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In 1998, Pandu Rangan et al. proved that locating the g-centroid for an arbitrary graph is
��-hard by reducing the problem of finding the maximum clique size of a graph to the
g-centroid location problem. They have also given an efficient polynomial time algorithm
for locating the g-centroid for maximal outerplanar graphs, Ptolemaic graphs, and split
graphs. In this paper, we present an O(nm) time algorithm for locating the g-centroid for
cographs, where n is the number of vertices and m is the number of edges of the graph.

1. Introduction

In this introductory section, we present some basic terminology of graph theory and a
strong motivation for the study of g-centroid location problem.

A graph G consists of a finite nonempty set V = V(G) of vertices together with a set
E = E(G) of unordered pairs of distinct vertices of V . The pair e = {u,v} of vertices in E
is called an edge of G. We also write an edge e = {u,v} as e = uv.

If e = uv ∈ E, then u and v are called adjacent vertices and e is incident with each of its
two vertices u and v.

The degree of a vertex u, denoted by d(u), is the number of edges incident with it.
For i≥ 1, the ith neighbourhood of u∈V(G) is defined as Ni(u)= {v ∈V(G) | d(u,v)

= i}. We call N1(u) by simply N(u).
The eccentricity of a vertex u, denoted by e(u), is defined as e(u) =max{d(u,v) : v ∈

V(G)}, where d(u,v) is the distance between u and v.
A graph is self-centered if the eccentricity of a vertex is the same as that of every other

vertices. The length of any longest geodesic in G is called the diameter of G.
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. The join of G1 and G2, denoted

by G= G1∨G2, has the vertex set V = V1∪V2 and the edge set E = E1∪E2∪{uv | u∈
V1, v ∈V2}.

For further common terms not explicitly mentioned here, reference may be made
(with suitable changes) to Bondy and Murty [1], Buckley and Harary [2], or Parthasarathy
[12].
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Figure 1.1

Several types of convexity in graphs have been studied in the past modeled on similar
concepts in Euclidean space and topology. But the most important and the natural type
of graph convexity is the geodetic convexity (g-convexity for short). This was introduced
and studied by several researchers. See, for example, Mulder [9], Nieminen [10], Duchet
[3], and Soltan and Chepoı̆ [13].

We now give the definition of g-centroid through the g-convexity for graphs.

Definition 1.1. A set S ⊆ V is geodetic convex (g-convex for short) if for every pair of
vertices u,v ∈ S, all vertices on any u− v shortest path (also called a geodesic path) belong
to S.

From the above definition, it easily follows that a singleton set, vertex pair of an edge,
and the whole vertex set V(G) are g-convex sets of G. We call them as trivial g-convex
sets. Also if S is a clique (S induces a complete subgraph of G), then S is a g-convex set
of G.

Any communication network can be naturally modeled as a graph where the vertices
represent either computers or intermediate message processors and the edges represent
interconnections between them. In most of the communication networks, information
between any two nodes tends to flow through any shortest path connecting them (e.g.,
paths with least hop count in case of distance vector protocols, and least weighted paths
in case of link state routing protocols in the internetwork). Thus a g-convex set is basically
a set of nodes that is closed with respect to the flow of information.

Definition 1.2. Let G = (V ,E) be any connected graph. For v ∈ V , the g-weight w(v) =
max{|S| : S is a g-convex set of G not containing v}. Let gc(G)=min{w(v) : v ∈V}. Then
gc(G) is called the g-centroidal number of G and the vertices v for which w(v)= gc(G) are
called the g-centroidal vertices. The g-centroid Cg(G) is the set of all g-centroidal vertices
of G (i.e., g-centroid is a set of vertices which satisfies the min-max relation).

For v ∈V(G), we denote by Sv = Sv(G), any maximum g-convex set of G not contain-
ing v.

For the sake of clarity, we explain through an example.
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Example 1.3. In Figure 1.1, S1={2,3,4,5}; w(1)= 4, S2 = {1,5,4}; w(2)= 3, S3 = {1,5,4}
or {1,2,5}; w(3)= 3, S4 = {1,2,3} or {1,2,5}; w(4)= 3, and S5 = {1,2,3}; w(5)= 3. Thus
Cg(G)= {2,3,4,5}.

We now give a strong motivation for studying the g-centroid location problem.
In Mitchell [8], the g-centroid for trees plays the role of a “telephone center” through

which maximum number of calls can pass at any given time for an optimal load balancing
in a telephone network.

In [4], Gerstel and Zaks have discussed an application of g-centroid in distributed
computing, in particular, to the message passing model of a distributed asynchronous
networks. They have proved that given a network with a tree topology, choosing a g-
centroidal vertex and then routing all the information through it is the best possible
strategy in case of worst case complexity of any distributed sorting algorithm.

In [7], Kang and Ault gave some properties of the g-centroid for a tree and indicated
some possible application in information retrieval.

However, in all the above three papers, the authors have considered only tree networks.
These results can be extended for arbitrary graphs, which we present in our future papers.

Thus the problem of locating the g-centroid of a graph gained importance. In [11]
Pandu Rangan et al. have proved that locating the g-centroid for an arbitrary graph is
��-hard by reducing the problem of finding the maximum clique size of a graph to the
problem of locating the g-centroid.

However, in practice, the underlaying topology of any application network will have
some special graph properties like being acyclic or belong to a special classes of perfect
graphs. Several ��-hard or ��-complete problems for arbitrary graphs have a nicer
polynomial time algorithm on special classes of perfect graphs. For more detail on perfect
graphs and the algorithmic aspects on perfect graphs, see Golumbic [5].

Among several classes of perfect graphs, chordal graphs, permutation graphs, and
cographs are the most important ones due to their practical application. In this paper, we
consider cographs and present a polynomial time algorithm for locating the g-centroid.

We now give the definitions of some special classes of perfect graphs considered in this
paper. First we define the permutation graphs.

Let π be a permutation of the sequence 1,2, . . . ,n. The graph G(π) = (V ,E) for the
permutation π is defined as follows:

V = {1,2, . . . ,n} and i j ∈ E if and only if (i− j)(π−1
i −π−1

j ) < 0, where π−1
i is the pre-

image of i under the permutation π.
An undirected graph G is called a permutation graph if there exists a permutation π

such that G is isomorphic to G(π) for some permutation π.
A graph G is a distance hereditary graph if for any two vertices u, v of G, the distance be-

tween u and v in G is the same as that of the distance between u and v in every connected
induced subgraph containing both.

A graph is a complement reducible graph (popularly known as cograph) if it can be re-
duced to an empty graph by successively taking complements with in components (West
[14]).

It can easily be verified that cographs are distance hereditary graphs and are properly
contained in the class of permutation graphs.
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2. Structural results for cographs

In this section, we present some structural results on cographs using some of the well-
known earlier results. Using these results, we present an O(nm) time algorithm for locat-
ing the g-centroid. Our structural characterizations can also used to provide polynomial
time algorithm for other ��-hard or ��-complete problems on cographs.

Several characterizations of cographs are known. But the most important one is the
following.

Proposition 2.1. A graph G is a cograph if and only if it contains no P4 (a path on 4
vertices) as an induced subgraph.

As an immediate observation, we have the following results which specifies the maxi-
mum diameter and the properties of induced subgraphs of cographs.

Corollary 2.2. Let G be a connected cograph. Then for any u∈V , the eccentricity e(u)≤
2. That is, if a cograph is connected, then its diameter is at most two.

Even though cographs can be disconnected, in this paper, we consider only connected
cographs. Thus the graphs considered in this paper will have diameter at most two.

Proposition 2.3. Any induced subgraph of a cograph is again a cograph.

The following proposition is true for any arbitrary graph.

Proposition 2.4. Let G be any connected graph and u ∈ V(G). For any Su, Su ∩N(u) is
either empty or induces a complete subgraph of G. Further, if e(u)= 1, then Su is a maximum
clique of G−{u}.
Proof. Let x, y ∈ Su ∩N(u). If x and y are nonadjacent, then x, u, y is a geodesic path
joining x and y. Since Su is g-convex, this requires u∈ Su, a contradiction. Thus xy ∈ E
and hence Su∩N(u) induces a complete subgraph of G.

The second part of the proposition follows from the maximality of Su. �

We now discuss about the g-centroid of G when G has a vertex of eccentricity one.

Proposition 2.5. Let G be a cograph. Let U = {u1,u2, . . . ,ur} be the set of all vertices of
G with eccentricity one (and therefore degree n− 1). If G′ = G−U is disconnected, then
Cg(G)=U .

Proof. Let M1,M2, . . . ,Ms be the maximum cliques of G′ of size ω(G′) = ω′ and M =
∩s

i=1Mi. From Proposition 2.4, it follows that w(ui)= ω′ + r − 1. We split our discussion
into two cases depending upon whether M is empty or not.

Case 1 (M is empty). In this case for each vertex x of G′, we can find an i, 1 ≤ i ≤ s,
such that x /∈Mi. Thus U ∪Mi is a g-convex of G (as it is a clique) not containing x
with cardinality r +ω′. Therefore, w(x) > w(ui). By the arbitrariness of x, it follows that
Cg(G)=U .

Case 2 (M is nonempty). Let C1,C2, . . . ,Ct be the components of G′. Since G′ is discon-
nected and M is a clique, M is contained in a component, say Ci of G′. Then for each x
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not in M, as before w(x) > w(ui). If x ∈M, then S= (Mk − x)∪U ∪ j 	=i Cj is a convex set
not containing x with |S| > w(ui). Therefore, Cg(G)=U . �

Next we discuss the case when G′ is connected. Before discussing about the structure
of Cg(G), we present some results on the structure of G′ when G′ is connected.

Proposition 2.6. Let G be a cograph and G′ be defined as in the previous proposition. If G′

is connected, then G′ is a self-centered cograph of diameter two.

Proof. From Proposition 2.3, G′ is again a cograph. Since G′ is connected, by Corollary
2.2, eG′(u)≤ 2 for every vertex u∈ V(G′). We claim that G′ has no vertex of eccentricity
one. On the contrary, if u is a vertex of eccentricity one in G′, then u is adjacent to every
vertex of G′. Since ui’s are adjacent to every vertex of G, it follows that u is adjacent to
every vertex of G. Thus eG(u)= 1. This contradicts the definition of G′; hence eG′(u)= 2
for every u∈G′. �

We now analyze the structure of self-centered cographs.

Proposition 2.7. Let G be a self-centered cograph of diameter two and let u be a vertex of
G. Then the following hold.

(1) If either 〈N(u)〉 is disconnected and 〈N2(u)〉 is connected or if both are disconnected,
then for every x ∈N(u) and y ∈N2(u), xy ∈ E. That is, G−u= 〈N(u)〉∨ 〈N2(u)〉.

(2) If both 〈N(u)〉 and 〈N2(u)〉 are connected, then G−u= 〈A〉∨ 〈(N2(u)∪B)〉, where
A is the set of vertices of N(u) having a descendant in N2(u) and B =N(u)−A. Also
〈A〉 is an incomplete graph.

(3) If 〈N(u)〉 is connected and 〈N2(u)〉 is disconnected, then there exists a pair of non
adjacent vertices x1, x2 of N(u) such that x1 and x2 are adjacent to every vertex of
N2(u).

Proof. (1) Let 〈N(u)〉 be disconnected and 〈N2(u)〉 be connected. Let x ∈N(u) and y ∈
N2(u). Let C1 be the component of 〈N(u)〉 containing x. Let x1 be any parent of y in
N(u). If x1 belongs to a component C2 different from C1, then by considering the path y,
x1, u, x, we have xy ∈ E (as G has no induced P4). Suppose x1 ∈ C1. Let C2 be any other
component of 〈N(u)〉 and x2 ∈ C2. Consider the path y, x1, u, x2. Since this is not an
induced path, yx2 ∈ E. But, then, as before xy ∈ E.

In the above proof, we have not used the fact that 〈N2(u)〉 is connected. Therefore,
even if 〈N2(u)〉 is disconnected, xy ∈ E.

(2) Let A be the set of all vertices in N(u) having a descendant in N2(u).
We prove this case through the following three claims:

(1) every vertex of A is adjacent to every other vertex of N2(u);
(2) every vertex of A is adjacent to every other vertex of N(u)−A;
(3) A induces an incomplete graph, that is, A has a pair of nonadjacent vertices.

Claim 2.8. Each vertex of A is adjacent to every vertex of N2(u).

Let x ∈ A. Let z be any arbitrary vertex of N2(u). If xz ∈ E, then we are through.
If xz /∈ E, we establish a contradiction. Let y be a descendant of x in N2(u). Let y =
y0, y1, y2, . . . , yr = z be a path connecting y and z in N2(u) (see Figure 2.1). Such a path
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exists as 〈N2(u)〉 is connected. Now u, x, y, y1 is a path on 4 vertices implying xy1 ∈ E.
Extending the argument, we can show that xz ∈ E.

Claim 2.9. Let B =N(u)−A. Then for every x ∈A and x1 ∈ B, xx1 ∈ E.

This follows by considering a vertex y in N2(u) and the path x1, u, x, y.

Claim 2.10. A induces an incomplete graph.

Assume the contrary. Let x ∈ A. By Claims 2.8 and 2.9, x is adjacent to every vertex
of B as well as N2(u). Therefore, the degree of x, d(x)= n− 1 and hence the eccentricity
e(x) = 1. This contradicts our assumption that G is a self centered cograph of diameter
two. Thus 〈A〉 is an incomplete graph.

(3) Let 〈N(u)〉 be connected and 〈N2(u)〉 be disconnected.
First we show that there exists a vertex x1 of N(u) adjacent to every vertex of N2(u).

Let C1 and C2 be any two components of 〈N2(u)〉 and let yi ∈ Ci, i = 1,2. Let xi be an
ancestor of yi in N(u) (see Figure 2.2). As by the arguments in Claim 2.8, x1 is adjacent
to every vertex of C1 and x2 is adjacent to every vertex of C2. If x1 and x2 are different,
then consider the path y1, x1, u, x2. Since G is a cograph, this path must have a chord.
The possible chords are x1x2 and y1x2. If y1x2 ∈ E, then x2 is adjacent to every vertex of
C1 and C2. If x1x2 ∈ E, then by considering the path y1, x1, x2, y2, we can show that either
x1 or x2 is adjacent to every vertex of C1 and C2. In a similar fashion, we can extend this
to show that N(u) contains a vertex x1 adjacent to every vertex of N2(u).

Now e(x1)= 2. Let x2 be an eccentric vertex for x1. Since x1 is adjacent to every vertex
of N2(u) and to u, x2 ∈ N(u). We now show that x2 is also adjacent to every vertex of
N2(u). Let y ∈N2(u). By considering the path y, x1, u, x2, we have yx2 ∈ E. �
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Next we analyze the structure of Su when G′ is connected.

Proposition 2.11. Let G be a cograph. If G′ =G−U is connected, where U is a set of ver-
tices of G with eccentricity one, then for every vertex u of G, Su induces a complete subgraph
of G, and hence is a maximum clique of G not containing u.

Proof. Let u∈ V(G). If u∈U , then by Proposition 2.4, Su induces a complete subgraph
of G.

Suppose u /∈U . Consider an Su. If possible, contrary to our assumption, let x, y be a
pair of nonadjacent vertices in Su. From the remark succeeding Proposition 2.4, both x
and y cannot belong to N(u) as 〈N(u)∩ Su〉 is complete. Thus, either both x and y are in
N2(u), or one is in N(u) and the other is in N2(u). We split our discussion into four cases
and in every case, we deduce the contradiction that u∈ Su.

Case 1. 〈N(u)〉 is disconnected and 〈N2(u)〉 is connected.

Then by (1) or Proposition 2.7, x, y belong to 〈N2(u)〉. Let C1 and C2 be any two com-
ponents of 〈N(u)〉. Let xi ∈ Ci for i = 1,2. From (1) of Proposition 2.7, xxi and yxi ∈ E
for i = 1,2. Thus x, xi, y is an x− y geodesic path for i = 1,2. Hence, xi ∈ Su and sub-
sequently u ∈ Su (since xi’s are nonadjacent and x1, u, x2 is a geodesic path). This is a
contradiction to the definition of Su.

Case 2. Both 〈N(u)〉 and 〈N2(u)〉 are disconnected.

Then in a similar fashion we can show that u∈ Su.

Case 3. Both 〈N(u)〉 and 〈N2(u)〉 are connected.

Suppose that x ∈ N(u) and y ∈ N2(u). Then by (2) of Proposition 2.7, x ∈ B. Since
A is incomplete, A has a pair of nonadjacent vertices, say x1 and x2. By Proposition 2.7,
xxi, yxi ∈ E for i= 1,2. Then as before u∈ Su, a contradiction.

Similarly if x, y ∈N2(u), then also xi ∈ Su for i= 1,2 and hence u∈ Su.

Case 4. 〈N(u)〉 is connected and 〈N2(u)〉 is disconnected.

From (3) of Proposition 2.7, N(u) has a pair x1, x2 of nonadjacent vertices adjacent to
every vertex of N2(u). If x, y ∈ N2(u), then as before u ∈ Su, which is a contradiction. If
x ∈ N(u) and y ∈ N2(u) and if x is not adjacent to x1, then by considering the path y,
x1, u, x, we can show that xy ∈ E, which is a contradiction. Therefore, in this case, x is
adjacent to both x1 and x2. Consequently, x, xi, y for i= 1,2 are geodesics joining x and
y. Therefore, x1,x2 ∈ Su and hence u∈ Su. �

The above proposition is true even if U is empty (i.e., when G=G′).
Combining all the above propositions, we have the following theorem.

Theorem 2.12. Let G be a cograph. Let U be the set of all vertices of G with eccentricity
one. If G′ =G−U is disconnected, then Cg(G)=U , otherwise Cg(G)=U ∪M or Cg(G)=
V(G), depending upon whether the intersection M of all maximum cliques of G is nonempty
or not. In particular, if G′ is connected, then for each vertex u of G, w(u)= ω(G−u).

We now present our algorithm (Algorithm 2.1) to locate the g-centroid for cographs.
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Procedure GC COGP(G)
begin

Find the set U
Let G′ =G−U
If G′ is disconnected, then output U as Cg(G) else
begin

for each vertex x ∈V(G) do
w(x)= ω(G− x)

end;
output the least weighted vertices;

end;

Algorithm 2.1

Complexity analysis. Vertices in G with eccentricity one are precisely those vertices with
degree n− 1. Hence, U can be found in O(n+m) time. If U is nonempty, then G′ can be
constructed in O(n+m) time. To check whether G′ is connected or not takes O(n+m)
time. This is done by executing a depth-first search traversal. If G′ is connected, then for
each vertex x of G, G−{x} is again a cograph. Note that cographs form a proper subclass
of permutation graphs. An O(n + m) time algorithm to find the maximum clique size
for permutation graph is given by Kamakoti and Pandu Rangan [6]. Using this if G′ is
connected, then we can find the weight of all the vertices in O(nm) time. Outputting the
least weighted vertices takes O(n) time. Thus our algorithm takes O(nm) time to output
the g-centroid for cographs.

The proof of correctness of our algorithm follows from Theorem 2.12.

Theorem 2.13. Let G be a cograph. Then the g-centroid can be located in O(nm) time.

Remark 2.14. Note that if G′ is connected, then Cg(G) is the intersection of the maximum
cliques of G. Thus if all the maximum cliques of a cograph can found in O(n+m) time, as
for chordal graphs, our algorithm can be slightly modified to output Cg(G) in O(n+m)
time.
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