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We consider the Magnus representation of the image of the braid group under the gener-
alizations of the standard Artin representation discovered by M. Wada. We show that the
images of the generators of the braid group under the Magnus representation are unitary
relative to a Hermitian matrix. As a special case, we get that the Burau representation is
unitary, which was known and proved by C. C. Squier.

1. Introduction

The braid group Bn has a well-known representation due to Artin in the group Aut(Fn)
of automorphisms of the free group Fn generated by x1, . . . ,xn. The automorphism corre-
sponding to the braid generator σi takes xi to xixi+1xi−1; xi+1 to xi, and fixes all other free
generators. Such a representation of the braid group by automorphisms of a free group
was proved to be faithful [3, page 25].

In Section 2, we present an infinite series of representations generalizing the standard
Artin representation, which were discovered by Wada [8]. More precisely, for an arbitrary
nonzero integer k, the automorphism corresponding to the braid generator σi takes xi to
xikxi+1xi−k; xi+1 to xi, and fixes all other free generators. Shpilrain has shown that these
representations are indeed faithful [6, page 773].

In Section 3, after having defined the automorphism corresponding to the braid gen-
erator, suggested by Wada, we apply the Magnus representation to these subgroups of
Aut(Fn) to get linear irreducible representations Bn → GLn−1(C[t±1]). We show that for
any nonzero integer k, the linear representations obtained are unitary relative to a Her-
mitian matrix. In particular, this shows that the Burau representation, namely when
k = 1, is conjugate to an ordinary unitary representation; which was proved by Squier
[7].

Showing that Wada’s representations are unitary might possibly help us to determine
whether or not such matrix representations of the braid group are faithful. A similar
argument was done in the case of the standard Artin representation (see [1, page 1257]).
It was known that for k = 1, the Burau representation is not faithful for n ≥ 6 [5]. It is
now known that the Burau representation for n= 5 is not faithful [2].
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2. Definitions

The braid group on n strings, Bn, is the abstract group with generators σ1, . . . ,σn−1 and a
presentation as follows:

σiσi+1σi = σi+1σiσi+1, i= 1,2, . . . ,n− 2,

σiσj = σjσi, |i− j| ≥ 2.
(2.1)

According to the standard Artin representation, the automorphism corresponding to
σi sends xi to xixi+1xi−1; xi+1 to xi, and fixes all other free generators.

Definition 2.1. The generalizations of the standard Artin representation, discovered by
Wada, assert that the automorphism corresponding to σi takes

xi −→ xi
kxi+1xi

−k,

xi+1 −→ xi,

xj −→ xj for j �= i, i+ 1.

(2.2)

By applying the Magnus representation to the image of the braid group under the gen-
eralization of the standard Artin representation, we determine the linear representations
Bn→GLn(C[t±1]) [3]. The automorphism σi is mapped onto the n×n matrix which dif-
fers from the identity only by a 2× 2 block with the top-left corner in the (i, i)th place.
More precisely,

σi(t)=




Ii−1 0 0

0
1− tk tk

1 0
0

0 0 In−i−1


 for i= 1,2, . . . ,n− 1. (2.3)

It is clear that the subspace generated by the column vector (1,1, . . . ,1)T is invariant
under this representation, where T is the transpose. Therefore, these representations, for
different values of k, are reducible.

Definition 2.2. Let k ∈ Z−{0}. Wada’s representations {φk} : Bn → GLn−1(C[t±1]) are a
family of linear irreducible representations defined as φk(σi)= In−1−AiBi, where

A1 =

tk + 1,−1,0, . . . ,0︸ ︷︷ ︸

n−3



T

, Ai =

0, . . . ,0︸ ︷︷ ︸

i−2

,−tk, tk + 1,−1,0, . . . ,0︸ ︷︷ ︸
n−i−2



T

,

An−1 =

0, . . . ,0︸ ︷︷ ︸

n−3

,−tk, tk + 1



T

,

(2.4)

for i= 2, . . . ,n− 2.
Here, {B1, . . . ,Bn−1} is the standard basis of Cn−1.
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These representations are irreducible by [4, Theorem 5]. Notice that the representation
φ1 is (conjugate to) the reduced Burau representation of the braid group as presented in
[4].

3. Wada’s representations are unitary

Notation 3.1. Let (∗) : Mm(C[t±1]) be an involution defined as follows:

(
fi j(t)

)∗ = f ji
(
t−1), fi j(t)∈ C

[
t±1]. (3.1)

Definition 3.2. Let X and U be elements of GLn−1(C[t±1]). U is called a unitary element
(relative to X) if UXU∗ = X .

Now define the following (n− 1)× (n− 1) matrix, M, in a way that each column looks
like (0, . . . ,0,−tk, tk + 1,−1,0, . . . ,0)T , where tk + 1 is a diagonal entry and T is the trans-
pose. More precisely, we have

M =




tk + 1 −tk 0 ··· ··· 0

−1 tk + 1 −tk 0 ··· ...

0 −1 tk + 1 −tk ··· ...

0 0 −1
. . .

. . . 0
...

... ··· 0 tk + 1 −tk
0 0 ··· 0 −1 tk + 1




. (3.2)

For simplicity, we denote the matrix φk(σi) corresponding to the braid generator, σi,
under Wada’s representations, by Xk,i, where Xk,i = In−1−AiBi, where Ai, Bi are given by
Definition 2.2.

We now prove our main theorem.

Theorem 3.3. The images of the generators of Bn under Wada’s representations, φk, are
unitary relative to M, that is, for 1≤ i≤ n− 1,

Xk,iM
(
Xk,i
)∗ =M. (3.3)

Proof.

Xk,iM
(
Xk,i
)∗ = (I −AiBi

)
M
(
I −AiBi

)∗
=M−AiBiM−MBi

∗Ai
∗ +AiBiMBi

∗Ai
∗.

(3.4)

Having done some computations, we get

AiBiM = tkAiAi
∗,

MBi
∗Ai

∗ = AiAi
∗,

AiBiMBi
∗Ai

∗ = (tk + 1
)
AiAi

∗.

(3.5)
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So,

Xk,iM
(
Xk,i
)∗ =M +AiAi

∗(− tk − 1 + tk + 1
)=M. (3.6)

�

Now we view C[t±1] as a subring of C[u,u−1], where u2 = t. Let N = u−kM, then by
direct substitution, we get

N =




uk +u−k −uk 0 ··· ··· 0

−u−k uk +u−k −uk 0 ··· ...

0 −u−k uk +u−k −uk ··· ...

0 0 −u−k . . .
. . . 0

...
... ··· 0 uk +u−k −uk

0 0 ··· 0 −u−k uk +u−k




. (3.7)

It is clear that N is Hermitian (N∗ =N) and Xk,iN(Xk,i)∗ =N . Next, our objective is
to show that a certain specialization N of N is equivalent to the identity matrix in some
extension field, that is, for some matrix U , we have that

N =UU∗. (3.8)

From linear algebra, it is well known that a Hermitian matrix is positive definite if and
only if each of the principal minors is positive. In that case, the matrix will be equivalent
to the identity matrix.

The principal minors of N are of the form det(Dm), where 1≤m≤ n− 1 and Dm is an
m×m matrix (upper-left corners of N). It is then easy to see the following lemma.

Lemma 3.4. Let t = u2 and u= 1, then under this specialization, for 1≤m≤ n− 1,

det
(
Dm
)=m+ 1. (3.9)

Proof. By induction on m, we get

det
(
Dm
)= u2(m+1)k − 1

umk
(
u2k − 1

) = u−mk
(
u2mk +u2(m−1)k + ···+u2k + 1

)
. (3.10)

Having u= 1, we get that det(Dm)=m+ 1. �

Let u = a, where a is a complex number lying in an open arc around 1 on the unit
circle. By having an explicit formula for the principal minors of N as in Lemma 3.4, it is
then possible to completely determine the arc around 1 where a belongs to. The choice of
this arc depends on the values of k and n. Along the same lines as in [1, pages 1254–1255],
we can easily get the following lemma.
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Lemma 3.5. Let a be a complex number on the unit circle. Then det(Dm) is positive for all
m= 1,2, . . . ,n− 1 if and only if a lies in an open arc around 1 bounded by e−πi/kn and eπi/kn.

Hence, the matrix N is a positive definite Hermitian matrix under the complex spe-
cialization u= a belonging to the open arc bounded by e−πi/kn and eπi/kn. We denote this
matrix by N . By a theorem in linear algebra, there exists a matrix U such that

N =UU∗. (3.11)

As in [1, page 1255], the next theorem shows that a conjugate of Wada’s representation is
unitary. Here, a matrix X is unitary if XX∗ = X∗X = I .

Theorem 3.6. The complex specialization of Wada’s representation of Bn (having t = u2 =
a2 and a is around 1) is conjugate to an ordinary unitary representation.

Proof. Consider the composition map

Bn
φk

GLn−1
(
C
[
u,u−1

])

f

GLn−1(C)

(3.12)

Let f (Xk,i) be the image of Xk,i under the complex specialization u= a, where a lies in
an arc around 1 bounded by e−πi/kn and eπi/kn.

Having that N =UU∗, we let V =U−1 f (Xk,i)U , then it is clear that

VV∗ =V∗V = I. (3.13)
�

Notice that, under the case k = 1, Theorem 3.6 implies that the specialization of the
Burau representation is conjugate to an ordinary unitary representation; which was
proved by Squier [7].
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