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We introduce and study a new class of general nonlinear variational-like inequalities in
reflexive Banach spaces. By applying a minimax inequality, we establish two existence and
uniqueness theorems of solutions for the general nonlinear variational-like inequality.

1. Introduction

Recently, variational inequality theory has been extended and applied in various direc-
tions, see [6, 7, 8, 9, 10] and the references therein. In particular, Ding [1, 2, 3], and
Ding and Tan [4] studied the existence of solutions for several nonlinear variational-like
inequalities in reflexive Banach spaces.

In this paper, a new class of general nonlinear variational-like inequalities in reflexive
Banach spaces are introduced. Utilizing a minimax inequality due to Ding and Tan [4], we
provide some efficient conditions, which ensure the existence and uniqueness of solutions
for the general nonlinear variational-like inequality. Our results improve and generalize
many known results in the literature.

2. Preliminaries

Let D be a nonempty convex subset of a reflexive Banach space B with dual space B∗ and
let 〈u,v〉 be the dual pairing between u∈ B∗ and v ∈ B. Let T , A : D→ B∗, N : B∗ ×B∗ →
B∗, and η : D×D → B be mappings. Suppose that a : B × B → (−∞,+∞) is a coercive
continuous bilinear form, that is, there exist positive constants c and d such that

(c1) a(u,v)≥ c‖v‖2 for all v ∈ B;
(c2) a(u,v)≤ d‖u‖‖v‖ for all u,v ∈ B.

Clearly, c ≤ d.
Let f : D→ (−∞,+∞] be a real functional and let z∗ ∈ B∗. We consider the following

general nonlinear variational-like inequality problem: find u∈D such that

〈
N(Tu,Au)− z∗,η(v,u)

〉
+ a(u,v−u)≥ f (u)− f (v), ∀v ∈D. (2.1)

We have the following special cases.
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(A) If N(Tu,Au)= Tu−Au, a(u,v)≡ 0 for all u,v ∈D, and z∗ = 0, then the general
nonlinear variational-like inequality (2.1) reduces to

〈
Tu−Au,η(v,u)

〉≥ f (u)− f (v), ∀v ∈D, (2.2)

which was introduced and studied by Ding [1].
(B) If N(Tu,Au)= Tu−Au and a(u,v)≡ 0 for all u,v ∈D, then the general nonlinear

variational-like inequality (2.1) reduces to

〈
Tu−Au− z∗,η(v,u)

〉≥ f (u)− f (v), ∀v ∈D, (2.3)

which was studied by Yao [10] in Hilbert spaces.

Definition 2.1. Let D be a nonempty subset of a reflexive Banach space B with dual space
B∗. Let T : D→ B∗, N : B∗ ×B∗ → B∗, and η : D×D→ B be mappings.

(1) T is said to be Lipschitz continuous with constant α if there exists a constant α > 0
such that

‖Tu−Tv‖ ≤ α‖u− v‖, ∀u,v ∈D. (2.4)

(2) N is said to be η-relaxed monotone with constant γ with respect to T in the first
argument if there exists a constant γ > 0 such that

〈
N(Tu,w)−N(Tv,w),η(u,v)

〉≥−γ‖u− v‖2, ∀u,v ∈D, w ∈ B∗. (2.5)

(3) N is said to be η-strongly monotone with constant ξ with respect to T in the first
argument if there exists a constant ξ > 0 such that

〈
N(Tu,w)−N(Tv,w),η(u,v)

〉≥ ξ‖u− v‖2, ∀u,v ∈D, w ∈ B∗. (2.6)

(4) N is said to be η-monotone with respect to A in the second argument if

〈
N(w,Au)−N(w,Av),η(u,v)

〉≥ 0, ∀u,v ∈D, w ∈ B∗. (2.7)

(5) η is said to be Lipschitz continuous with constant δ if there exists a constant δ > 0
such that

∥∥η(u,v)
∥∥≤ δ‖u− v‖, ∀u,v ∈D. (2.8)

(6) η is said to be strongly monotone with constant τ if there exists a constant τ > 0
such that

〈
u− v,η(u,v)

〉≥ τ‖u− v‖2, ∀u,v ∈D. (2.9)

Definition 2.2. Let D be a nonempty convex subset of a reflexive Banach space B and let
f : D→ (−∞,+∞] be a real functional.

(1) f is said to be convex if

f
(
αu+ (1−α)v

)≤ α f (u) + (1−α) f (v), ∀u,v ∈D, α∈ [0,1]. (2.10)
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(2) f is said to be lower semicontinuous on D if for each α∈ (−∞,+∞], the set {u∈
D : f (u)≤ α} is closed in D.

Definition 2.3. Let D be a nonempty subset of a reflexive Banach space B with dual
space B∗ and let T : D → B∗ and η : D×D → B be two mappings. T and η are said to
have 0-diagonally concave relation with respect to z∗ ∈ B∗ if the functional ϕ : D×D→
(−∞,+∞] defined by ϕ(u,v)= 〈Tu− z∗,η(u,v)〉 is 0-diagonally concave in v, that is, for
any finite set {v1, . . . ,vm} ∈D and for any u=∑m

i=1 λivi with λi ≥ 0 and
∑m

i=1 λi = 1,

m∑
i=1

λiϕ
(
u,vi

)≤ 0. (2.11)

Remark 2.4. It is easy to see that, if for each u ∈ D, η(u,u) = 0 and the functional v �→
〈Tu− z∗,η(u,v)〉 is concave, then the mappings T and η have the 0-diagonally concave
relation with respect to z∗ on D.

Lemma 2.5 [4]. Let D be a nonempty convex subset of a topological vector space and let
ϕ : D×D→ [−∞,+∞] be such that

(a) for each u ∈ D,v �→ ϕ(u,v) is lower semicontinuous on each nonempty compact
subset of D,

(b) for each nonempty finite set {v1, . . . ,vm} ∈D and for any u=∑m
i=1 λivi with λi ≥ 0

and
∑m

i=1 λi = 1, min1≤i≤mϕ(u,vi)≤ 0,
(c) there exist a nonempty compact convex subsetX0 ofD and a nonempty compact sub-

set K of D such that for each v ∈D−K , there is u∈ co(X0∪{v}) with ϕ(u,v) > 0.
Then there exists v̂ ∈ K such that ϕ(u, v̂)≤ 0 for all u∈D.

3. Existence and uniqueness theorems

In this section, we use the minimax inequality technique due to Ding and Tan [4] to prove
the existence and uniqueness theorems of solutions for the general nonlinear variational-
like inequality (2.1).

Theorem 3.1. Let D be a nonempty closed convex subset of a reflexive Banach space B
with dual space B∗. Assume that η : D×D → B is Lipschitz continuous with constant δ,
for each v ∈D, η(·,v) is continuous on D, and η(v,u)=−η(u,v) for all v,u∈D. Suppose
that a : B× B → (−∞,+∞) is a coercive continuous bilinear form and f : D→ (−∞,+∞]
is a proper convex lower semicontinuous functional with int(dom f )∩D �= ∅. Let T , A :
D → B∗ and N : B∗ × B∗ → B∗ be continuous mappings, let N be η-strongly monotone
with constant α with respect to T in the first argument and η-monotone with respect to A
in the second argument. Assume that N and η have the 0-diagonally concave relation with
respect to z∗ ∈ B∗. Then the general nonlinear variational-like inequality (2.1) has a unique
solution û∈D.

Proof. Define a functional ϕ : D×D→ (−∞,+∞] by

ϕ(v,u)= 〈z∗ −N(Fu,Gu),η(v,u)
〉− a(u,v−u) + f (u)− f (v), ∀u,v ∈D. (3.1)
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Since T , A, N , a, and η are continuous and f is lower semicontinuous, it follows that
for each v ∈ D, the functional u �→ ϕ(v,u) is weakly lower semicontinuous on D. We
claim that ϕ satisfies the condition (b) of Lemma 2.5. If it is false, there exist a finite
set {v1, . . . ,vm} ⊂D and u=∑m

i=1 λivi with λi ≥ 0 and
∑m

i=1 λi = 1 such that ϕ(vi,u) > 0 for
all i= 1, . . . ,m, that is,

〈
z∗ −N(Tu,Au),η(vi,u)

〉− a
(
u,vi

)
+ f (u)− f

(
vi
)
> 0 (3.2)

for all i= 1, . . . ,m. It follows that

m∑
i=1

λi
〈
z∗ −N(Tu,Au),η

(
vi,u

)〉
>

m∑
i=1

λia
(
u,vi

)− f (u) +
m∑
i=1

λi f
(
vi
)≥ 0, (3.3)

which contradicts the condition that N and η have the 0-diagonally concave relation with
respect to z∗. Therefore, the condition (b) of Lemma 2.5 holds. Since f is proper convex
lower semicontinuous, it follows from [5] that its subdifferential ∂ f (v) �= ∅ for all v ∈
int(dom f ). It is easy to see that f (u)≥ f (v∗) + 〈r,u− v∗〉 for all v∗ ∈ int(dom f )∩D,
r ∈ ∂ f (v∗), and u∈ B. For any fixed v∗ ∈ int(dom f )∩D, set

Q= (α+ c)−1[δ(∥∥N(Tv∗,Av∗
)∥∥+

∥∥z∗∥∥)+d
∥∥v∗∥∥+‖r‖] (3.4)

and K = {u∈D : ‖u− v∗‖ ≤Q}. Then K and D0 = {v∗} are both weakly compact con-
vex subsets of D. It follows that for each u∈D−K ,

ϕ
(
v∗,u

)= 〈z∗ −N(Tu,Au),η
(
v∗,u

)〉− a
(
u,v∗ −u

)
+ f (u)− f

(
v∗
)

≥ 〈z∗,η
(
v∗,u

)〉
+
〈
N(Tu,Au)−N

(
Tv∗,Au

)
,η
(
u,v∗

)〉
+
〈
N
(
Tv∗,Au

)−N
(
Fv∗,Gv∗

)
,η
(
u,v∗

)〉
− 〈N(Fv∗,Gv∗

)
,η
(
v∗,u

)〉
+ a
(
v∗ −u,v∗ −u

)− a
(
v∗,v∗ −u

)
+
〈
r,u− v∗

〉
≥ ∥∥u− v∗

∥∥[(α+ c)
∥∥u− v∗

∥∥− δ
(∥∥N(Tv∗,Av∗

)∥∥+
∥∥z∗∥∥)−d

∥∥v∗∥∥−‖r‖] > 0,
(3.5)

that is, the condition (c) of Lemma 2.5 holds. By Lemma 2.5, there exists û∈D such that
ϕ(v, û)≤ 0 for all v ∈D, that is,

〈
N(Tû,Aû)− z∗,η(v, û)

〉
+ a(û,v− û)≥ f (û)− f (v), ∀v ∈D. (3.6)

Now we prove that û is a unique solution of the general nonlinear variational-like
inequality (2.1). Suppose that u1 and u2 are two solutions of the general nonlinear vari-
ational-like inequality (2.1). It follows that

〈
N
(
Fu1,Gu1

)− z∗,η
(
u2,u1

)〉
+ a
(
u1,u2−u1

)≥ f
(
u1
)− f

(
u2
)
,〈

N
(
Fu2,Gu2

)− z∗,η
(
u1,u2

)〉
+ a
(
u2,u1−u2

)≥ f
(
u2
)− f

(
u1
)
.

(3.7)
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Using η(u,v)=−η(v,u) for all u and v ∈D, (3.7), we deduce that

0≥ 〈N(Tu1,Au1
)−N

(
Tu2,Au2

)
,η
(
u1,u2

)〉
+ a
(
u1−u2,u1−u2

)

≥ (α+ c)
∥∥u1−u2

∥∥2 ≥ 0,
(3.8)

which means that u1 = u2 and û is the unique solution of the general nonlinear vari-
ational-like inequality (2.1). This completes the proof. �

Theorem 3.2. Let D, B, B∗, η, a, f , T , and N be as in Theorem 3.1, let A : D → B∗ be
Lipschitz continuous with constant γ, and let N : B∗ ×B∗ → B∗ be η-relaxed monotone with
constant α with respect to T in the first argument and Lipschitz continuous with constant β
in the second argument. Assume that N and η have the 0-diagonally concave relation with
respect to z∗ ∈ B∗ and c > α+ βγδ. Then the general nonlinear variational-like inequality
(2.1) has a unique solution û∈D.

Proof. Let

Q= (c−α−βγδ)−1[δ(∥∥N(Tv∗,Av∗
)∥∥+

∥∥z∗∥∥)+d
∥∥v∗∥∥+‖r‖] (3.9)

and K = {u∈D : ‖u− v∗‖ ≤Q}. It follows from the proof of Theorem 3.1 that

ϕ
(
v∗,u

)= 〈z∗,η
(
v∗,u

)〉
+
〈
N(Tu,Au)−N

(
Tv∗,Au

)
,η
(
u,v∗

)〉
− 〈N(Tv∗,Au

)−N
(
Tv∗,Av∗

)
,η
(
v∗,u

)〉
− 〈N(Tv∗,Av∗

)
,η
(
v∗,u

)〉
+ a
(
v∗ −u,v∗ −u

)− a
(
v∗,v∗ −u

)
+
〈
r,u− v∗

〉
≥ ∥∥u− v∗

∥∥[(c−α−βγδ)
∥∥u− v∗

∥∥
− δ
(∥∥N(Tv∗,Av∗

)∥∥+
∥∥z∗∥∥)−d

∥∥v∗∥∥−‖r‖] > 0.

(3.10)

The rest of the proof follows precisely as in the proof of Theorem 3.1. This completes the
proof. �

Remark 3.3. Theorems 3.1 and 3.2 improve Ding’s [1, Theorems 3.1 and 3.2] and Yao’s
[10, Theorem 3.1].
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