C(X) and C(Y), respectively, and the set
of extreme points of the unit ball (M(X))1 denoted as ext(M(X))1 coincides with the set
{aδx : |a| = 1, x ∈ X}, where δx : C(X)→ C is the evaluation functional given by δx( f )=
f (x) for f ∈ C(X). If T : C(X)→ C(Y) is a surjective isometry, then T∗ : M(Y)→M(X)
is a surjective isometry and it is a weak*-affine homeomorphism of (M(Y))1 on (M(X))1

such that T∗(ext(M(Y))1)= ext((M(X))1).
Let y ∈ Y . Then δy ∈ ext(M(Y))1. Hence, there exist unique x ∈ X and ay ∈ C such

that |ay| = 1 and T∗(δy)= ayδx.
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Define ϕ : Y → X as ϕ(y)= x; and θ : Y → C as θ(y)= ay . Then θ is a continuous map
and ϕ is a continuous bijection. Since (T f )(y)= T∗(δy)( f )= θ(y) f (ϕ(y)) for y ∈ Y , we
get T f =Wθ

ϕ f for every f ∈ C(X). This completes the outline of the proof.

Corollary 2.2. (a) If T : C(X)→ C(Y) is a linear surjective isometry such that T(1)= 1,
then T = Sϕ for some homeomorphism ϕ : Y → X . (b) If ϕ : Y → X is a surjective continuous
map, then Sϕ : C(X)→ C(Y) is an isometry.

SupposeC(X) is the space of all real-valued continuous functions onX . ThenC(X) is a
Banach lattice with f ∨g and f ∧g defined pointwise, that is, ( f ∨g)(x)=max{ f (x),g(x)}
and f ∧ g =min{ f (x),g(x)}. A lattice homomorphism between two Banach lattices E
and F is a linear mapping T :E→F such that T( f ∨g)=T f ∨Tg and T( f ∧g)=T f ∧Tg
for every f ,g ∈ E. In the following theorem, we find all those linear functionals which are
lattice homomorphisms from C(X) to R.

Theorem 2.3. If X is a compact Hausdorff space and T : C(X)→R is a nonzero continuous
linear functional, then T is a lattice homomorphism if and only if T = cδx for some x ∈ X
and c > 0.

Proof. If T : C(X) → R is a nonzero linear functional preserving the lattice structures,
then by the Riesz representation theorem, there exists a Borel measure µ on X such that
T( f )= ∫X f dµ for every f ∈ C(X).

It follows from normality of X that the support of µ is a singleton set, say {x}. If
c=µ({x}), thenT( f )= ∫X f dµ=µ({x}) f (x)= cδx( f ) for every f ∈C(X). HenceT = cδx.
The converse is easy.

It turns out in light of the above result that every nonzero lattice homomorphism
between Banach lattices C(X) and C(Y) is a weighted substitution operator. This is pre-
sented in the following theorem. �

Theorem 2.4. Let T : C(X) → C(Y) be a nonzero positive operator. Then T is a lattice
homomorphism if and only if T =Wθ

ϕ for some θ ∈ C(Y) and for some ϕ∈ C(Y ,X).

Proof. Let y ∈ Y . Then δy ◦T : C(X)→R is a lattice homomorphism. Hence by Theorem
2.3, there exists a constant θ(y) ≥ 0 such that (T f )(y) = θ(y)δx( f ) for some x ∈ X . If
we define ϕ(y) = x, then ϕ is continuous and T(1) = θ. Since T f = θ · f ◦ ϕ, we get
T =Wθ

ϕ . If T is a weighted substitution operator, then it is a lattice homomorphism. This
completes the proof. �

Corollary 2.5. Let T be a positive operator between C(X) and C(Y) such that T(1)= 1.
Then T is a lattice homomorphism if and only if T is a substitution operator if and only if T
is an algebra homomorphism.

3. Characterizations of isometries on some general spaces of continuous functions

Let X be a locally compact Hausdorff space. Let V be a set of positive real-valued upper-
semicontinuous functions on X . Then V is said to be a system of weights on X if for
v1,v2 ∈ V and α > 0, there exists v ∈ V such that αvi ≤ v for i= 1,2 and for every x ∈ X ,
there exists v ∈V such that v(x) > 0.
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If V is the set of all positive constant functions on X or V is the set of all continuous
positive functions vanishing at infinity or V is the set of positive scalar multiples of all
characteristic functions, then V is a system of weights on X .

If E is a Banach space and V is a system of weights on X , then we can define the spaces
CV0(X ,E) and CVb(X ,E) in the following manner:

CV0(X ,E)= { f ∈ C(X ,E) : v f vanishes at infinity for each v ∈V
}

,

CVb(X ,E)= { f ∈ C(X ,E) : v f (X) is bounded in E for every v ∈V
}
.

(3.1)

The spaces CV0(X ,E) and CVb(X ,E) are linear spaces of continuous E-valued functions
on X . If v ∈ V and f ∈ C(X ,E), then define ‖ f ‖v = sup{v(x)‖ f (x)‖ : x ∈ X}. ‖ · ‖v is
a seminorm on either CVb(X ,E) or CV0(X ,E) and the family {‖ · ‖v : v ∈ V} of semi-
norms defines a Hausdorff locally convex topology on each of these spaces. The spaces
CV0(X ,E) and CVb(X ,E) with the locally convex topologies induced by the above family
of seminorms are called the weighted spaces of vector-valued continuous functions on
X . These spaces are natural generalizations of C(K)-spaces. For example, if X is com-
pact, then CV0(X ,E)= CVb(X ,E)= C(X ,E). If V is the system of constant weights, then
CV0(X ,E)= C0(X ,E), the space of all continuous functions vanishing at infinity. If V is
the set of all positive multiples of characteristic functions, then CV0(X ,E)= CVb(X ,E)=
C0(X ,E), the space of all E-valued continuous functions with compact supports. For fur-
ther details about the weighted spaces of continuous functions and some operators on
them, we refer to [22, 25, 26, 30]. At the place of the Banach space E, one can take any lo-
cally convex space and define the weighted spaces of vector-valued continuous functions
which form a much larger class of locally convex spaces of continuous functions. In this
section, we will report Banach-Stone-theorem-type results on some weighted spaces of
vector-valued continuous functions.

The first vector-valued generalization of Banach-Stone theorem was obtained by M.
Jerison in 1950 in case of strictly convex Banach spaces E. Recall that a Banach space E is
strictly convex if every vector of unit norm is an extreme point of the closed unit ball of
Jerison [13] proved in the following theorem.

Theorem 3.1. Let X and Y be compact Hausdorff spaces and let E be a strictly convex
Banach space. Then every linear surjective isometry T between C(X ,E) and C(Y ,E) is a
weighted substitution operator, that is, there exist continuous maps ϕ : Y → X and θ : Y →
B(E) such that T =Wθ

ϕ .

In case the dual E∗ of E is strictly convex instead of E, the conclusion of Jerison’s
theorem holds. This was demonstrated by Lau [17].

If X and Y are locally compact Hausdorff spaces, and U and V are systems of weights
of positive constant functions on X and Y , respectively, then

CV0(X ,E)= C0(X ,E), CV0(Y ,E)= C0(Y ,E). (3.2)

For every Banach space E, C0(X ,E) and C0(Y ,E) are Banach spaces of E-valued con-
tinuous functions vanishing at infinity on X and Y , respectively. The linear isometries
between C0(X ,E) and C0(Y ,E) have been characterized recently in some cases in terms
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of the weighted substitution operators. The following questions are pertinent in this con-
text.

(1) For which Banach spaces E is every surjective linear isometry from C0(X ,E) to
C0(Y ,E) a weighted substitution operator?

(2) In general, for which Banach spaces E and F is every surjective linear isometry
from C0(X ,E) to C0(Y ,F) a weighted substitution operator?

(3) If C0(X ,E) is isometrically isomorphic to C0(Y ,E), then under what condition
are X and Y homeomorphic?

(4) Which isometries from CV0(X ,E) to CV0(X ,E) are weighted substitution oper-
ators? (An operator T from CV0(X ,E) to CV0(X ,E) is an isometry if ‖T f ‖v =
‖ f ‖v for v ∈V .)

Some of these questions have already been answered. Classical Banach-Stone theorem
and its generalization by Jerison provide some of the answers. Recently Jeang and Wong
[12] have provided some answers and examples to some of the questions.

Example 3.2. (a) Let X = [0,1], Y = {1}, and Z = { f | f :N→ X] be the Cartesian prod-
uct of countably infinite copies of X with product topology. Then X , Y , and Z are com-
pact spaces. Let E = C(Z). Then C(X ,E) = C(X ,C(Z)) = C(X ×Z) = C(Z). This is iso-
metrically isomorphic to C(Y ,C(Z)) = C(Y ,E). But X and Y are not homeomorphic.
Thus every onto linear isometry may not be a weighted substitution operator.

(b) Let E = R2∞, R×R with sup norm. Let X = {0,1} and Y = {0}, with discrete
topologies. Define the map T : C(X ,R)→ C({0}, R2∞) as T f (0)= ( f (0), f (1)). Then T is
a surjective isometry, but it cannot be written as a weighted substitution operator.

If T is a linear map from C0(X ,E) to C0(X ,E) such that T is a generalized weighted
substitution operator Wθ

ϕ , then both ϕ and θ are continuous and ϕ and θ are unique in
some sense. This has been demonstrated in [16] and some into isometries are charac-
terized in terms of generalized weighted substitution operators. The following theorem
presents this characterization.

Theorem 3.3. If F is a strictly convex Banach space and E is a Banach space, then ev-
ery linear isometry T between C0(X ,E) and C0(Y ,F) is a generalized weighted substitution
operator.

Outline of the proof. For µ ∈ E∗, µ′ ∈ F∗ with ‖µ‖ = ‖µ′‖ = 1, and for x ∈ X and

y ∈ Y , define the sets F
µ
x and G

µ′
y as F

µ
x = { f ∈ C0(X ,E) : µ( f (x))= ‖ f ‖ = 1} and G

µ′
y =

{g ∈ C0(Y ,E) : µ′(g(y))= ‖g‖ = 1}.
If δx and δy are evaluation functionals at x and y, respectively, then F

µ
x and G

µ′
y are

norm-attaining sets of the linear functionals µoδx and µ′oδy , respectively. If F
µ
x is non-

empty, then let Y
µ′
x = {y ∈ Y : T(F

µ
x )⊂ G

µ′
y for some µ′ ∈ F∗ with ‖µ′‖ = 1} and Y

µ
x = φ

if F
µ
x = φ. It can be shown that Y

µ
x = φ if F

µ
x = φ. Let Yx be the union of F

µ
x for µ ∈ E∗

and ‖µ‖ = 1. Then Yx = φ since norm-attaining functionals are dense in the unit sphere
of E∗. Let Y1 be the union of all Yx such that x ∈ X .

If x1 = x2, then by strict convexity,Yx1 ∩Yx2 = φ. Define ϕ : Y1→X as ϕ(y)=x if x∈Yx.
Also (δy ◦T)( f )= 0 if ϕ(y) does not belong to the support of f for f ∈ C0(X ,E). Thus

kerδϕ(y) ⊂ kerδy ◦T. (3.3)
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Hence there exists a linear map θ(y) between E and F such that δy ◦ T = θ(y)δϕ(y).
Equivalently, T f (y)= θ(y) f (ϕ(y)) for f ∈ C0(X ,E) and y ∈ Y1. Thus T is a generalized
weighted substitution operator.

Corollary 3.4. If T : C(X)→ C(Y) is an isometry, then T is a generalized weighted sub-
stitution operator. In case T(1)= 1, T is a generalized substitution operator.

Note. If F is a real Banach space which is not strictly convex and E is a real Banach
space, then a linear isometry has been created in [12] which is not a generalized substitu-
tion operator.

If F is a strictly convex Banach space and x, y ∈ F such that ‖x‖ = ‖y‖ = 1, then ‖x+
y‖ < 2. This property of F is very significant in characterization of isometries in terms of
the weighted substitution operators. If F does not contain a copy ofR∞2 , that is,R∞2 cannot
be isometrtically embedded in F, then either ‖x+ y‖ < 2 or ‖x− y‖ < 2 for x, y ∈ F with
‖x‖ = 1= ‖y‖. It has been shown by Jeang and Wong [12] that if F does not have a copy
of R∞2 , then every linear surjective isometry between C0(X ,E) and C0(Y ,F) is a weighted
substitution operator. We will record this in the following theorem.

Theorem 3.5. If E and F are Banach spaces such that F does not contain a copy of R∞2 , then
for every linear surjective isometry between C0(X ,E) and C0(Y ,F), there exist a continuous
map ϕ : Y → X and a continuous map θ : Y → B(E,F) such that T =Wθ

ϕ (continuity of θ is
taken with respect to strong operator topology on B(E,F)).

Let S1 be a nonzero closed subspace of E. Then S1 is said to be an M-summand of E, if
there exists a closed proper subspace S2 of E such that

E = S1⊕ S2,
∥∥(x1,x2

)∥∥=max
{∥∥x1

∥∥,
∥∥x2
∥∥}. (3.4)

If E is a reflexive Banach space which does not have any nontrivial direct M-summand,
then it has been shown by Cambern [4] that every linear surjective isometry fromC0(X ,E)
to C0(Y ,E) can be represented as a weighted substitution operator. The problem is still
unresolved in case of nonreflexive Banach spaces.

Recall that an operator T from CV0(X ,E) to CV0(X ,E) is said to be disjointness pre-
serving if {x ∈ X : T f (x) = 0} ∩ {x ∈ X : Tg(x) = 0} = φ, whenever {x ∈ X : f (x) =
0} ∩ {x ∈ X : g(x) = 0} = φ for f ,g ∈ CV0(X ,E). In lattice language, T is disjointness
preserving if f⊥g implies that T f⊥Tg. It turns out that in some cases, the class of dis-
jointness preserving operators contains the class of surjective isometries, that is, every
linear surjective isometry on C0(X ,E) is a disjointness preserving operator for suitable
Banach spaces. In general, if T is a linear surjective isometry such that T and T−1 are dis-
jointness preserving, then T can be represented as a weighted substitution operator. We
refer to [9] for further details. If E is strictly convex or E∗ is strictly convex, then every
onto isometry is disjointness preserving. The disjointness preserving operators have been
studied on the weighted spaces of continuous functions and Banach lattices. For detail,
we refer to [1, 2, 27].

If V = C+
0 (X), the set of all continuous positive functions vanishing at infinity on X ,

then CV0(X ,E) is a seminormed linear space of continuous E-valued functions f on
X such that v f vanishes at infinity for every v ∈ V . Here each seminorm is a weighted
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analog of sup norm. It has been shown that every continuous disjointness preserving
operator T on CV0(X) is a weighted substitution operator, that is, T =Wθ

ϕ , where ϕ :
X → X and θ : X → C such that ϕ is continuous on {x ∈ X : θ(x) = 0). A generalization
of this result for CV0(X ,E) has also been obtained. We present this generalization in the
following theorem.

Theorem 3.6. Let T be an operator on CV0(X ,E). Then T is disjointness preserving if
and only if there exist a function ϕ : X → X and a function θ ∈ CV0(X ,BS(E)) such that
ϕ is continuous on support of θ and T =Wθ

ϕ (here BS(E) denotes the Banach space of all
bounded linear operators with strong operator topology).

Outline of the proof. Suppose T is disjointness preserving. Let t ∈ E and t∗ ∈ E∗

and let f ∈ CV0(X). Then ft ∈ CV0(X ,E), where ft(x) = f (x)t. Define St
∗
t on CV0(X)

as St
∗
t f (x)= t∗(T ft(x)) for f ∈ CV0(X) and x ∈ X . Then St

∗
t is a disjointness preserving

operator and hence there exist a self-map ϕt∗
t , independent of t, and t∗ and a function

θt
∗
t ∈ CV0(X) such that St

∗
t =W

θt
∗
t

ϕ , where ϕ(x)= ϕt∗
t (x) for all x ∈ X .

For x ∈ X , we define θ(x) : E→ E as θ(x)(t) = (t1t)(x) for t ∈ E. Then θ(x) ∈ B(E)
for every x ∈ X and θ ∈ CV0(X ,BS(E)). Now θt

∗
t (x)= St

∗
t 1(x)= t∗(T1t(x))= t∗(θ(x)t).

From this, we have

t∗
(
T ft(x)

)= St
∗
t f (x)= t∗

(
θ(x)t

) · f (ϕ(x)
)= t∗

(
(θ)(x) ft

(
ϕ(x)

))
(3.5)

for all f ∈ CV0(X), t ∈ E, t∗ ∈ E∗, and x ∈ {y ∈ X : θ(y) = 0}. Thus

T ft(x)=


θ(x)

(
ft
(
T(x)

))
if θ(x) = 0

0 otherwise.
(3.6)

Since the set { ft : f ∈ CV0(X), t ∈ E} is dense in CV0(X ,E) [22], we conclude that T =
Wθ

ϕ . This completes the outline of proof of the theorem.
Note. (1) If v : X → R+ is a continuous function such that v(x) > 0 for every x ∈ X ,

and V = {λv : λ > 0}, then CV0(X ,E) is a Banach space. It would be nice to characterize
linear surjective isometries on CV0(X ,E).

(2) Theorem 3.6 is valid even if E is a locally convex Hausdorff space.
(3) Characterization of isometries on general CV0(X ,E) is still an open problem and

so is the problem of characterization of disjointness preserving operators.
If E is a Banach lattice, thenC0(X ,E) is also a Banach lattice with order defined as f ≤ g

whenever f (x)≤ g(x) for every x ∈ X . We have seen in Theorem 2.4 that every nonzero
lattice homomorphism between C(X ,R) and C(Y ,R) is a weighted substitution operator
in case X and Y are compact Hausdorff spaces. Actually, C(X ,R) is lattice isomorphic to
C(Y ,R) if and only if X and Y are topologically homeomorphic.

If E and F are Banach lattices, then C(X ,E) and C(X ,F) may be lattice isomorphic
without X and Y being topologically homeomorphic. For example, let E = R2∞, let X =
{0}, let Y = {0,1}. Then T(a,b) = (a,2b) is a lattice isomorphism from C(X ,R2∞) to
C(Y ,R), but X and Y are not homeomorphic and R2∞ and R are not lattice isomorphic.
T is also not an isometry.
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If f ∈ C(X) and t ∈ E, then we know that ft ∈ C(X ,E), where ft(x)= f (x)t for x ∈ X .
Let T : C(X ,E) → F be a lattice homomorphism. Then an element a ∈ X is a support
of T if T( f ) = T(1 f (a)) for all f ∈ C(X ,E), where 1 ∈ C(X) is the identity function. If
T : C(X ,E) → R is a lattice homomorphism such that T(1t) = 0, whenever t = 0, then
it has been proved in [5] using Urysohn’s lemma that T has a unique support. We will
record this in the following theorem which generalizes Theorem 2.3.

Theorem 3.7. Let T : C(X ,E)→ R be a lattice homomorphism and suppose T(1t) = 0 for
every 0 = t ∈ E. Then the support of T is unique.

If Y is a compact Hausdorff space and F is a Banach lattice, then the evaluation map
δy from C(Y ,F) to F is defined as δy( f )= f (y). If T : C(X ,E)→ C(Y ,F) is a lattice ho-
momorphism, then δy ◦T → F is a lattice homomorphism. For y ∈ Y , define Ty : E→ F
as Ty(t) = δy ◦T(1t) for every t ∈ E. The map δy ◦T is a lattice homomorphism from
C(X ,E) to C(X ,R) such that Z(T( f )) is empty whenever Z( f ) is empty, where Z( f ) de-
notes the zero set of f . Also δy ◦T(1t) = 0 when t = 0. Thus by Theorem 3.7, there exists
a unique x ∈ X such that

δy ◦T( f )= (δy ◦T
)(

1 f (x)
)

(3.7)

for every f ∈ C(X ,E). We define the associated map ϕ : Y → X as ϕ(y)= x for each y ∈
Y . It turns out that ϕ is a continuous map. If T : C(X ,E) → C(Y ,R) is an onto lattice
homomorphism with Z(T( f ))= φ, whenever Z( f )= φ, then it is easy to show that Ty :
E→ R is a lattice isomorphism for every y ∈ Y . The following theorem of [5] presents
a Banach-Stone-theorem-type result in case of lattice-valued continuous functions on
compact Hausdorff spaces X and Y .

Theorem 3.8. If X and Y are compact Hausdorff spaces, E is a Banach lattice, and T :
C(X ,E)→ C(Y ,R) is a lattice isomorphism such that Z(T( f )) is empty whenever Z( f ) is
empty, then X and Y are homeomorphic and E and R are lattice isomorphic.

Proof. Let y ∈ Y and T : C(X ,E) → C(Y ,R) be a lattice isomorphism. Then δy ◦ T :
C(X ,E)→R is a lattice isomorphism and hence Ty : E→R is an isomorphism.

Let ϕ : Y → X be the associated map induced by T such that

δy ◦T( f )= δy ◦T
(
1 f (y)

)
(3.8)

for every f ∈ C(X ,E).
Suppose x0 ∈ X such that ϕ(y) = x0 for every y ∈ Y . Then there exists an open set Gy

such that ϕ(y) ∈ Gy and x0 ∈ Gy . The family {ϕ−1(Gy) : y ∈ Y} is an open cover of Y .
Since Y is compact,

Y =
n⋃
i=1

ϕ−1(Gyi

)
for some finite subset

{
y1, y2, . . . , yn

}
of Y. (3.9)

Let fi be a continuous function on X such that fi(x0) = 1 and fi(Gyi) = {0} for i =
1,2, . . . ,n. If f =Λn

i=1 fi, then f (x0)= 1 and f (Gyi)= {0} for i= 1,2, . . . ,n. Let t ∈ E such
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that t = 0 and let h= ft. Then

T(h)(y)= δy ◦T(h)= (δy ◦T
)(
h◦ϕ(y)

)= 0. (3.10)

Thus Th = 0, and hence h = 0. But h(x0) = ft(x0) = f (x0)t = t = 0. This is a contradic-
tion. Hence ϕ : Y → X is a surjection. Since T is an isomorphism, T−1 is also a lattice
isomorphism from C(Y ,R) to C(X ,E). It can be shown that Z(T−1(g)) is empty when-
ever Z(g) is empty. If ϕ′ : X → Y is the associated function corresponding to T−1, then it
can be shown that ϕ′ is an inverse of ϕ. Hence ϕ : Y → X is a homeomorphism, since X
and Y are compact spaces. The map Ty : E→R is a lattice isomorphism. This completes
the proof of the theorem. �

Note. It is clear that C(X ,R) and C(Y ,R) are lattice isomorphic if and only if X and Y
are homeomorphic. The substitution operator induced by a homeomorphism from Y to
X is a lattice isomorphism fromC(X ,R) toC(Y ,R). As we have seen,C(X ,R) andC(Y ,R)
may be lattice isomorphic without X and Y being homeomorphic. But existence of a
lattice isomorphism T : C(X ,E)→ C(Y ,R) such that Z(T( f )) is empty whenever Z( f ) is
empty for f ∈ C(X ,E) guarantees that X and Y are homeomorphic. If Banach lattice E
with a quasi-interior point has a compact or locally compact representation space [24],
then it would be worthwhile to investigate whether a lattice isomorphism from C(X ,E)
to C(Y ,R) gives rise to a homeomorphism from Y to X .

4. Banach-Stone-theorem-type results for algebras

If X is a completely regular Hausdorff space, then C(X) is an algebra having many con-
tinuous functions besides constant functions. In general, if V is a system of weights on X ,
such that

√
v ∈V whenever v ∈V or V contains all constant functions, then CV0(X) is a

topological algebra [26]. If E is a Banach algebra, then CVb(X ,E) is a topological algebra.
If X is a compact Hausdorff space, then C(X) is a C∗-algebra and every commutative uni-
tal C∗-algebra is isometrically isomorphic to a C(K)-space for some compact Hausdorff

space K . Every linear surjective isometry between C(K)-spaces is a weighted substitu-
tion operator as we have seen earlier. The concept of a disjointness preserving operator
between noncommutative algebras can be discussed in terms of zero-product preserv-
ing map which by definition is a linear map T between two algebras A and B such that
T(a)T(b)= 0 whenever ab = 0. The C(K)-spaces carry different mathematical structures
on them like commutative ring structure, Banach algebra structure, Banach lattice struc-
ture, C∗-algebra structure, and so forth. It is easy to see in light of results in Section 1
and Section 2 that surjective isometries and lattice isomorphisms between C(K)-spaces
turn out to be zero product preserving maps. In fact, T preserves zero product between
C(K)-spaces if and only if T is a weighted substitution operator.

In general if A and B are topological algebras, T : A→ B is a continuous linear map
such that T(a)T(b) = 0, whenever ab = 0 and subalgebra generated by the idempotent
elements of A is dense in A, then T(e)T(a) = T(a)T(e) and T(e)T(ab) = T(a)T(b) for
every a,b ∈ A, where e ∈ A is an identity element. Also T(a)T(b)= T(b)T(a) whenever
ab = ba. The following theorem of [6] presents a representation of zero-product preserv-
ing operators between two topological algebras under certain conditions.
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Theorem 4.1. Let A and B be topological algebras such that A has an identity e, and sub-
algebra generated by idempotent elements is dense in A. Let T : A→ B be a continuous zero-
product preserving operator such that T(e) has an inverse in B or the subalgebra generated
by T(A) has an identity. Then there exists an algebra homomorphism S : A→ B such that

T(a)= T(e)S(a) for every a∈A, (4.1)

(i.e., T is a weighted algebra homomorphism).

Proof. Suppose T(e) is invertible in B. Let h= T(e) and let S= h−1T . Then, by remarks
given above, it follows that S is an algebra homomorphism and T = T(e)S. If e′ is an
identity in subalgebra generated by T(A), then

e′ =
k∑
i=1

T
(
ai1
)
T
(
ai2
)···T(aik

)
, (4.2)

where a′iks are elements of A. It can be shown that

e′ = e′e′ = T(e)b = bT(e) (4.3)

for some b is subalgebra generated by T(A). This shows that T(e) is invertible and hence
the proof is completed. �

The following corollaries are consequences of this result and its generalization to ad-
ditive maps preserving zero product on unital rings A generated by idempotents [6].

Corollary 4.2. Let H be an infinite-dimensional Hilbert space and let B be a ring. Let
T : B(H)→ B be a zero-product preserving additive map. Let B′ be the subring of B generated
by T(B(H)). Then T(e) belongs to the center of B′ and

T(e)T( f g)= T( f )T(g), for f ,g ∈ B(H). (4.4)

If T(e) is invertible, then T = T(e)S for some ring homomorphism S from B(H) to B.

Corollary 4.3. Let H1 and H2 be infinite-dimensional Hilbert spaces. If T : B(H1)→
B(H2) is an additive bijection preserving zero product, then

T( f )= αg−1 f g for f ∈ B
(
H1
)
, (4.5)

where α is a scalar and g is an invertible operator from H2 to H1, that is, T =W
αg−1

g .

Note. Some results similar to Theorem 4.1 and its corollaries have been obtained for
operator algebras, W∗-algebras and C∗-algebras. We refer to [3, 6, 7] for details.

The characterizations of isometrics between function spaces and function algebras
of integrable functions and analytic functions have also been obtained in terms of the
weighted substitution operators. In 1958, Lamperti [16] proved that every surjective lin-
ear isometry on Lp(X ,µ)(p = 2) is a weighted substitution operator and this result was
extended in 1978 by Sourour [29] to some Lp-spaces of vector-valued functions. Lin-
ear surjective isometries on Hardy spaces Hp(D), p = 2, were characterized in terms of
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the weighted substitution operators and were extended to Hardy spaces of some vector-
valued analytic functions by Lin and Prolla [18, 22]. Pathak [20, 21] studied isometries
on spaces of absolutely continuous functions and on Cn[0,1].

The isometries of operator algebras and function algebras were also studied. Kadi-
son [14] initiated the work on isometries of operator algebras. Recently Blecher and
Labuschagne [3] have made further investigations regarding isometries on operator al-
gebras. Matheson [19] has characterized linear isometries between uniform algebras in
terms of (generalized) weighted substitution operators. Isometries between nice function
spaces are the weighted substitution operators. But we have seen examples of isometries
and lattice homomorphisms which cannot be represented as the weighted substitution
operators. In characterization of isometries between function spaces, a three-layer math-
ematical structure is employed, namely, underlying spaces, function spaces over underly-
ing spaces, and dual spaces of function spaces. In most of the cases, evaluation functionals
play important role in obtaining a map between underlying spaces giving rise to substi-
tution operator between function spaces. In case of the Banach algebras of functions, the
maximal ideal space plays a crucial part. In case it is complicated, the representation of
isometric isomorphisms becomes difficult. The surjective isometries, lattice homomor-
phisms, and disjointness preserving operators between function spaces are important
transformations preserving some mathematical structures and it is nice to know that in
most of the cases they evolve from two basic binary operations on functions, namely,
multiplication and composition justifying the significance of the study of the weighted
substitution operators on function spaces.
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